1
|
Martinez JA, Larion M, Conejo MS, Porter CM, Miller BG. Role of connecting loop I in catalysis and allosteric regulation of human glucokinase. Protein Sci 2014; 23:915-22. [PMID: 24723372 DOI: 10.1002/pro.2473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 11/09/2022]
Abstract
Glucokinase (GCK, hexokinase IV) is a monomeric enzyme with a single glucose binding site that displays steady-state kinetic cooperativity, a functional characteristic that affords allosteric regulation of GCK activity. Structural evidence suggests that connecting loop I, comprised of residues 47-71, facilitates cooperativity by dictating the rate and scope of motions between the large and small domains of GCK. Here we investigate the impact of varying the length and amino acid sequence of connecting loop I upon GCK cooperativity. We find that sequential, single amino acid deletions from the C-terminus of connecting loop I cause systematic decreases in cooperativity. Deleting up to two loop residues leaves the kcat value unchanged; however, removing three or more residues reduces kcat by 1000-fold. In contrast, the glucose K0.5 and KD values are unaffected by shortening the connecting loop by up to six residues. Substituting alanine or glycine for proline-66, which adopts a cis conformation in some GCK crystal structures, does not alter cooperativity, indicating that cis/trans isomerization of this loop residue does not govern slow conformational reorganizations linked to hysteresis. Replacing connecting loop I with the corresponding loop sequence from the catalytic domain of the noncooperative isozyme human hexokinase I (HK-I) eliminates cooperativity without impacting the kcat and glucose K0.5 values. Our results indicate that catalytic turnover requires a minimal length of connecting loop I, whereas the loop has little impact upon the binding affinity of GCK for glucose. We propose a model in which the primary structure of connecting loop I affects cooperativity by influencing conformational dynamics, without altering the equilibrium distribution of GCK conformations.
Collapse
Affiliation(s)
- Juliana A Martinez
- Department of Chemistry and Biochemistry, 4005 Chemical Sciences Laboratory, Florida State University, Tallahassee, Florida, 32306-4390
| | | | | | | | | |
Collapse
|
2
|
Schermerhorn T. Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores. Front Endocrinol (Lausanne) 2013; 4:188. [PMID: 24348462 PMCID: PMC3847661 DOI: 10.3389/fendo.2013.00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022] Open
Abstract
Carnivores, such as the dolphin and the domestic cat, have numerous adaptations that befit consumption of diets with high protein and fat content, with little carbohydrate content. Consequently, nutrient metabolism in carnivorous species differs substantially from that of non-carnivores. Important metabolic pathways known to differ between carnivores and non-carnivores are implicated in the development of diabetes and insulin resistance in non-carnivores: (1) the hepatic glucokinase (GCK) pathway is absent in healthy carnivores yet GCK deficiency may result in diabetes in rodents and humans, (2) healthy dolphins and cats are prone to periods of fasting hyperglycemia and exhibit insulin resistance, both of which are risk factors for diabetes in non-carnivores. Similarly, carnivores develop naturally occurring diseases such as hemochromatosis, fatty liver, obesity, and diabetes that have strong parallels with the same disorders in humans. Understanding how evolution, environment, diet, and domestication may play a role with nutrient metabolism in the dolphin and cat may also be relevant to human diabetes.
Collapse
Affiliation(s)
- Thomas Schermerhorn
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- *Correspondence: Thomas Schermerhorn, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506-5606, USA e-mail:
| |
Collapse
|
3
|
Bowler JM, Hervert KL, Kearley ML, Miller BG. Small-Molecule Allosteric Activation of Human Glucokinase in the Absence of Glucose. ACS Med Chem Lett 2013; 4. [PMID: 24294411 DOI: 10.1021/ml400061x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Synthetic allosteric activators of human glucokinase are receiving considerable attention as potential diabetes therapeutic agents. Although their mechanism of action is not fully understood, structural studies suggest that activator association requires prior formation of a binary enzyme-glucose complex. Here, we demonstrate that three previously described activators associate with glucokinase in a glucose-independent fashion. Transient-state kinetic assays reveal a lag in enzyme progress curves that is systematically reduced when the enzyme is preincubated with activators. Isothermal titration calorimetry demonstrates that activator binding is enthalpically driven for all three compounds, whereas the entropic changes accompanying activator binding can be favorable or unfavorable. Viscosity variation experiments indicate that the kcat value of glucokinase is almost fully limited by product release, both in the presence and absence of activators, suggesting that activators impact a step preceding product release. The observation of glucose-independent allosteric activation of glucokinase has important implications for the refinement of future diabetes therapeutics and for the mechanism of kinetic cooperativity of mammalian glucokinase.
Collapse
Affiliation(s)
- Joseph M. Bowler
- Department of Chemistry and
Biochemistry, Florida State University,
Tallahassee, Florida 32306, United States
| | - Katherine L. Hervert
- Department of Chemistry, Ohio Wesleyan University, Delaware, Ohio 43015, United
States
| | - Mark L. Kearley
- Department of Chemistry and
Biochemistry, Florida State University,
Tallahassee, Florida 32306, United States
| | - Brian G. Miller
- Department of Chemistry and
Biochemistry, Florida State University,
Tallahassee, Florida 32306, United States
| |
Collapse
|
4
|
Gibly RF, Zhang X, Lowe WL, Shea LD. Porous scaffolds support extrahepatic human islet transplantation, engraftment, and function in mice. Cell Transplant 2013; 22:811-9. [PMID: 22507300 PMCID: PMC3701739 DOI: 10.3727/096368912x636966] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Islet transplantation as a therapy or cure for type 1 diabetes has significant promise but has been limited by islet mass requirements and long-term graft failure. The intrahepatic and intravascular site may be responsible for significant loss of transplanted islets. Nonencapsulating biomaterial scaffolds provide a strategy for architecturally defining and modulating extrahepatic sites beyond the endogenous milieu to enhance islet survival and function. We utilized scaffolds to transplant human islets into the intraperitoneal fat of immunodeficient mice. A smaller human islet mass than previously reported reversed murine diabetes and restored glycemic control at human blood glucose levels. Graft function was highly dependent on the islet number transplanted and directly correlated to islet viability, as determined by the ATP-to-DNA ratio. Islets engrafted and revascularized in host tissue, and glucose tolerance testing indicated performance equivalent to healthy mice. Addition of extracellular matrix, specifically collagen IV, to scaffold surfaces improved graft function compared to serum-supplemented media. Porous scaffolds can facilitate efficient human islet transplantation and provide a platform for modulating the islet microenvironment, in ways not possible with current clinical strategies, to enhance islet engraftment and function.
Collapse
Affiliation(s)
- Romie F. Gibly
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Integrated Graduate Program, Northwestern University, Chicago, IL, USA
| | - Xiaomin Zhang
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - William L. Lowe
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Department of Medicine, Northwestern University, Chicago, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Lonnie D. Shea
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Larion M, Miller BG. Homotropic allosteric regulation in monomeric mammalian glucokinase. Arch Biochem Biophys 2012; 519:103-11. [PMID: 22107947 PMCID: PMC3294010 DOI: 10.1016/j.abb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Glucokinase catalyzes the ATP-dependent phosphorylation of glucose, a chemical transformation that represents the rate-limiting step of glycolytic metabolism in the liver and pancreas. Glucokinase is a central regulator of glucose homeostasis as evidenced by its association with two disease states, maturity onset diabetes of the young (MODY) and persistent hyperinsulinemia of infancy (PHHI). Mammalian glucokinase is subject to homotropic allosteric regulation by glucose-the steady-state velocity of glucose-6-phosphate production is not hyperbolic, but instead displays a sigmoidal response to increasing glucose concentrations. The positive cooperativity displayed by glucokinase is intriguing since the enzyme functions as a monomer under physiological conditions and contains only a single binding site for glucose. Despite the existence of several models of kinetic cooperativity in monomeric enzymes, a consensus has yet to be reached regarding the mechanism of allosteric regulation in glucokinase. Experimental evidence collected over the last 45 years by a number of investigators supports a link between cooperativity and slow conformational reorganizations of the glucokinase scaffold. In this review, we summarize advances in our understanding of glucokinase allosteric regulation resulting from recent X-ray crystallographic, pre-equilibrium kinetic and high-resolution nuclear magnetic resonance investigations. We conclude with a brief discussion of unanswered questions regarding the mechanistic basis of kinetic cooperativity in mammalian glucokinase.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|
6
|
Ströhle A, Döring F. Molecularization in nutritional science: a view from philosophy of science. Mol Nutr Food Res 2011; 54:1385-404. [PMID: 20568236 DOI: 10.1002/mnfr.201000078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SCOPE Over the past decade, a trend toward molecularization, which could be observed in almost all bioscientific disciplines, now appears to have also developed in nutritional science. However, molecular nutrition research gives birth to a series of questions. Therefore, we take a look at the epistemological foundation of (molecular) nutritional science. METHODS AND RESULTS We (i) analyze the scientific status of (molecular) nutritional science and its position in the canon of other scientific disciplines, (ii) focus on the cognitive aims of nutritional science in general and (iii) on the chances and limits of molecular nutrition research in particular. By taking up the thoughts of an earlier work, we are analyzing (molecular) nutritional science from a strictly realist and emergentist-naturalist perspective. CONCLUSION Methodologically, molecular nutrition research is bound to a microreductive research approach. We emphasize, however, that it need not be a radical microreductionism whose scientific reputation is not the best. Instead we favor moderate microreductionism, which combines reduction with integration. As mechanismic explanations are one of the primary aims of factual sciences, we consider it as the task of molecular nutrition research to find profound, i.e. molecular-mechanismic, explanations for the conditions, characteristics and changes of organisms related to the organism-nutrition environment interaction.
Collapse
Affiliation(s)
- Alexander Ströhle
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrecht-University Kiel, Germany.
| | | |
Collapse
|
7
|
Piper Hanley K, Hearn T, Berry A, Carvell MJ, Patch AM, Williams LJ, Sugden SA, Wilson DI, Ellard S, Hanley NA. In vitro expression of NGN3 identifies RAB3B as the predominant Ras-associated GTP-binding protein 3 family member in human islets. J Endocrinol 2010; 207:151-61. [PMID: 20807725 PMCID: PMC2951179 DOI: 10.1677/joe-10-0120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 08/05/2010] [Accepted: 08/31/2010] [Indexed: 12/17/2022]
Abstract
Neurogenin 3 (NGN3) commits pancreatic progenitors to an islet cell fate. We have induced NGN3 expression and identified upregulation of the gene encoding the Ras-associated small molecular mass GTP-binding protein, RAB3B. RAB3B localised to the cytoplasm of human β-cells, both during the foetal period and post natally. Genes encoding alternative RAB3 proteins and RAB27A were unaltered by NGN3 expression and in human adult islets their transcripts were many fold less prevalent than those of RAB3B. The regulation of insulin exocytosis in rodent β-cells and responsiveness to incretins are reliant on Rab family members, notably Rab3a and Rab27a, but not Rab3b. Our results support an important inter-species difference in regulating insulin exocytosis where RAB3B is the most expressed isoform in human islets.
Collapse
Affiliation(s)
| | - Tom Hearn
- Human Genetics DivisionUniversity of SouthamptonSouthampton, SO16 6YDUK
| | | | - Melanie J Carvell
- Beta-Cell Development and Function GroupKing's College LondonGuy's Campus, London, SE1 1ULUK
| | - Ann-Marie Patch
- Peninsula Medical SchoolInstitute of Biomedical and Clinical ScienceBarrack Road, Exeter, EX2 5DWUK
| | - Louise J Williams
- Human Genetics DivisionUniversity of SouthamptonSouthampton, SO16 6YDUK
| | | | - David I Wilson
- Human Genetics DivisionUniversity of SouthamptonSouthampton, SO16 6YDUK
| | - Sian Ellard
- Peninsula Medical SchoolInstitute of Biomedical and Clinical ScienceBarrack Road, Exeter, EX2 5DWUK
| | - Neil A Hanley
- (Correspondence should be addressed to N A Hanley; )
| |
Collapse
|
8
|
Pal M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov Today 2009; 14:784-92. [DOI: 10.1016/j.drudis.2009.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/02/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
|
9
|
Bishop AC, Chen VL. Brought to life: targeted activation of enzyme function with small molecules. J Chem Biol 2008; 2:1-9. [PMID: 19568788 DOI: 10.1007/s12154-008-0012-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/04/2008] [Indexed: 11/30/2022] Open
Abstract
Cell-permeable small molecules that are capable of activating particular enzymes would be invaluable tools for studying protein function in complex cell-signaling cascades. But, is it feasible to identify compounds that allow chemical-biology researchers to activate specific enzymes in a cellular context? In this review, we describe some recent advances in achieving targeted enzyme activation with small molecules. In addition to surveying progress in the identification and targeting of enzymes that contain natural allosteric-activation sites, we focus on recently developed protein-engineering strategies that allow researchers to render an enzyme of interest "activatable" by a pre-chosen compound. Three distinct strategies for targeting an engineered enzyme are discussed: direct chemical "rescue" of an intentionally inactivated enzyme, activation of an enzyme by targeting a de novo small-molecule-binding site, and the generation of activatable enzymes via fusion of target enzymes to previously characterized small-molecule-binding domains.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Chemistry, Amherst College, Amherst, MA, 01002, USA,
| | | |
Collapse
|