1
|
Wei J, Yu Y, Feng Y, Zhang J, Jiang Q, Zheng L, Zhang X, Xu N, Luo G. Negative Correlation Between Serum Levels of Homocysteine and Apolipoprotein M. Curr Mol Med 2019; 19:120-126. [PMID: 30854963 DOI: 10.2174/1566524019666190308115624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Homocysteine (Hcy) has been suggested as an independent risk factor for atherosclerosis. Apolipoprotein M (apoM) is a constituent of the HDL particles. The goal of this study was to examine the serum levels of homocysteine and apoM and to determine whether homocysteine influences apoM synthesis. METHODS Serum levels of apoM and Hcy in 17 hyperhomocysteinemia (HHcy) patients and 19 controls were measured and their correlations were analyzed. Different concentrations of homocysteine (Hcy) and LY294002, a specific phosphoinositide 3- kinase (PI3K) inhibitor, were used to treat HepG2 cells. The mRNA levels were determined by RT-PCR and the apoM protein mass was measured by western blot. RESULTS We found that decreased serum apoM levels corresponded with serum HDL levels in HHcy patients, while the serum apoM levels showed a statistically significant negative correlation with the serum Hcy levels. Moreover, apoM mRNA and protein levels were significantly decreased after the administration of Hcy in HepG2 cells, and this effect could be abolished by addition of LY294002. CONCLUSIONS Present study demonstrates that Hcy downregulates the expression of apoM by mechanisms involving the PI3K signal pathway.
Collapse
Affiliation(s)
- J Wei
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Y Yu
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Y Feng
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - J Zhang
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Q Jiang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - L Zheng
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - X Zhang
- Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - N Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| | - G Luo
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
2
|
Thomas MP, Erneux C, Potter BVL. SHIP2: Structure, Function and Inhibition. Chembiochem 2017; 18:233-247. [DOI: 10.1002/cbic.201600541] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy and Pharmacology; University of Bath; Claverton Down Bath BA2 7AY UK
| | - Christophe Erneux
- I.R.I.B.H.M.; Université Libre de Bruxelles; Campus Erasme 808 Route de Lennik 1070 Brussels Belgium
| | - Barry V. L. Potter
- Drug Discovery and Medicinal Chemistry; Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT UK
| |
Collapse
|
3
|
Ma J, Duan W, Han S, Lei J, Xu Q, Chen X, Jiang Z, Nan L, Li J, Chen K, Han L, Wang Z, Li X, Wu E, Huo X. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis. Oncotarget 2016; 6:20993-1003. [PMID: 25895130 PMCID: PMC4673245 DOI: 10.18632/oncotarget.3663] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/28/2015] [Indexed: 12/16/2022] Open
Abstract
Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis.
Collapse
Affiliation(s)
- Jiguang Ma
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wanxing Duan
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Suxia Han
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jianjun Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ligang Nan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiahui Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuqi Li
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Xiongwei Huo
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Dixon MJ, Gray A, Schenning M, Agacan M, Tempel W, Tong Y, Nedyalkova L, Park HW, Leslie NR, van Aalten DMF, Downes CP, Batty IH. IQGAP proteins reveal an atypical phosphoinositide (aPI) binding domain with a pseudo C2 domain fold. J Biol Chem 2012; 287:22483-96. [PMID: 22493426 PMCID: PMC3391087 DOI: 10.1074/jbc.m112.352773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Indexed: 01/22/2023] Open
Abstract
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). The binding affinity for PtdInsP(3), together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP(3) effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.
Collapse
Affiliation(s)
| | | | | | - Mark Agacan
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, Scotland, United Kingdom and
| | | | | | | | - Hee-Won Park
- the Structural Genomics Consortium and
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | | | | | | | - Ian H. Batty
- From the Division of Cell Signalling and Immunology and
| |
Collapse
|
5
|
Leslie NR, Dixon MJ, Schenning M, Gray A, Batty IH. Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Adv Biol Regul 2012; 52:205-213. [PMID: 21930147 DOI: 10.1016/j.advenzreg.2011.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | | | | | |
Collapse
|
6
|
Büchse T, Horras N, Lenfert E, Krystal G, Körbel S, Schümann M, Krause E, Mikkat S, Tiedge M. CIN85 interacting proteins in B cells-specific role for SHIP-1. Mol Cell Proteomics 2011; 10:M110.006239. [PMID: 21725061 DOI: 10.1074/mcp.m110.006239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Cbl-interacting 85-kDa protein (CIN85) plays an important role as a negative regulator of signaling pathways induced by receptor tyrosine kinases. By assembling multiprotein complexes this versatile adaptor enhances receptor tyrosine kinase-activated clathrin-mediated endocytosis and reduces phosphatidylinositol-3-kinase-induced phosphatidylinositol-3,4,5-trisphosphate production. Here we report the expression of CIN85 in primary splenic B lymphocytes and the B-lymphoma cell lines WEHI 231 and Ba/F3. Cross-linking of the B cell antigen receptor resulted in an increased association of CIN85 with the ubiquitin ligase Cbl. Through a systematic pull-down proteomics approach we identified 51 proteins that interact with CIN85 in B cells, including proteins not shown previously to be CIN85-associated. Among these proteins, the SH2-containing inositol phosphatase 1 (SHIP-1) co-precipitated with both the full-length CIN85 and each of its three SH3 domains. We also showed that this association is constitutive and depends on a region of 79 amino acids near the carboxyl terminus of SHIP-1, a region rich in potential SH3 domain binding sites. Because SHIP-1 is a major negative regulator of the phosphatidylinositol-3-kinase pathway in lymphocytes, we hypothesize that the interaction between SHIP-1 and CIN85 might synergistically facilitate the down-regulation of phosphatidylinositol-3,4,5-trisphosphate levels.
Collapse
Affiliation(s)
- Tom Büchse
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, Schillingallee 70, 18057 Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
García-Martínez JM, Wullschleger S, Preston G, Guichard S, Fleming S, Alessi DR, Duce SL. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice. Br J Cancer 2011; 104:1116-25. [PMID: 21407213 PMCID: PMC3068512 DOI: 10.1038/bjc.2011.83] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: The PI3K–mTOR (phosphoinositide 3-kinase–mammalian target of rapamycin kinase) pathway is activated in the majority of tumours, and there is interest in assessing whether inhibitors of PI3K or mTOR kinase have efficacy in treating cancer. Here, we define the effectiveness of specific mTOR (AZD8055) and PI3K (GDC-0941) inhibitors, currently in clinical trials, in treating spontaneous B-cell follicular lymphoma that develops in PTEN+/−LKB1+/hypo mice. Methods: The PTEN+/−LKB1+/hypo mice were administered AZD8055 or GDC-0941, and the volumes of B-cell follicular lymphoma were measured by MRI. Tumour samples were analysed by immunohistochemistry, immunoblot and flow cytometry. Results: The AZD8055 or GDC-0941 induced ∼40% reduction in tumour volume within 2 weeks, accompanied by ablation of phosphorylation of AKT, S6K and SGK (serum and glucocorticoid protein kinase) protein kinases. The drugs reduced tumour cell proliferation, promoted apoptosis and suppressed centroblast population. The AZD8055 or GDC-0941 treatment beyond 3 weeks caused a moderate additional decrease in tumour volume, reaching ∼50% of the initial volume after 6 weeks of treatment. Tumours grew back at an increased rate and displayed similar high grade and diffuse morphology as the control untreated tumours upon cessation of drug treatment. Conclusion: These results define the effects that newly designed and specific mTOR and PI3K inhibitors have on a spontaneous tumour model, which may be more representative than xenograft models frequently employed to assess effectiveness of kinase inhibitors. Our data suggest that mTOR and PI3K inhibitors would benefit treatment of cancers in which the PI3K pathway is inappropriately activated; however, when administered alone, may not cause complete regression of such tumours.
Collapse
Affiliation(s)
- J M García-Martínez
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Dixon MJ, Gray A, Boisvert FM, Agacan M, Morrice NA, Gourlay R, Leslie NR, Downes CP, Batty IH. A screen for novel phosphoinositide 3-kinase effector proteins. Mol Cell Proteomics 2011; 10:M110.003178. [PMID: 21263009 DOI: 10.1074/mcp.m110.003178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)). As few molecular targets for PtdIns(3,4)P(2) have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P(2). A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P(2) selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates the presence of a pleckstrin homology domain whose lipid binding character remains to be established. IQ motif containing GAP1 lacks known lipid interacting components and a preliminary analysis here indicates that this may exemplify a novel class of atypical phosphoinositide (aPI) binding domain.
Collapse
Affiliation(s)
- Miles J Dixon
- The Division of Molecular Physiology, College of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 2009; 11:791-810. [PMID: 18783313 PMCID: PMC2790033 DOI: 10.1089/ars.2008.2220] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.
Collapse
Affiliation(s)
- Randall S Frey
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
10
|
Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP. Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 2008; 27:5464-76. [PMID: 18794881 DOI: 10.1038/onc.2008.243] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PTEN tumour suppressor is a lipid and protein phosphatase that inhibits phosphoinositide 3-kinase (PI3K)-dependent signalling by dephosphorylating phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). Here, we discuss the concept of PTEN as an 'interfacial enzyme', which exists in a high activity state when bound transiently at membrane surfaces containing its substrate and other acidic lipids, such as PtdIns(4,5)P(2) and phosphatidylserine (PtdSer). This mechanism ensures that PTEN functions in a spatially restricted manner, and may explain its involvement in forming the gradients of PtdInsP(3), which are necessary for generating and/or sustaining cell polarity during motility, in developing neurons and in epithelial tissues. Coordinating PTEN activity with alternative mechanisms of PtdInsP(3) metabolism, by the tightly regulated SHIP 5-phoshatases, synthesizing the independent second messenger PtdIns(3,4)P(2), may also be important for cellular polarization in some cell types. Superimposed on this interfacial mechanism are additional post-translational regulatory processes, which generally act to reduce PTEN activity. Oxidation of the active site cysteine residue by reactive oxygen species and phosphorylation of serine/threonine residues at sites in the C-terminus of the protein inhibit PTEN. These phosphorylation sites also appear to play a role in regulating both stability and localization of PTEN, as does ubiquitination of PTEN. Because genetic studies in mice show that the level of expression of PTEN in an organism profoundly influences tumour susceptibility, factors that regulate PTEN, localization, activity and turnover should be important in understanding its biological functions as a tumour suppressor.
Collapse
Affiliation(s)
- N R Leslie
- Division of Molecular Physiology, College of Life Sciences, University of Dundee, James Black Centre, Dundee, Scotland, UK.
| | | | | | | | | |
Collapse
|
11
|
Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC SYSTEMS BIOLOGY 2008; 2:4. [PMID: 18194572 PMCID: PMC2254585 DOI: 10.1186/1752-0509-2-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/14/2008] [Indexed: 12/22/2022]
Abstract
Background The hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of tissues, including epithelial cells, on binding to the receptor tyrosine kinase c-Met. Abnormal c-Met signalling contributes to tumour genesis, in particular to the development of invasive and metastatic phenotypes. The human microbial pathogen Helicobacter pylori can induce chronic gastritis, peptic ulceration and more rarely, gastric adenocarcinoma. The H. pylori effector protein cytotoxin associated gene A (CagA), which is translocated via a type IV secretion system (T4SS) into epithelial cells, intracellularly modulates the c-Met receptor and promotes cellular processes leading to cell scattering, which could contribute to the invasiveness of tumour cells. Using a logical modelling framework, the presented work aims at analysing the c-Met signal transduction network and how it is interfered by H. pylori infection, which might be of importance for tumour development. Results A logical model of HGF and H. pylori induced c-Met signal transduction is presented in this work. The formalism of logical interaction hypergraphs (LIH) was used to construct the network model. The molecular interactions included in the model were all assembled manually based on a careful meta-analysis of published experimental results. Our model reveals the differences and commonalities of the response of the network upon HGF and H. pylori induced c-Met signalling. As another important result, using the formalism of minimal intervention sets, phospholipase Cγ1 (PLCγ1) was identified as knockout target for repressing the activation of the extracellular signal regulated kinase 1/2 (ERK1/2), a signalling molecule directly linked to cell scattering in H. pylori infected cells. The model predicted only an effect on ERK1/2 for the H. pylori stimulus, but not for HGF treatment. This result could be confirmed experimentally in MDCK cells using a specific pharmacological inhibitor against PLCγ1. The in silico predictions for the knockout of two other network components were also verified experimentally. Conclusion This work represents one of the first approaches in the direction of host-pathogen systems biology aiming at deciphering signalling changes brought about by pathogenic bacteria. The suitability of our network model is demonstrated by an in silico prediction of a relevant target against pathogen infection.
Collapse
|
12
|
Mandl A, Sarkes D, Carricaburu V, Jung V, Rameh L. Serum withdrawal-induced accumulation of phosphoinositide 3-kinase lipids in differentiating 3T3-L6 myoblasts: distinct roles for Ship2 and PTEN. Mol Cell Biol 2007; 27:8098-112. [PMID: 17893321 PMCID: PMC2169165 DOI: 10.1128/mcb.00756-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) activation and synthesis of phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) lipids mediate growth factor signaling that leads to cell proliferation, migration, and survival. PI3K-dependent activation of Akt is critical for myoblast differentiation induced by serum withdrawal, suggesting that in these cells PI3K signaling is activated in an unconventional manner. Here we investigate the mechanisms by which PI3K signaling and Akt are regulated during myogenesis. We report that PI-3,4-P2 and PI-3,4,5-P3 accumulated in the plasma membranes of serum-starved 3T3-L6 myoblasts due to de novo synthesis and increased lipid stability. Surprisingly, only newly synthesized lipids were capable of activating Akt. Knockdown of the lipid phosphatase PTEN moderately increased PI3K lipids but significantly increased Akt phosphorylation and promoted myoblast differentiation. Knockdown of the lipid phosphatase Ship2, on the other hand, dramatically increased the steady-state levels of PI-3,4,5-P3 but did not affect Akt phosphorylation and increased apoptotic cell death. Together, these results reveal the existence of two distinct pools of PI3K lipids in differentiating 3T3-L6 myoblasts: a pool of nascent lipids that is mainly dephosphorylated by PTEN and is capable of activating Akt and promoting myoblast differentiation and a stable pool that is dephosphorylated by Ship2 and is unable to activate Akt.
Collapse
Affiliation(s)
- Adel Mandl
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA
| | | | | | | | | |
Collapse
|