1
|
Zhu X, Hai Z, Ning Z. Salidroside impedes Ang II-infused myocardial fibrosis by activating the SIRT1-Nrf2 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:815-824. [PMID: 40343296 PMCID: PMC12057753 DOI: 10.22038/ijbms.2025.83659.18105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/01/2025] [Indexed: 05/11/2025]
Abstract
Objectives This research examined the protective function of salidroside (SAL) against angiotensin II (Ang II)-infused myocardial fibrosis and its associated mechanism. Materials and Methods The C57BL/6 male murine models (n=24) received either saline solution or Ang II (1500 ng/kg/day) subcutaneously and an oral dosage of SAL (50 mg/kg/day) once daily for 28 days. Newborn Sprague-Dawley (SD) rats were used to isolate atrial fibroblasts. Results The fibrotic region was raised by Ang II infusion, while SAL treatment inhibited it. Collagen I and III expression was raised by Ang II induction, but SAL therapy reduced their expression. SAL therapy also decreased the expression of other fibroblast differentiation-related markers induced by Ang II infusion. It elevated SIRT1, Nrf2, and HO-1 levels in atrial fibroblasts. Additionally, SAL significantly inhibited atrial fibroblasts, whereas EX527, an inhibitor of SIRT1, noticeably increased the migration ability. Furthermore, SAL suppressed intracellular ROS production and oxidative stress in Ang II-infused atrial fibroblasts. Conclusion SAL protects against myocardial fibrosis infused by Ang II by activating the SIRT1-Nrf2 pathway.
Collapse
Affiliation(s)
| | | | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital) , Shanghai 201318, China
| |
Collapse
|
2
|
Sanyal S, Amin SA, Banerjee P, Gayen S, Jha T. A review of MMP-2 structures and binding mode analysis of its inhibitors to strategize structure-based drug design. Bioorg Med Chem 2022; 74:117044. [DOI: 10.1016/j.bmc.2022.117044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
|
3
|
de Souza N, de Oliveira ÉA, Faião-Flores F, Pimenta LA, Quincoces JAP, Sampaio SC, Maria-Engler SS. Metalloproteinases Suppression Driven by the Curcumin Analog DM-1 Modulates Invasion in BRAF-Resistant Melanomas. Anticancer Agents Med Chem 2021; 20:1038-1050. [PMID: 32067622 DOI: 10.2174/1871520620666200218111422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Melanoma is the most aggressive skin cancer, and BRAF (V600E) is the most frequent mutation that led to the development of BRAF inhibitors (BRAFi). However, patients treated with BRAFi usually present recidivism after 6-9 months. Curcumin is a turmeric substance, and it has been deeply investigated due to its anti-inflammatory and antitumoral effects. Still, the low bioavailability and biodisponibility encouraged the investigation of different analogs. DM-1 is a curcumin analog and has shown an antitumoral impact in previous studies. METHODS Evaluated DM-1 stability and cytotoxic effects for BRAFi-sensitive and resistant melanomas, as well as the role in the metalloproteinases modulation. RESULTS DM-1 showed growth inhibitory potential for melanoma cells, demonstrated by reduction of colony formation, migration and endothelial tube formation, and cell cycle arrest. Subtoxic doses were able to downregulate important Metalloproteinases (MMPs) related to invasiveness, such as MMP-1, -2 and -9. Negative modulations of TIMP-2 and MMP-14 reduced MMP-2 and -9 activity; however, the reverse effect is seen when increased TIMP-2 and MMP-14 resulted in raised MMP-2. CONCLUSION These findings provide essential details into the functional role of DM-1 in melanomas, encouraging further studies in the development of combinatorial treatments for melanomas.
Collapse
Affiliation(s)
- Nayane de Souza
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | - Érica Aparecida de Oliveira
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | - Fernanda Faião-Flores
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| | | | - José A P Quincoces
- Laboratory of Organic Synthesis, Anhanguera University of São Paulo, UNIAN, Sao Paulo, Brazil
| | - Sandra C Sampaio
- Butantan Institute, Pathophysiology Laboratory, Sao Paulo, Brazil
| | - Silvya S Maria-Engler
- Skin Biology Group, Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of Sao Paulo, FCF/USP, Brazil
| |
Collapse
|
4
|
Oh SJ, Oh Y, Ryu IW, Kim K, Lim CJ. Protective properties of ginsenoside Rb3 against UV-B radiation-induced oxidative stress in HaCaT keratinocytes. Biosci Biotechnol Biochem 2016; 80:95-103. [DOI: 10.1080/09168451.2015.1075862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
This work aimed to evaluate the skin anti-photoaging properties of ginsenoside Rb3 (Rb3), one of the main protopanaxdiol-type ginsenosides from ginseng, in HaCaT keratinocytes. The skin anti-photoaging activity was assessed by analyzing the levels of reactive oxygen species (ROS), pro-matrix metalloproteinase-2 (proMMP-2), pro-matrix metalloproteinase-9 (proMMP-9), total glutathione (GSH), and superoxide dismutase (SOD) activity as well as cell viability in HaCaT keratinocytes under UV-B irradiation. When HaCaT keratinocytes were exposed to Rb3 prior to UV-B irradiation, Rb3 exhibited suppressive activities on UV-B-induced ROS, proMMP-2, and proMMP-9 enhancements. On the contrary, Rb3 displayed enhancing activities on UV-B-reduced total GSH and SOD activity levels. Rb3 could not interfere with cell viabilities in UV-B-irradiated HaCaT keratinocytes. Rb3 plays a protective role against UV-B-induced oxidative stress in human HaCaT keratinocytes, proposing its potential skin anti-photoaging properties.
Collapse
Affiliation(s)
- Sun-Joo Oh
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Yuri Oh
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - In Wang Ryu
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyunghoon Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Oh SJ, Kim K, Lim CJ. Suppressive properties of ginsenoside Rb2, a protopanaxadiol-type ginseng saponin, on reactive oxygen species and matrix metalloproteinase-2 in UV-B-irradiated human dermal keratinocytes. Biosci Biotechnol Biochem 2015; 79:1075-81. [PMID: 25774540 DOI: 10.1080/09168451.2015.1020752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ginsenosides, also known as ginseng saponins, are the principal bioactive ingredients of ginseng, which are responsible for its diverse pharmacological activities. The present work aimed to assess skin anti-photoaging properties of ginsenoside Rb2 (Rb2), one of the predominant protopanaxadiol-type ginsenosides, in human epidermal keratinocyte HaCaT cells under UV-B irradiation. When the cultured keratinocytes were subjected to Rb2 prior to UV-B irradiation, Rb2 displayed suppressive activities on UV-B-induced reactive oxygen species elevation and matrix metalloproteinase-2 expression and secretion. However, Rb2 at the used concentrations was unable to modulate cellular survivals in the UV-B-irradiated keratinocytes. In brief, Rb2 possesses a protective role against the photoaging of human keratinocyte cells under UV-B irradiation.
Collapse
Affiliation(s)
- Sun-Joo Oh
- a Department of Biological Sciences , Kangwon National University , Chuncheon , Republic of Korea
| | | | | |
Collapse
|
6
|
Abstract
Osteosarcoma is the most common malignant bone tumor in children and characterized by aggressive biologic behavior of metastatic propensity to the lung. Change of treatment paradigm brings survival benefit; however, 5-year survival rate is still low in patients having metastastatic foci at diagnosis for a few decades. Metastasis-associated protein (MTA) family is a group of ubiquitously expressed coregulators, which influences on tumor invasiveness or metastasis. MTA1 has been investigated in various cancers including osteosarcoma, and its overexpression is associated with high-risk features of cancers. In this review, we described various molecular studies of osteosarcoma, especially associated with MTA1.
Collapse
Affiliation(s)
- Sung Sun Kim
- Department of Pathology, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 501-757, Korea,
| | | |
Collapse
|
7
|
Iyer RP, de Castro Brás LE, Jin YF, Lindsey ML. Translating Koch's postulates to identify matrix metalloproteinase roles in postmyocardial infarction remodeling: cardiac metalloproteinase actions (CarMA) postulates. Circ Res 2014; 114:860-71. [PMID: 24577966 DOI: 10.1161/circresaha.114.301673] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first matrix metalloproteinase (MMP) was described in 1962; and since the 1990s, cardiovascular research has focused on understanding how MMPs regulate many aspects of cardiovascular pathology from atherosclerosis formation to myocardial infarction and stroke. Although much information has been gleaned by these past reports, to a large degree MMP cardiovascular biology remains observational, with few studies homing in on cause and effect relationships. Koch's postulates were first developed in the 19th century as a way to establish microorganism function and were modified in the 20th century to include methods to establish molecular causality. In this review, we outline the concept for establishing a similar approach to determine causality in terms of MMP functions. We use left ventricular remodeling postmyocardial infarction as an example, but this approach will have broad applicability across both the cardiovascular and the MMP fields.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- From the San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research (R.P.I., L.E.d.C.B., Y.-F.J., M.L.L.) and Department of Biophysics and Physiology (R.P.I., L.E.d.C.B., M.L.L.), University of Mississippi Medical Center, Jackson; Department of Electrical and Computer Engineering, University of Texas at San Antonio (Y.-F.J.); and Research Service, G.V. (Sonny) Department of Physiology and Biophysics, Montgomery Veterans Affairs Medical Center, Jackson, MS (M.L.L.)
| | | | | | | |
Collapse
|
8
|
Lin HB, Sharma K, Bialy D, Wawrzynska M, Purves R, Cayabyab FS, Wozniak M, Sawicki G. Inhibition of MMP-2 expression affects metabolic enzyme expression levels: proteomic analysis of rat cardiomyocytes. J Proteomics 2014; 106:74-85. [PMID: 24769238 DOI: 10.1016/j.jprot.2014.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED In this study we examined the effect of inhibition of MMP-2 expression, using siRNA, on the cardiomyocyte proteome. Isolated cardiomyocytes were transfected with MMP-2 siRNA and incubated for 24h. Control cardiomyocytes from the same heart were transfected with scrambled siRNA following the same protocol. Comparison of control cardiomyocyte proteomes with proteomes from MMP-2 suppressed cardiomyocytes revealed 13 protein spots of interest (9 protein spots increased; 4 decreased). Seven protein spots were identified as mitochondrial enzymes involved in energy production and represent: ATP synthase beta subunit, dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, cytochrome c oxidase subunit 5A, electron transfer flavoprotein subunit beta, NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 5 and a fragment of mitochondrial precursor of long-chain specific acyl-CoA dehydrogenase. Furthermore, precursor of heat shock protein 60 and Cu-Zn superoxide dismutase were identified. Two protein spots corresponding to MLC1 were also detected. In addition, ATP synthase activity was measured and was increased by approximately 30%. Together, these results indicate that MMP-2 inhibition represents a novel cardioprotective therapy by promoting alterations in the levels of mitochondrial enzymes for improved energy metabolism and by preventing degradation of contractile proteins needed for normal excitation-contraction coupling. BIOLOGICAL SIGNIFICANCE During ischemia and reperfusion of cardiomyocytes, abnormality in excitation-contraction coupling and decreased energy metabolism often lead to myocardial infarction, but the cellular mechanisms are not fully elucidated. We show for the first time that intracellular inhibition of MMP-2 in cardiomyocytes increases contractility of aerobically perfused myocytes, which was accompanied by increased expression of contractile proteins (e.g., MLC-1). We also showed that MMP-2 inhibition produced a cardiomyocyte proteome that is consistent with improved mitochondrial energy metabolism (e.g., increased expression and activity of mitochondrial beta ATP synthase). Thus, MMP-2 appears to be involved in homeostatic regulation of protein turnover. Our results are significant since they point to targeting MMP-2 activity as a novel therapeutic option to limit myocardial damage by decreasing proteolytic degradation of mitochondrial metabolic enzymes and myocardial contractile proteins during ischemia. In addition, the development of novel pharmacological agents that selectively targets cardiac MMP-2 represents a novel approach to treat and prevent other heart diseases.
Collapse
Affiliation(s)
- Han-Bin Lin
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Keshav Sharma
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dariusz Bialy
- Department and Clinic of Cardiology, Medical University of Wroclaw, Wroclaw, Poland
| | | | - Randy Purves
- National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - Francisco S Cayabyab
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mieczyslaw Wozniak
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Clinical Chemistry, Medical University of Wroclaw, Wroclaw, Poland
| | - Grzegorz Sawicki
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Clinical Chemistry, Medical University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
9
|
Johnson TL, Tulis DA, Keeler BE, Virag JA, Lust RM, Clemens S. The dopamine D3 receptor knockout mouse mimics aging-related changes in autonomic function and cardiac fibrosis. PLoS One 2013; 8:e74116. [PMID: 24023697 PMCID: PMC3758275 DOI: 10.1371/journal.pone.0074116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/29/2013] [Indexed: 01/11/2023] Open
Abstract
Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr) wild type (WT) and young (2 mo) D3 receptor knockout mice (D3KO). In WT, systolic and diastolic blood pressures and rate-pressure product (RPP) significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV) and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction.
Collapse
Affiliation(s)
- Tracy L. Johnson
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - David A. Tulis
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Benjamin E. Keeler
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Jitka A. Virag
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Robert M. Lust
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Stefan Clemens
- Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Fedak PW, Bai L, Turnbull J, Ngu J, Narine K, Duff HJ. Cell Therapy Limits Myofibroblast Differentiation and Structural Cardiac Remodeling. Circ Heart Fail 2012; 5:349-56. [DOI: 10.1161/circheartfailure.111.965889] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Experimental cell therapy attenuates maladaptive cardiac remodeling and improves heart function. Paracrine mechanisms have been proposed. The effect of cell therapy on post infarction cardiac fibroblast and extracellular matrix (ECM) regulation was examined.
Methods and Results—
Vascular smooth muscle cells (VSMC) were injected into the border zone of subacute infarcted syngeneic Fischer rat hearts and compared with medium-injected controls. Twelve weeks post injection, cell-treated hearts showed preserved ECM content and attenuated structural chamber remodeling. Myofibroblast activation (α-smooth muscle actin expression) was decreased significantly, while basic fibroblast growth factor (bFGF) expression, a known inhibitor of transforming growth factor β-1–induced fibroblast differentiation, was increased. Matrix metalloproteinase-2 expression and activation by gelatin zymography was unchanged between groups, while its endogenous inhibitor, tissue inhibitors of matrix metalloproteinase (TIMP)-2, showed both increased expression and enhanced inhibitory capacity in cell-treated hearts. To define paracrine mechanisms, in vitro effects of VSMC conditioned media on myofibroblast activation were assessed by 3-D collagen gel contraction assay. VSMC conditioned media significantly inhibited collagen contraction, while a specific bFGF inhibitor abolished this paracrine response. TIMP-2 induced collagen contraction, but the effect was suppressed in the presence of bFGF.
Conclusions—
Extracellular matrix dysregulation post myocardial infarction is improved by cell therapy. These data suggest that cell transplantation attenuates myofibroblast activation and subsequent maladaptive structural chamber remodeling through paracrine mechanisms involving bFGF and TIMP-2.
Collapse
Affiliation(s)
- Paul W.M. Fedak
- From the Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Alberta, Canada. Liping Bai was affiliated with Libin Cardiovascular Institute of Alberta at the time that this work was completed
| | - Liping Bai
- From the Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Alberta, Canada. Liping Bai was affiliated with Libin Cardiovascular Institute of Alberta at the time that this work was completed
| | - Jeannine Turnbull
- From the Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Alberta, Canada. Liping Bai was affiliated with Libin Cardiovascular Institute of Alberta at the time that this work was completed
| | - Janet Ngu
- From the Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Alberta, Canada. Liping Bai was affiliated with Libin Cardiovascular Institute of Alberta at the time that this work was completed
| | - Kishan Narine
- From the Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Alberta, Canada. Liping Bai was affiliated with Libin Cardiovascular Institute of Alberta at the time that this work was completed
| | - Henry J. Duff
- From the Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Alberta, Canada. Liping Bai was affiliated with Libin Cardiovascular Institute of Alberta at the time that this work was completed
| |
Collapse
|
11
|
Effects of Diabetes on Matrix Protein Expression and Response to Cyclic Strain by Cardiac Fibroblasts. Cell Mol Bioeng 2012. [DOI: 10.1007/s12195-012-0222-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
12
|
van Vlimmeren MA, Driessen-Mol A, Oomens CW, van den Broek M, Stoop R, Bouten CV, Baaijens FP. Low Oxygen Concentrations Impair Tissue Development in Tissue-Engineered Cardiovascular Constructs. Tissue Eng Part A 2012; 18:221-31. [DOI: 10.1089/ten.tea.2010.0658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Anita Driessen-Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cees W.J. Oomens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marloes van den Broek
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Reinout Stoop
- TNO, Metabolic Health Research, Leiden, The Netherlands
| | - Carlijn V.C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P.T. Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Takahashi K, Sakamoto K, Kimura J. Hypoxic stress induces transient receptor potential melastatin 2 (TRPM2) channel expression in adult rat cardiac fibroblasts. J Pharmacol Sci 2012; 118:186-97. [PMID: 22293297 DOI: 10.1254/jphs.11128fp] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
When cardiac tissue is exposed to hypoxia, myocytes are damaged, while fibroblasts are activated. However, it is unknown what changes are induced by hypoxia in cardiac fibroblasts. In this study, using the whole cell patch-clamp technique, we investigated the effect of hypoxia on membrane currents in fibroblasts primarily cultured from adult rat hearts. Cardiac fibroblasts were incubated for 24 h under normoxic or hypoxic conditions using Anaeropack. Hypoxia increased a current which reversed at around -20 mV in the cardiac fibroblasts. This current was inhibited by clotrimazole, which is an inhibitor of transient receptor potential melastatin 2 (TRPM2) channel and intermediate-conductance Ca(2+)-activated K(+) channel (KCa3.1). ADP ribose in the pipette solution enhanced this current. Quantitative RT-PCR revealed that mRNA of TRPM2, but not that of KCa3.1, was increased by hypoxia. RNA interference of TRPM2 prevented the development of the hypoxia-induced current. H(2)O(2), an activator of TRPM2 channel, induced a higher [Ca(2+)](i) elevation in hypoxia-exposed cardiac fibroblasts than that in normoxia-exposed cells. We conclude that hypoxia induces TRPM2 channel expression in adult rat cardiac fibroblasts.
Collapse
Affiliation(s)
- Kenji Takahashi
- Department of Pharmacology, Fukushima Medical University, School of Medicine, Japan.
| | | | | |
Collapse
|
14
|
Choudhary G, Troncales F, Martin D, Harrington EO, Klinger JR. Bosentan attenuates right ventricular hypertrophy and fibrosis in normobaric hypoxia model of pulmonary hypertension. J Heart Lung Transplant 2011; 30:827-33. [PMID: 21550822 DOI: 10.1016/j.healun.2011.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 03/06/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Maladaptive right ventricular (RV) hypertrophic responses lead to RV dysfunction and failure in patients with pulmonary arterial hypertension, but the mechanisms responsible for these changes are not well understood. The objective of this study was to evaluate the effect of treatment with bosentan on RV hypertrophy (RVH), fibrosis and expression of protein kinase C (PKC) isoforms in the RV of rats exposed to chronic hypoxia. METHODS Adult Sprague-Dawley rats were housed in normoxia or hypoxia (FIO(2) = 10%) and administered vehicle or 100 mg/kg/day bosentan. After 3 weeks, echocardiographic and hemodynamic assessment was performed. PKC, procollagen-1 and collagen expression levels were assessed using immunoblot or colorimetric assay. RESULTS RV systolic pressure (RVSP) and RVH were higher in hypoxic compared with normoxic animals (RVSP: 72 ± 4 vs 25 ± 2 mm Hg, p < 0.05; RVH: 1.2 ± 0.06 vs 0.5 ± 0.03 mg/g body weight, p < 0.05). Bosentan had no effect on RVSP or mass in normoxic animals, but did attenuate RVH in hypoxic animals (hypoxic/vehicle: 1.2 ± 0.06; hypoxic/bosentan: 1.0 ± 0.05 mg/g body weight; p < 0.05). Hypoxia increased RV procollagen-1, and total collagen expression, effects that were attenuated by bosentan treatment. Hypoxia increased RV total and cytosolic PKC-δ protein expression, but had no effect on PKC-α or -ε isoforms. Administration with bosentan did not affect total PKC-δ protein expression. However, animals treated with bosentan had an increase in membranous PKC-δ when exposed to hypoxia. CONCLUSIONS Bosentan inhibits RVH and RV collagen expression in rats exposed to chronic hypoxia, possibly via alteration of PKC-δ activity.
Collapse
Affiliation(s)
- Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA.
| | | | | | | | | |
Collapse
|
15
|
Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009; 123:255-78. [PMID: 19460403 DOI: 10.1016/j.pharmthera.2009.05.002] [Citation(s) in RCA: 780] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/05/2009] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts are the most prevalent cell type in the heart and play a key role in regulating normal myocardial function and in the adverse myocardial remodeling that occurs with hypertension, myocardial infarction and heart failure. Many of the functional effects of cardiac fibroblasts are mediated through differentiation to a myofibroblast phenotype that expresses contractile proteins and exhibits increased migratory, proliferative and secretory properties. Cardiac myofibroblasts respond to proinflammatory cytokines (e.g. TNFalpha, IL-1, IL-6, TGF-beta), vasoactive peptides (e.g. angiotensin II, endothelin-1, natriuretic peptides) and hormones (e.g. noradrenaline), the levels of which are increased in the remodeling heart. Their function is also modulated by mechanical stretch and changes in oxygen availability (e.g. ischaemia-reperfusion). Myofibroblast responses to such stimuli include changes in cell proliferation, cell migration, extracellular matrix metabolism and secretion of various bioactive molecules including cytokines, vasoactive peptides and growth factors. Several classes of commonly prescribed therapeutic agents for cardiovascular disease also exert pleiotropic effects on cardiac fibroblasts that may explain some of their beneficial outcomes on the remodeling heart. These include drugs for reducing hypertension (ACE inhibitors, angiotensin receptor blockers, beta-blockers), cholesterol levels (statins, fibrates) and insulin resistance (thiazolidinediones). In this review, we provide insight into the properties of cardiac fibroblasts that underscores their importance in the remodeling heart, including their origin, electrophysiological properties, role in matrix metabolism, functional responses to environmental stimuli and ability to secrete bioactive molecules. We also review the evidence suggesting that certain cardiovascular drugs can reduce myocardial remodeling specifically via modulatory effects on cardiac fibroblasts.
Collapse
|
16
|
Haghikia A, Hilfiker-Kleiner D. MiRNA-21: a key to controlling the cardiac fibroblast compartment? Cardiovasc Res 2009; 82:1-3. [PMID: 19213759 DOI: 10.1093/cvr/cvp058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Hu T, Luan R, Zhang H, Lau WB, Wang Q, Zhang Y, Wang HC, Tao L. Hydrogen peroxide enhances osteopontin expression and matrix metalloproteinase activity in aortic vascular smooth muscle cells. Clin Exp Pharmacol Physiol 2008; 36:626-30. [PMID: 19076167 DOI: 10.1111/j.1440-1681.2008.05124.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Restenosis after percutaneous coronary intervention (PCI) is a major clinical complication. However, the underlying mechanisms remain poorly understood. The present aim of the present study was to test the hypothesis that reactive oxygen species (ROS) enhance osteopontin (OPN) expression and increase matrix metalloproteinase (MMP)-2 activity (two major factors that contribute to restenosis) in aortic vascular smooth muscle cells (VSMC), thus facilitating restenosis. 2. Primary cultured rat aortic VSMC were exposed to different concentrations (10, 50 and 100 micromol/L) of H(2)O(2). The expression of OPN mRNA and protein was determined by reverse transcription-polymerase chain reaction and Western blotting, respectively. The activity of MMP-2 was determined by gelatin zymography. 3. The expression of OPN mRNA and protein in VSMC was enhanced by H(2)O(2) in a dose-dependent manner. In addition, H(2)O(2) at all concentrations tested (which are comparable to those seen in diabetic vascular tissues) significantly increased MMP-2 activity in VSMC. 4. Because vascular ROS production is significantly increased in patients with ischaemic disease and OPN and MMP-2 have been shown to play critical role in restenosis, the results of the present study strongly suggest that a ROS-initiated and OPN- and MMP-2-mediated signalling pathway may play an important role in accelerated restenosis after PCI in patients with ischaemic disease. Therefore, the H(2)O(2)-OPN/MMP-2 system may be a new therapeutic target in reducing restenosis in patients undergoing PCI.
Collapse
Affiliation(s)
- Tao Hu
- Deparrment of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hu T, Li H, Zhang X, Luan R, Li C, Cheng H, Wang H, Li X, Zeng Y. Exposure of Aortic Vascular Smooth Muscle Cells to Low-Frequency Electromagnetic Field Inhibits Osteopontin Expression and Matrix Metalloproteinase Activity. Int Heart J 2008; 49:597-604. [DOI: 10.1536/ihj.49.597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tao Hu
- Beijing University of Technology
- Department of Cardiology, Sijing Hospital, Fourth Military Medical University of Chinese PLA
| | - Huan Li
- Department of Cardiology, Sijing Hospital, Fourth Military Medical University of Chinese PLA
| | | | - Ronghua Luan
- Department of Cardiology, Sijing Hospital, Fourth Military Medical University of Chinese PLA
| | - Chengxiang Li
- Department of Cardiology, Sijing Hospital, Fourth Military Medical University of Chinese PLA
| | - Hexiang Cheng
- Department of Cardiology, Sijing Hospital, Fourth Military Medical University of Chinese PLA
| | - Haichang Wang
- Department of Cardiology, Sijing Hospital, Fourth Military Medical University of Chinese PLA
| | | | | |
Collapse
|