1
|
Prigol AN, Rode MP, da Luz Efe F, Saleh NA, Creczynski-Pasa TB. The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach. Cancers (Basel) 2023; 15:4027. [PMID: 37627055 PMCID: PMC10452124 DOI: 10.3390/cancers15164027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone metastatic prostate cancer (PCa) is associated with a high risk of mortality. Changes in the expression pattern of miRNAs seem to be related to early aspects of prostate cancer, as well as its establishment and proliferation, including the necessary steps for metastasis. Here we compiled, for the first time, the important roles of miRNAs in the development, diagnosis, and treatment of bone metastasis, focusing on recent in vivo and in vitro studies. PCa exosomes are proven to promote metastasis-related events, such as osteoblast and osteoclast differentiation and proliferation. Aberrant miRNA expression in PCa may induce abnormal bone remodeling and support tumor development. Furthermore, miRNAs are capable of binding to multiple mRNA targets, a dynamic property that can be harnessed for the development of treatment tools, such as antagomiRs and miRNA mimics, which have emerged as promising candidates in PCa treatment. Finally, miRNAs may serve as noninvasive biomarkers, as they can be detected in tissue and bodily fluids, are highly stable, and show differential expression between nonmetastatic PCa and bone metastatic samples. Taken together, the findings underscore the importance of miRNA expression profiles and miRNA-based tools as rational technologies to increase the quality of life and longevity of patients.
Collapse
Affiliation(s)
| | | | | | | | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina State, Brazil; (A.N.P.); (M.P.R.); (F.d.L.E.); (N.A.S.)
| |
Collapse
|
2
|
Yu Y, Xia Q, Zhan G, Gao S, Han T, Mao M, Li X, Wang Y. TRIM67 alleviates cerebral ischemia‒reperfusion injury by protecting neurons and inhibiting neuroinflammation via targeting IκBα for K63-linked polyubiquitination. Cell Biosci 2023; 13:99. [PMID: 37248543 DOI: 10.1186/s13578-023-01056-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Excessive and unresolved neuroinflammation plays an important role in the pathophysiology of many neurological disorders, such as ischemic stroke, yet there are no effective treatments. Tripartite motif-containing 67 (TRIM67) plays a crucial role in the control of inflammatory disease and pathogen infection-induced inflammation; however, the role of TRIM67 in cerebral ischemia‒reperfusion injury remains poorly understood. RESULTS In the present study, we demonstrated that the expression level of TRIM67 was significantly reduced in middle cerebral artery occlusion and reperfusion (MCAO/R) mice and primary cultured microglia subjected to oxygen-glucose deprivation and reperfusion. Furthermore, a significant reduction in infarct size and neurological deficits was observed in mice after TRIM67 upregulation. Interestingly, TRIM67 upregulation alleviated neuroinflammation and cell death after cerebral ischemia‒reperfusion injury in MCAO/R mice. A mechanistic study showed that TRIM67 bound to IκBα, reduced K48-linked ubiquitination and increased K63-linked ubiquitination, thereby inhibiting its degradation and promoting the stability of IκBα, ultimately inhibiting NF-κB activity after cerebral ischemia. CONCLUSION Taken together, this study demonstrated a previously unidentified mechanism whereby TRIM67 regulates neuroinflammation and neuronal apoptosis and strongly indicates that upregulation of TRIM67 may provide therapeutic benefits for ischemic stroke.
Collapse
Affiliation(s)
- Yongbo Yu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qian Xia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Gao
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Tangrui Han
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Meng Mao
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghong Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Tizoxanide Antiviral Activity on Dengue Virus Replication. Viruses 2023; 15:v15030696. [PMID: 36992406 PMCID: PMC10055917 DOI: 10.3390/v15030696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue virus is an important circulating arbovirus in Brazil responsible for high morbidity and mortality worldwide, representing a huge economic and social burden, in addition to affecting public health. In this study, the biological activity, toxicity, and antiviral activity against dengue virus type 2 (DENV-2) of tizoxanide (TIZ) was evaluated in Vero cell culture. TIZ has a broad spectrum of action in inhibiting different pathogens, including bacteria, protozoa, and viruses. Cells were infected for 1 h with DENV-2 and then treated for 24 h with different concentrations of the drug. The quantification of viral production indicated the antiviral activity of TIZ. The protein profiles in infected Vero cells treated and not treated with TIZ were analyzed using the label-free quantitative proteomic approach. TIZ was able to inhibit virus replication mainly intracellularly after DENV-2 penetration and before the complete replication of the viral genome. Additionally, the study of the protein profile of infected not-treated and infected-treated Vero cells showed that TIZ interferes with cellular processes such as intracellular trafficking and vesicle-mediated transport and post-translational modifications when added after infection. Our results also point to the activation of immune response genes that would eventually lead to a decrease of DENV-2 production. TIZ is a promising therapeutic molecule for the treatment of DENV-2 infections.
Collapse
|
4
|
OTU7B Modulates the Mosquito Immune Response to Beauveria bassiana Infection via Deubiquitination of the Toll Adaptor TRAF4. Microbiol Spectr 2023; 11:e0312322. [PMID: 36537797 PMCID: PMC9927300 DOI: 10.1128/spectrum.03123-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Aedes aegypti mosquito transmits devastating flaviviruses, such as Zika, dengue, and yellow fever viruses. For more effective control of the vector, the pathogenicity of Beauveria bassiana, a fungus commonly used for biological control of pest insects, may be enhanced based on in-depth knowledge of molecular interactions between the pathogen and its host. Here, we identified a mechanism employed by B. bassiana, which efficiently blocks the Ae. aegypti antifungal immune response by a protease that contains an ovarian tumor (OTU) domain. RNA-sequencing analysis showed that the depletion of OTU7B significantly upregulates the mRNA level of immunity-related genes after a challenge of the fungus. CRISPR-Cas9 knockout of OTU7B conferred a higher resistance of mosquitoes to the fungus B. bassiana. OTU7B suppressed activation of the immune response by preventing nuclear translocation of the NF-κB transcription factor Rel1, a mosquito orthologue of Drosophila Dorsal. Further studies identified tumor necrosis factor receptor-associated factor 4 (TRAF4) as an interacting protein of OTU7B. TRAF4-deficient mosquitoes were more sensitive to fungal infection, indicating TRAF4 to be the adaptor protein that activates the Toll pathway. TRAF4 is K63-link polyubiquitinated at K338 residue upon immune challenge. However, OTU7B inhibited the immune signaling by enzymatically removing the polyubiquitin chains of mosquito TRAF4. Thus, this study has uncovered a novel mechanism of fungal action against the host innate immunity, providing a platform for further improvement of fungal pathogen effectiveness. IMPORTANCE Insects use innate immunity to defend against microbial infection. The Toll pathway is a major immune signaling pathway that is associated with the antifungal immune response in mosquitoes. Our study identified a fungal-induced deubiquitinase, OTU7B, which, when knocked out, promotes the translocation of the NF-κB factor Rel1 into the nucleus and confers enhanced resistance to fungal infection. We further found the counterpart of OTU7B, TRAF4, which is a component of the Toll pathway and acts as an adaptor protein. OTU7B enzymatically removes K63-linked polyubiquitin chains from TRAF4. The immune response is suppressed, and mosquitoes become much more sensitive to the Beauveria bassiana infection. Our findings reveal a novel mechanism of fungal action against the host innate immunity.
Collapse
|
5
|
The Role of Posttranslational Modifications in DNA Repair. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/7493902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human body is a complex structure of cells, which are exposed to many types of stress. Cells must utilize various mechanisms to protect their DNA from damage caused by metabolic and external sources to maintain genomic integrity and homeostasis and to prevent the development of cancer. DNA damage inevitably occurs regardless of physiological or abnormal conditions. In response to DNA damage, signaling pathways are activated to repair the damaged DNA or to induce cell apoptosis. During the process, posttranslational modifications (PTMs) can be used to modulate enzymatic activities and regulate protein stability, protein localization, and protein-protein interactions. Thus, PTMs in DNA repair should be studied. In this review, we will focus on the current understanding of the phosphorylation, poly(ADP-ribosyl)ation, ubiquitination, SUMOylation, acetylation, and methylation of six typical PTMs and summarize PTMs of the key proteins in DNA repair, providing important insight into the role of PTMs in the maintenance of genome stability and contributing to reveal new and selective therapeutic approaches to target cancers.
Collapse
|
6
|
Colberg L, Cammann C, Greinacher A, Seifert U. Structure and function of the ubiquitin-proteasome system in platelets. J Thromb Haemost 2020; 18:771-780. [PMID: 31898400 DOI: 10.1111/jth.14730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Platelets are small anucleate blood cells with a life span of 7 to 10 days. They are main regulators of hemostasis. Balanced platelet activity is crucial to prevent bleeding or occlusive thrombus formation. Growing evidence supports that platelets also participate in immune reactions, and interaction between platelets and leukocytes contributes to both thrombosis and inflammation. The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis by its ability to degrade non-functional self-, foreign, or short-lived regulatory proteins. Platelets express standard and immunoproteasomes. Inhibition of the proteasome impairs platelet production and platelet function. Platelets also express major histocompatibility complex (MHC) class I molecules. Peptide fragments released by proteasomes can bind to MHC class I, which makes it also likely that platelets can activate epitope specific cytotoxic T lymphocytes (CTLs). In this review, we focus on current knowledge on the significance of the proteasome for the functions of platelets as critical regulators of hemostasis as well as modulators of the immune response.
Collapse
Affiliation(s)
- Lisa Colberg
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Usp5 functions as an oncogene for stimulating tumorigenesis in hepatocellular carcinoma. Oncotarget 2017; 8:50655-50664. [PMID: 28881591 PMCID: PMC5584183 DOI: 10.18632/oncotarget.16901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/28/2017] [Indexed: 12/30/2022] Open
Abstract
As deubiquitinases, several ubiquitin specific protease members have been reported to mediate tumorigenesis. Although ubiquitin specific protease 5 (Usp5) was previously demonstrated to suppress p53 transcriptional activity and DNA repair, its role in carcinogenesis remains elusive. In this study, we sought to define a novel role of Usp5 in tumorigenesis. It was found that Usp5 was significantly upregulated in hepatocellular carcinoma (HCC) cells and most clinical specimens. Further functional investigation also showed that Usp5 knockdown suppressed cell proliferation, migration, drug resistance and induced apoptosis; on the other hand, Usp5 overexpression promoted colony formation, migration, drug resistance and tumorigenesis. Additionally, the inactivated p14ARF-p53 signaling was observed in Usp5 overexpressed HCC cells, while this signaling was activated by Usp5 knockdown. Therefore, our data demonstrated that Usp5 contributed to hepatocarcinogenesis by acting as an oncogene, which provides new insights into the pathogenesis of HCC and explores a promising molecular target for HCC diagnosis and therapy.
Collapse
|
8
|
Luo J, Hu J, Zhang Y, Hu Q, Li S. Hijacking of death receptor signaling by bacterial pathogen effectors. Apoptosis 2015; 20:216-23. [PMID: 25528554 DOI: 10.1007/s10495-014-1068-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Death receptors such as Tumor necrosis factor receptor 1, FAS and TNF-associated apoptosis-inducing ligand-R1/2 play a major role in counteracting with bacterial pathogen infection through regulation of inflammation and programmed cell death. The highly regulated death receptor signaling is frequently targeted by gram-negative bacterial pathogens such as Salmonella, Shigella, enteropathogenic Escherichia coli and enterohamorrhagic Escherichia coli, which harbor a conserved type III secretion system that delivers a repertoire of effector proteins to manipulate host signal transductions for their own benefit. This review focuses on how bacterial gut pathogens hijack death receptor signaling to inhibit host NF-κB and programmed cell death pathways.
Collapse
Affiliation(s)
- Jie Luo
- Taihe Hospital, Hubei University of Medicine, #32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | | | | | | | | |
Collapse
|
9
|
Abstract
Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure-function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Ira Kay Lacdao
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Vivian Saridakis
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| |
Collapse
|
10
|
Grape Seed Procyanidin B2 Inhibits Human Aortic Smooth Muscle Cell Proliferation and Migration Induced by Advanced Glycation End Products. Biosci Biotechnol Biochem 2014; 75:1692-7. [DOI: 10.1271/bbb.110194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Ori D, Kato H, Sanjo H, Tartey S, Mino T, Akira S, Takeuchi O. Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs. THE JOURNAL OF IMMUNOLOGY 2013; 190:4037-45. [PMID: 23509369 DOI: 10.4049/jimmunol.1300173] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polyubiquitination of proteins plays a critical role in the activation of immune cells. K63-linked polyubiquitin-binding proteins TGF-β-activated kinase 1 (TAK1)-binding protein (TAB)2 and TAB3 are implicated in NF-κB signaling via TAK1 activation. However, TAB2 alone is dispensable for NF-κB activation in embryonic fibroblasts, and the functional roles of TAB2 and TAB3 in immune cells has yet to be clarified. In this study, we demonstrate that TAB2 and TAB3 are essential for B cell activation leading to Ag-specific Ab responses, as well as B-1 and marginal zone B cell development. TAB2 and TAB3 are critical for the activation of MAPKs, especially ERK, but not NF-κB, in response to TLR and CD40 stimulation in B cells. Surprisingly, TAB2 and TAB3 are dispensable for TAK1 activation in B cells, indicating that TAB2 and TAB3 activate MAPKs via a pathway independent of TAK1. In contrast to B cells, macrophages lacking TAB2 and TAB3 did not show any defects in the cytokine production and the signaling pathway in response to TLR stimulation. Furthermore, TAB2 and TAB3 were dispensable for TNF-induced cytokine production in embryonic fibroblasts. Thus, TAB2- and TAB3-mediated K63-linked polyubiquitin recognition controls B cell activation via MAPKs, but not the TAK1/NF-κB axis.
Collapse
Affiliation(s)
- Daisuke Ori
- Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang L, Ding X, Cui J, Xu H, Chen J, Gong YN, Hu L, Zhou Y, Ge J, Lu Q, Liu L, Chen S, Shao F. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 2011; 481:204-8. [PMID: 22158122 DOI: 10.1038/nature10690] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 10/28/2011] [Indexed: 12/25/2022]
Abstract
NF-κB is crucial for innate immune defence against microbial infection. Inhibition of NF-κB signalling has been observed with various bacterial infections. The NF-κB pathway critically requires multiple ubiquitin-chain signals of different natures. The question of whether ubiquitin-chain signalling and its specificity in NF-κB activation are regulated during infection, and how this regulation takes place, has not been explored. Here we show that human TAB2 and TAB3, ubiquitin-chain sensory proteins involved in NF-κB signalling, are directly inactivated by enteropathogenic Escherichia coli NleE, a conserved bacterial type-III-secreted effector responsible for blocking host NF-κB signalling. NleE harboured an unprecedented S-adenosyl-l-methionine-dependent methyltransferase activity that specifically modified a zinc-coordinating cysteine in the Npl4 zinc finger (NZF) domains in TAB2 and TAB3. Cysteine-methylated TAB2-NZF and TAB3-NZF (truncated proteins only comprising the NZF domain) lost the zinc ion as well as the ubiquitin-chain binding activity. Ectopically expressed or type-III-secretion-system-delivered NleE methylated TAB2 and TAB3 in host cells and diminished their ubiquitin-chain binding activity. Replacement of the NZF domain of TAB3 with the NleE methylation-insensitive Npl4 NZF domain resulted in NleE-resistant NF-κB activation. Given the prevalence of zinc-finger motifs and activation of cysteine thiol by zinc binding, methylation of zinc-finger cysteine might regulate other eukaryotic pathways in addition to NF-κB signalling.
Collapse
Affiliation(s)
- Li Zhang
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Bacterial infections cause substantial mortality and burden of disease globally. Induction of a strong innate inflammatory response is the first common host mechanism required for elimination of the invading pathogens. The host transcription factor, nuclear factor kappa B (NF-κB) is essential for immune activation. Conversely, bacterial pathogens have evolved strategies to interfere directly with host cell signalling by regulating or mimicking host proteins. Given the key role of NF-κB in the host inflammatory response, bacteria have expectedly developed virulence effectors interfering with NF-κB signalling pathways. In this review, we explore the bacterial mechanisms utilized to prevent effective NF-κB signalling, which in turn usurp the host inflammatory response.
Collapse
Affiliation(s)
- Gaëlle Le Negrate
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
14
|
Ramakrishna S, Suresh B, Lee EJ, Lee HJ, Ahn WS, Baek KH. Lys-63-specific deubiquitination of SDS3 by USP17 regulates HDAC activity. J Biol Chem 2011; 286:10505-14. [PMID: 21239494 DOI: 10.1074/jbc.m110.162321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SDS3 is a key component of the histone deacetylase (HDAC)-dependent Sin3A co-repressor complex, serving to maintain its HDAC activity. Here, we report both exogenous and endogenous functional interaction between deubiquitinating enzyme USP17 and human SDS3 by MALDI-TOF-MS, co-immunoprecipitation assay, and GST pull-down assay. In this study, we demonstrated that SDS3 readily undergoes endogenous polyubiquitination, which is associated specifically with Lys-63-branched polyubiquitin chains and not with Lys-48-branched polyubiquitin chains. Further, we also demonstrated that USP17 specifically deubiquitinates Lys-63-linked ubiquitin chains from SDS3 and regulates its biological functions. The deubiquitinating activity of USP17 on SDS3 negatively regulates SDS3-associated HDAC activity. The constitutive expression of USP17 and its substrate SDS3 was involved in the inhibition of anchorage-independent tumor growth and blocks cell proliferation, leading to apoptosis in cervical carcinoma cells. Furthermore, we showed that USP17 and SDS3 mutually interact with each other to regulate cancer cell viability. These data support the possibility that SDS3, being a substrate of USP17, may play an important role in developing a novel therapeutic means to inhibit specific HDAC activities in cancer.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul 135-081, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Schneider G, Krämer OH. NFκB/p53 crosstalk-a promising new therapeutic target. Biochim Biophys Acta Rev Cancer 2010; 1815:90-103. [PMID: 20951769 DOI: 10.1016/j.bbcan.2010.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/02/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
The transcription factors p53 and NFκB determine cellular fate and are involved in the pathogenesis of most-if not all-cancers. The crosstalk between these transcription factors becomes increasingly appreciated as an important mechanism operative during all stages of tumorigenesis, metastasis, and immunological surveillance. In this review, we summarize molecular mechanisms regulating cross-signaling between p53 and NFκB proteins and how dysregulated interactions between p53 and NFκB family members contribute to oncogenesis. We furthermore analyze how such signaling modules represent targets for the design of novel intervention strategies using established compounds and powerful combination therapies.
Collapse
Affiliation(s)
- Günter Schneider
- Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik, Ismaninger Str. 22, D-81675 München, Germany
| | | |
Collapse
|
16
|
Abstract
NF-κB activation is a critical component in the transcriptional response to hypoxia. However, the underlying mechanisms that control its activity under these conditions are unknown. Here we report that under hypoxic conditions, IκB kinase (IKK) activity is induced through a calcium/calmodulin-dependent kinase 2 (CaMK2)-dependent pathway distinct from that for other common inducers of NF-κB. This process still requires IKK and the IKK kinase TAK1, like that for inflammatory inducers of NF-κB, but the TAK1-associated proteins TAB1 and TAB2 are not essential. IKK complex activation following hypoxia requires Ubc13 but not the recently identified LUBAC (linear ubiquitin chain assembly complex) ubiquitin conjugation system. In contrast to the action of other NF-κB inducers, IKK-mediated phosphorylation of IκBα does not result in its degradation. We show that this results from IκBα sumoylation by Sumo-2/3 on critical lysine residues, normally required for K-48-linked polyubiquitination. Furthermore, inhibition of specific Sumo proteases is sufficient to release RelA from IκBα and activate NF-κB target genes. These results define a novel pathway regulating NF-κB activation, important to its physiological role in human health and disease.
Collapse
|
17
|
Thevenon D, Engel E, Avet-Rochex A, Gottar M, Bergeret E, Tricoire H, Benaud C, Baudier J, Taillebourg E, Fauvarque MO. The Drosophila ubiquitin-specific protease dUSP36/Scny targets IMD to prevent constitutive immune signaling. Cell Host Microbe 2009; 6:309-20. [PMID: 19837371 DOI: 10.1016/j.chom.2009.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/10/2009] [Accepted: 09/08/2009] [Indexed: 02/07/2023]
Abstract
Ubiquitin proteases remove ubiquitin monomers or polymers to modify the stability or activity of proteins and thereby serve as key regulators of signal transduction. Here, we describe the function of the Drosophila ubiquitin-specific protease 36 (dUSP36) in negative regulation of the immune deficiency (IMD) pathway controlled by the IMD protein. Overexpression of catalytically active dUSP36 ubiquitin protease suppresses fly immunity against Gram-negative pathogens. Conversely, silencing dUsp36 provokes IMD-dependent constitutive activation of IMD-downstream Jun kinase and NF-kappaB signaling pathways but not of the Toll pathway. This deregulation is lost in axenic flies, indicating that dUSP36 prevents constitutive immune signal activation by commensal bacteria. dUSP36 interacts with IMD and prevents K63-polyubiquitinated IMD accumulation while promoting IMD degradation in vivo. Blocking the proteasome in dUsp36-expressing S2 cells increases K48-polyubiquitinated IMD and prevents its degradation. Our findings identify dUSP36 as a repressor whose IMD deubiquitination activity prevents nonspecific activation of innate immune signaling.
Collapse
Affiliation(s)
- Dominique Thevenon
- CEA, DSV, iRTSV, LTS, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Transduction du Signal, CEA Grenoble, 38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A Tangled Web of Ubiquitin Chains: Breaking News in TNF-R1 Signaling. Mol Cell 2009; 36:736-42. [DOI: 10.1016/j.molcel.2009.11.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 11/20/2022]
|
19
|
Hu G, Zhou R, Liu J, Gong AY, Eischeid AN, Dittman JW, Chen XM. MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. THE JOURNAL OF IMMUNOLOGY 2009; 183:1617-24. [PMID: 19592657 DOI: 10.4049/jimmunol.0804362] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Posttranscriptional gene regulation by microRNAs (miRNAs) has been implicated in the fine-tuning of TLR-mediated inflammatory response. The cytokine-inducible Src homology 2-containing protein (CIS), one member of the suppressors of cytokine signaling family of proteins, is an important negative regulator for inflammatory cytokine signaling. Using in vitro models using normal human biliary epithelial cells (cholangiocytes), we demonstrated that LPS stimulation or infection with the parasitic protozoan Cryptosporidium parvum induced expression of CIS protein without a change in CIS mRNA levels by activating the TLR signaling pathway. Of those miRNAs expressed in cholangiocytes, we found that targeting of the 3'-untranslated region of CIS by microRNA-98 (miR-98) or let-7 resulted in translational repression, but not CIS mRNA degradation. LPS stimulation or C. parvum infection decreased cholangiocyte expression of miR-98 and let-7. Down-regulation of miR-98 and let-7 relieved miRNA-mediated translational suppression of CIS and contributed to LPS- and C. parvum-stimulated CIS protein expression. Moreover, gain-of-function (by overexpression of CIS) and loss-of-function (by siRNA interference) studies revealed that CIS could enhance IkappaBalpha degradation and regulate NF-kappaB activation in cholangiocytes in response to LPS stimulation or C. parvum infection. Our data suggest that miR-98 and let-7 confer cholangiocyte expression of CIS in response to microbial challenge, a process that may be relevant to the regulation of TLR-mediated epithelial innate immune response.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE 68178, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT. System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2009; 2:ra24. [PMID: 19471022 DOI: 10.1126/scisignal.2000282] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Covalent conjugation of the small ubiquitin-like modifier (SUMO) proteins to target proteins regulates many important eukaryotic cellular mechanisms. Although the molecular consequences of the conjugation of SUMO proteins are relatively well understood, little is known about the cellular signals that regulate the modification of their substrates. Here, we show that SUMO-2 and SUMO-3 are required for cells to survive heat shock. Through quantitative labeling techniques, stringent purification of SUMOylated proteins, advanced mass spectrometric technology, and novel techniques of data analysis, we quantified heat shock-induced changes in the SUMOylation state of 766 putative substrates. In response to heat shock, SUMO was polymerized into polySUMO chains and redistributed among a wide range of proteins involved in cell cycle regulation; apoptosis; the trafficking, folding, and degradation of proteins; transcription; translation; and DNA replication, recombination, and repair. This comprehensive proteomic analysis of the substrates of a ubiquitin-like modifier (Ubl) identifies a pervasive role for SUMO proteins in the biologic response to hyperthermic stress.
Collapse
Affiliation(s)
- Filip Golebiowski
- 1Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009; 49:73-96. [PMID: 18834306 DOI: 10.1146/annurev.pharmtox.051208.165340] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular proteins are in a dynamic state maintained by synthesis and degradation. The ubiquitin proteolytic pathway is responsible for the degradation of the bulk of cellular proteins including short-lived, regulatory, and misfolded/denatured proteins. Ubiquitin-mediated proteolysis involves covalent attachment of multiple ubiquitin molecules to the protein substrate and degradation of the targeted protein by the 26S proteasome. Recent understanding of the molecular mechanisms involved provides a framework to understand a wide variety of human pathophysiological states as well as therapeutic interventions. This review focuses on the response to hypoxia, inflammatory diseases, neurodegenerative diseases, and muscle-wasting disorders, as well as human papillomaviruses, cervical cancer and other malignancies.
Collapse
Affiliation(s)
- Alan L Schwartz
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
22
|
Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol 2009; 83:6689-705. [PMID: 19369340 DOI: 10.1128/jvi.02220-08] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The outcome of a viral infection is regulated in part by the complex coordination of viral and host interactions that compete for the control and optimization of virus replication. Severe acute respiratory syndrome coronavirus (SARS-CoV) intimately engages and regulates the host innate immune responses during infection. Using a novel interferon (IFN) antagonism screen, we show that the SARS-CoV proteome contains several replicase, structural, and accessory proteins that antagonize the IFN pathway. In this study, we focus on the SARS-CoV papain-like protease (PLP), which engages and antagonizes the IFN induction and NF-kappaB signaling pathways. PLP blocks these pathways by affecting activation of the important signaling proteins in each pathway, IRF3 and NF-kappaB. We also show that the ubiquitin-like domain of PLP is necessary for pathway antagonism but not sufficient by itself to block these pathways regardless of the enzymatic activity of the protease. The potential mechanism of PLP antagonism and its role in pathogenesis are discussed.
Collapse
|
23
|
Nyström K, Nordén R, Muylaert I, Elias P, Larson G, Olofsson S. Induction of sialyl-Lex expression by herpes simplex virus type 1 is dependent on viral immediate early RNA-activated transcription of host fucosyltransferase genes. Glycobiology 2009; 19:847-59. [PMID: 19369700 DOI: 10.1093/glycob/cwp057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that varicella-zoster virus (VZV) and cytomegalovirus (CMV) infection of diploid human fibroblasts (HEL) results in neo-expression of Lewis antigens sialyl Lewis x (sLe(x)) and Lewis y (Le(y)), respectively, after transcriptional activation of different combinations of dormant human fucosyltransferase genes (FUT1, FUT3, FUT5, and FUT6), whose gene products are responsible for the synthesis of Le antigens. Here, we show that herpes simplex virus type 1 (HSV-1) also induces sLe(x) expression dependent on induction of FUT3, FUT5, and FUT6 transcription in infected cells. HSV-1 induction of FUT5 was subsequently used as a model system for analyzing the mechanism of viral activation of dormant fucosyltransferase genes. We show that this is a rapid process, which gives rise to elevated FUT5 RNA levels already at 90 min postinfection. Augmented FUT5 transcription was found to be dependent on transcription of viral genes, but not dependent on the immediate early proteins ICP0 and ICP4, as demonstrated by experiments with HSV-1 mutants defective in expression of these genes. Augmented FUT5 transcription takes place in cycloheximide-treated HSV-1-infected cells, suggesting a more direct role for IE viral RNA during activation of cellular FUT5.
Collapse
Affiliation(s)
- Kristina Nyström
- Department of Virology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Burrows JF, Kelvin AA, McFarlane C, Burden RE, McGrattan MJ, De la Vega M, Govender U, Quinn DJ, Dib K, Gadina M, Scott CJ, Johnston JA. USP17 regulates Ras activation and cell proliferation by blocking RCE1 activity. J Biol Chem 2009; 284:9587-95. [PMID: 19188362 DOI: 10.1074/jbc.m807216200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The proto-oncogene Ras undergoes a series of post-translational modifications at its carboxyl-terminal CAAX motif that are essential for its proper membrane localization and function. One step in this process is the cleavage of the CAAX motif by the enzyme Ras-converting enzyme 1 (RCE1). Here we show that the deubiquitinating enzyme USP17 negatively regulates the activity of RCE1. We demonstrate that USP17 expression blocks Ras membrane localization and activation, thereby inhibiting phosphorylation of the downstream kinases MEK and ERK. Furthermore, we show that this effect is caused by the loss of RCE1 catalytic activity as a result of its deubiquitination by USP17. We also show that USP17 and RCE1 co-localize at the endoplasmic reticulum and that USP17 cannot block proliferation or Ras membrane localization in RCE1 null cells. These studies demonstrate that USP17 modulates Ras processing and activation, at least in part, by regulating RCE1 activity.
Collapse
Affiliation(s)
- James F Burrows
- Division of Infection and Immunity, Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Insights from vaccinia virus into Toll-like receptor signalling proteins and their regulation by ubiquitin: role of IRAK-2. Biochem Soc Trans 2008; 36:449-52. [PMID: 18481979 DOI: 10.1042/bst0360449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TLRs (Toll-like receptors) are an important class of pathogen-sensing proteins, which signal the presence of a pathogen by activating transcription factors, such as NF-kappaB (nuclear factor kappaB). The TLR pathway to NF-kappaB activation involves multiple phosphorylation and ubiquitination events. Notably, TRAF-6 [TNF (tumour necrosis factor)-receptor-associated factor-6] Lys(63) polyubiquitination is a critical step in the formation of signalling complexes, which turn on NF-kappaB. Here, the relative role of different IRAKs [IL-1 (interleukin 1)-receptor-associated kinases] in NF-kappaB activation is discussed. Further, I demonstrate how understanding one molecular mechanism whereby vaccinia virus inhibits NF-kappaB activation has led to a revealing of a key role for IRAK-2 in TRAF-6-mediated NF-kappaB activation.
Collapse
|
26
|
Dawson SP. Hepatocellular carcinoma and the ubiquitin-proteasome system. Biochim Biophys Acta Mol Basis Dis 2008; 1782:775-84. [PMID: 18778769 DOI: 10.1016/j.bbadis.2008.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is one of the largest causes of cancer-related deaths worldwide for which there are very limited treatment options that are currently effective. The ubiquitin-proteasome system has rapidly become acknowledged as both critical for normal cellular function and a frequent target of de-regulation leading to disease. This review appraises the evidence linking the ubiquitin-proteasome system with this devastatingly intractable cancer and asks whether it may prove to be fertile ground for the development of novel therapeutic interventions against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Simon P Dawson
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Clifton Boulevard, Nottingham, NG7 2UH, UK.
| |
Collapse
|
27
|
Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283:24295-9. [PMID: 18621737 DOI: 10.1074/jbc.c800128200] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inhibitor of apoptosis (IAP) proteins are a family of anti-apoptotic regulators found in viruses and metazoans. c-IAP1 and c-IAP2 are recruited to tumor necrosis factor receptor 1 (TNFR1)-associated complexes where they can regulate receptor-mediated signaling. Both c-IAP1 and c-IAP2 have been implicated in TNFalpha-stimulated NF-kappaB activation. However, individual c-IAP1 and c-IAP2 gene knock-outs in mice did not reveal changes in TNF signaling pathways, and the phenotype of a combined deficiency of c-IAPs has yet to be reported. Here we investigate the role of c-IAP1 and c-IAP2 in TNFalpha-stimulated activation of NF-kappaB. We demonstrate that TNFalpha-induced NF-kappaB activation is severely diminished in the absence of both c-IAP proteins. In addition, combined absence of c-IAP1 and c-IAP2 rendered cells sensitive to TNFalpha-induced cell death. Using cells with genetic ablation of c-IAP1 or cells where the c-IAP proteins were eliminated using IAP antagonists, we show that TNFalpha-induced RIP1 ubiquitination is abrogated in the absence of c-IAPs. Furthermore, we reconstitute the ubiquitination process with purified components in vitro and demonstrate that c-IAP1, in collaboration with the ubiquitin conjugating enzyme (E2) enzyme UbcH5a, mediates polymerization of Lys-63-linked chains on RIP1. Therefore, c-IAP1 and c-IAP2 are required for TNFalpha-stimulated RIP1 ubiquitination and NF-kappaB activation.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|