1
|
Kageyama H, Waditee-Sirisattha R. Halotolerance mechanisms in salt‑tolerant cyanobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:55-117. [PMID: 37597948 DOI: 10.1016/bs.aambs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cyanobacteria are ubiquitously distributed in nature and are the most abundant photoautotrophs on Earth. Their long evolutionary history reveals that cyanobacteria have a remarkable capacity and strong adaptive tendencies to thrive in a variety of conditions. Thus, they can survive successfully, especially in harsh environmental conditions such as salty environments, high radiation, or extreme temperatures. Among others, salt stress because of excessive salt accumulation in salty environments, is the most common abiotic stress in nature and hampers agricultural growth and productivity worldwide. These detrimental effects point to the importance of understanding the molecular mechanisms underlying the salt stress response. While it is generally accepted that the stress response mechanism is a complex network, fewer efforts have been made to represent it as a network. Substantial evidence revealed that salt-tolerant cyanobacteria have evolved genomic specific mechanisms and high adaptability in response to environmental changes. For example, extended gene families and/or clusters of genes encoding proteins involved in the adaptation to high salinity have been collectively reported. This chapter focuses on recent advances and provides an overview of the molecular basis of halotolerance mechanisms in salt‑tolerant cyanobacteria as well as multiple regulatory pathways. We elaborate on the major protective mechanisms, molecular mechanisms associated with halotolerance, and the global transcriptional landscape to provide a gateway to uncover gene regulation principles. Both knowledge and omics approaches are utilized in this chapter to decipher the mechanistic insights into halotolerance. Collectively, this chapter would have a profound impact on providing a comprehensive understanding of halotolerance in salt‑tolerant cyanobacteria.
Collapse
Affiliation(s)
- Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Japan; Department of Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Japan.
| | | |
Collapse
|
2
|
Kumar S, Gillilan RE, Yernool DA. Structure and function of the juxtamembrane GAF domain of potassium biosensor KdpD. Protein Sci 2020; 29:2009-2021. [PMID: 32713093 DOI: 10.1002/pro.3920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022]
Abstract
KdpD/KdpE two-component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C-terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high-resolution crystal structure of KdpD GAF domain (KdpDG ) consisting of five α-helices, four β-sheets and two large loops. KdpDG forms a symmetry-related dimer, wherein parallelly arranged monomers contribute to a four-helix bundle at the dimer-interface, SAXS analysis of KdpD C-terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide-binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.
Collapse
Affiliation(s)
- Shivesh Kumar
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, New York, USA
| | - Dinesh A Yernool
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Jung K, Brameyer S, Fabiani F, Gasperotti A, Hoyer E. Phenotypic Heterogeneity Generated by Histidine Kinase-Based Signaling Networks. J Mol Biol 2019; 431:4547-4558. [DOI: 10.1016/j.jmb.2019.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
|
4
|
Tetsi L, Charles AL, Paradis S, Lejay A, Talha S, Geny B, Lugnier C. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions. Cell Mol Life Sci 2017; 74:1883-1893. [PMID: 28039524 PMCID: PMC11107545 DOI: 10.1007/s00018-016-2446-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria play a critical role in skeletal muscle metabolism and function, notably at the level of tissue respiration, which conduct muscle strength as well as muscle survival. Pathological conditions induce mitochondria dysfunctions notably characterized by free oxygen radical production disturbing intracellular signaling. In that way, the second messengers, cyclic AMP and cyclic GMP, control intracellular signaling at the physiological and transcription levels by governing phosphorylation cascades. Both nucleotides are specifically and selectively hydrolyzed in their respective 5'-nucleotide by cyclic nucleotide phosphodiesterases (PDEs), which constitute a multi-genic family differently tissue distributed and subcellularly compartmentalized. These PDEs are presently recognized as therapeutic targets for cardiovascular, pulmonary, and neurologic diseases. However, very few data concerning cyclic nucleotides and PDEs in skeletal muscle, specifically in mitochondria, are reported in the literature. The knowledge of PDE implication in mitochondrial signaling would be helpful for resolving critical mitochondrial dysfunctions in skeletal muscle.
Collapse
Affiliation(s)
- Liliane Tetsi
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Anne-Laure Charles
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Stéphanie Paradis
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Anne Lejay
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Samy Talha
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Bernard Geny
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France
| | - Claire Lugnier
- EA 3072 "Mitochondrie, Stress Oxydant et Protection Musculaire", Fédération de Médecine Translationnelle, Faculté de Médecine, Institut de Physiologie, Université de Strasbourg, 4, Rue Kirschleger, 67085, Strasbourg Cedex, France.
| |
Collapse
|
5
|
Schramke H, Tostevin F, Heermann R, Gerland U, Jung K. A Dual-Sensing Receptor Confers Robust Cellular Homeostasis. Cell Rep 2016; 16:213-221. [DOI: 10.1016/j.celrep.2016.05.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022] Open
|
6
|
Patel K, Golemi-Kotra D. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS. F1000Res 2015; 4:79. [PMID: 27127614 PMCID: PMC4830213 DOI: 10.12688/f1000research.6213.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/08/2023] Open
Abstract
The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of
Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of
cidABC and
lrgAB operons, the gene products of which are involved in programmed cell death and lysis.
Invivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the
lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the
in vivo observations that regulation of the
lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of
lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS.
Collapse
Affiliation(s)
- Kevin Patel
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| | - Dasantila Golemi-Kotra
- Department of Chemistry, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada; Department of Biology, York University, Toronto, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
7
|
Identification of a novel nutrient-sensing histidine kinase/response regulator network in Escherichia coli. J Bacteriol 2014; 196:2023-9. [PMID: 24659770 DOI: 10.1128/jb.01554-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When carbon sources become limiting for growth, bacteria must choose which of the remaining nutrients should be used first. We have identified a nutrient-sensing signaling network in Escherichia coli that is activated at the transition to stationary phase. The network is composed of the two histidine kinase/response regulator systems YehU/YehT and YpdA/YpdB and their target proteins, YjiY and YhjX (both of which are membrane-integrated transporters). The peptide/amino acid-responsive YehU/YehT system was found to have a negative effect on expression of the target gene, yhjX, of the pyruvate-responsive YpdA/YpdB system, while the YpdA/YpdB system stimulated expression of yjiY, the target of the YehU/YehT system. These effects were confirmed in mutants lacking any of the genes for the three primary components of either system. Furthermore, an in vivo interaction assay based on bacterial adenylate cyclase detected heteromeric interactions between the membrane-bound components of the two systems, specifically, between the two histidine kinases and the two transporters, which is compatible with the formation of a larger signaling unit. Finally, the carbon storage regulator A (CsrA) was shown to be involved in posttranscriptional regulation of both yjiY and yhjX.
Collapse
|
8
|
First insights into the unexplored two-component system YehU/YehT in Escherichia coli. J Bacteriol 2012; 194:4272-84. [PMID: 22685278 DOI: 10.1128/jb.00409-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two-component systems (TCSs) consisting of a membrane-anchored histidine kinase (HK) and a response regulator (RR) with DNA-binding activity. are major players in signal transduction in prokaryotes. Whereas most TCSs in Escherichia coli are well characterized, almost nothing is known about the LytS-like HK YehU and the corresponding LytTR-like RR YehT. To identify YehT-regulated genes, we compared the transcriptomes of E. coli cells overproducing either YehT or the RR KdpE (control). The expression levels of 32 genes differed more than 8-fold between the two strains. A comprehensive evaluation of these genes identified yjiY as a target of YehT. Electrophoretic mobility shift assays with purified YehT confirmed that YehT interacts directly with the yjiY promoter. Specifically, YehT binds to two direct repeats of the motif ACC(G/A)CT(C/T)A separated by a 13-bp spacer in the yjiY promoter. The target gene yjiY encodes an inner membrane protein belonging to the CstA superfamily of transporters. In E. coli cells growing in media containing peptides or amino acids as a carbon source, yjiY is strongly induced at the onset of the stationary-growth phase. Moreover, expression was found to be dependent on cyclic AMP (cAMP)/cAMP receptor protein (CRP). It is suggested that YehU/YehT participates in the stationary-phase control network.
Collapse
|
9
|
Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 2010; 18:205-14. [DOI: 10.1016/j.tim.2010.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 11/20/2022]
|
10
|
Guo YL, Mayer H, Vollmer W, Dittrich D, Sander P, Schultz A, Schultz JE. Polyphosphates from Mycobacterium bovis--potent inhibitors of class III adenylate cyclases. FEBS J 2009; 276:1094-103. [PMID: 19154349 DOI: 10.1111/j.1742-4658.2008.06852.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
cAMP generation in bacteria is often stimulated by sudden, but lasting, changes in extracellular conditions, whereas intracellular cAMP concentrations quickly settle at new levels. As bacteria lack G-proteins, it is unknown how bacterial adenylate cyclase (AC) activities are modulated. Mycobacterium tuberculosis has 15 class III AC genes; therefore, we examined whether mycobacteria contain a factor that may regulate AC activities. We identified mycobacterial polyphosphates with a mean chain length of 72 residues as highly potent inhibitors of dimeric class IIIa, class IIIb and class IIIc ACs from M. tuberculosis and other bacteria. The identity of the inhibitor was established by phosphatase degradation, 31P-NMR, acid or base hydrolysis, PAGE and comparisons with commercial standards, and functional substitution by several polyphosphates. The data indicate that each AC dimer occupies 8-15 phosphate residues on a polyphosphate strand. Other polyionic polymers such as polyglutamate, polylysine and hyaluronic acid do not affect cyclase activity. Notably, the structurally unrelated class I AC Cya from Escherichia coli is unaffected. Bacterial polyphosphate metabolism is generally viewed in the context of stress-related regulatory networks. Thus, regulation of bacterial class III ACs by polyphosphates could be a component of the bacterial stress response.
Collapse
Affiliation(s)
- Ying Lan Guo
- Pharmazeutisches Institut, Universität Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|