1
|
Gavagan M, Jameson N, Zalatan JG. The Axin scaffold protects the kinase GSK3β from cross-pathway inhibition. eLife 2023; 12:e85444. [PMID: 37548359 PMCID: PMC10442075 DOI: 10.7554/elife.85444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Multiple signaling pathways regulate the kinase GSK3β by inhibitory phosphorylation at Ser9, which then occupies the GSK3β priming pocket and blocks substrate binding. Since this mechanism should affect GSK3β activity toward all primed substrates, it is unclear why Ser9 phosphorylation does not affect other GSK3β-dependent pathways, such as Wnt signaling. We used biochemical reconstitution and cell culture assays to evaluate how Wnt-associated GSK3β is insulated from cross-activation by other signals. We found that the Wnt-specific scaffold protein Axin allosterically protects GSK3β from phosphorylation at Ser9 by upstream kinases, which prevents accumulation of pS9-GSK3β in the Axin•GSK3β complex. Scaffold proteins that protect bound proteins from alternative pathway reactions could provide a general mechanism to insulate signaling pathways from improper crosstalk.
Collapse
Affiliation(s)
- Maire Gavagan
- Department of Chemistry, University of WashingtonSeattleUnited States
| | - Noel Jameson
- Department of Chemistry, University of WashingtonSeattleUnited States
| | - Jesse G Zalatan
- Department of Chemistry, University of WashingtonSeattleUnited States
| |
Collapse
|
2
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|
3
|
Kjaergaard M. Estimation of Effective Concentrations Enforced by Complex Linker Architectures from Conformational Ensembles. Biochemistry 2022; 61:171-182. [DOI: 10.1021/acs.biochem.1c00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus 8000, Denmark
- Center for Proteins in Memory─PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
4
|
Cliff ER, Kirkpatrick RL, Cunningham-Bryant D, Fernandez B, Harman JL, Zalatan JG. CRISPR-Cas-Mediated Tethering Recruits the Yeast HMR Mating-Type Locus to the Nuclear Periphery but Fails to Silence Gene Expression. ACS Synth Biol 2021; 10:2870-2877. [PMID: 34723510 DOI: 10.1021/acssynbio.1c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the relationship between genome structure and function, we have developed a programmable CRISPR-Cas system for nuclear peripheral recruitment in yeast. We benchmarked this system at the HMR and GAL2 loci, both of which are well-characterized model systems for localization to the nuclear periphery. Using microscopy and gene silencing assays, we demonstrate that CRISPR-Cas-mediated tethering can recruit the HMR locus but does not detectably silence reporter gene expression. A previously reported Gal4-mediated tethering system does silence gene expression, and we demonstrate that the silencing effect has an unexpected dependence on the properties of the protein tether. The CRISPR-Cas system was unable to recruit GAL2 to the nuclear periphery. Our results reveal potential challenges for synthetic genome structure perturbations and suggest that distinct functional effects can arise from subtle structural differences in how genes are recruited to the periphery.
Collapse
|
5
|
Ruff KM, Pappu RV. AlphaFold and Implications for Intrinsically Disordered Proteins. J Mol Biol 2021; 433:167208. [PMID: 34418423 DOI: 10.1016/j.jmb.2021.167208] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Accurate predictions of the three-dimensional structures of proteins from their amino acid sequences have come of age. AlphaFold, a deep learning-based approach to protein structure prediction, shows remarkable success in independent assessments of prediction accuracy. A significant epoch in structural bioinformatics was the structural annotation of over 98% of protein sequences in the human proteome. Interestingly, many predictions feature regions of very low confidence, and these regions largely overlap with intrinsically disordered regions (IDRs). That over 30% of regions within the proteome are disordered is congruent with estimates that have been made over the past two decades, as intense efforts have been undertaken to generalize the structure-function paradigm to include the importance of conformational heterogeneity and dynamics. With structural annotations from AlphaFold in hand, there is the temptation to draw inferences regarding the "structures" of IDRs and their interactomes. Here, we offer a cautionary note regarding the misinterpretations that might ensue and highlight efforts that provide concrete understanding of sequence-ensemble-function relationships of IDRs. This perspective is intended to emphasize the importance of IDRs in sequence-function relationships (SERs) and to highlight how one might go about extracting quantitative SERs to make sense of how IDRs function.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, Campus Box 1097, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, Campus Box 1097, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Kjaergaard M, Glavina J, Chemes LB. Predicting the effect of disordered linkers on effective concentrations and avidity with the "C eff calculator" app. Methods Enzymol 2020; 647:145-171. [PMID: 33482987 DOI: 10.1016/bs.mie.2020.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Linkers are crucial to the functions of multidomain proteins as they couple functional units to encode regulation such as auto-inhibition, enzyme targeting or tuning of interaction strength. A linker changes reactions from bimolecular to unimolecular, and the equilibrium and kinetics is thus determined by the properties of the linker rather than concentrations. We present a theoretical workflow for estimating the functional consequences of tethering by a linker. We discuss how to: (1) Identify flexible linkers from sequence. (2) Model the end-to-end distance distribution for a flexible linker using a worm-like chain. (3) Estimate the effective concentration of a ligand tethered by a flexible linker. (4) Calculate the decrease in binding affinity caused by auto-inhibition. (5) Calculate the expected avidity enhancement of a bivalent interaction from effective concentration. The worm-like chain modeling is available through a web application called the "Ceff calculator" (http://ceffapp.chemeslab.org), which will allow user-friendly prediction of experimentally inaccessible parameters.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus, Denmark; Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, San Martín, Argentina
| | - Lucia Beatriz Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, San Martín, Argentina.
| |
Collapse
|
7
|
Cohan MC, Ruff KM, Pappu RV. Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins. Protein Eng Des Sel 2020; 32:191-202. [PMID: 31375817 PMCID: PMC7462041 DOI: 10.1093/protein/gzz014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) contribute to a multitude of functions. De novo design of IDPs should open the door to modulating functions and phenotypes controlled by these systems. Recent design efforts have focused on compositional biases and specific sequence patterns as the design features. Analysis of the impact of these designs on sequence-function relationships indicates that individual sequence/compositional parameters are insufficient for describing sequence-function relationships in IDPs. To remedy this problem, we have developed information theoretic measures for sequence–ensemble relationships (SERs) of IDPs. These measures rely on prior availability of statistically robust conformational ensembles derived from all atom simulations. We show that the measures we have developed are useful for comparing sequence-ensemble relationships even when sequence is poorly conserved. Based on our results, we propose that de novo designs of IDPs, guided by knowledge of their SERs, should provide improved insights into their sequence–ensemble–function relationships.
Collapse
Affiliation(s)
- Megan C Cohan
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS) Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis MO, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS) Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis MO, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS) Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis MO, USA
| |
Collapse
|
8
|
Linker Dependence of Avidity in Multivalent Interactions Between Disordered Proteins. J Mol Biol 2019; 431:4784-4795. [DOI: 10.1016/j.jmb.2019.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/13/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022]
|
9
|
Miao Y, Tipakornsaowapak T, Zheng L, Mu Y, Lewellyn E. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS J 2018; 285:2762-2784. [PMID: 29722136 DOI: 10.1111/febs.14493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric Lewellyn
- Department of Biology, Division of Natural Sciences, St Norbert College, De Pere, WI, USA
| |
Collapse
|
10
|
CSL-Associated Corepressor and Coactivator Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:279-295. [PMID: 30030832 DOI: 10.1007/978-3-319-89512-3_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The highly conserved Notch signal transduction pathway orchestrates fundamental cellular processes including, differentiation, proliferation, and apoptosis during embryonic development and in the adult organism. Dysregulated Notch signaling underlies the etiology of a variety of human diseases, such as certain types of cancers, developmental disorders and cardiovascular disease. Ligand binding induces proteolytic cleavage of the Notch receptor and nuclear translocation of the Notch intracellular domain (NICD), which forms a ternary complex with the transcription factor CSL and the coactivator MAML to upregulate transcription of Notch target genes. The DNA-binding protein CSL is the centrepiece of transcriptional regulation in the Notch pathway, acting as a molecular hub for interactions with either corepressors or coactivators to repress or activate, respectively, transcription. Here we review previous structure-function studies of CSL-associated coregulator complexes and discuss the molecular insights gleaned from this research. We discuss the functional consequences of both activating and repressing binding partners using the same interaction platforms on CSL. We also emphasize that although there has been a significant uptick in structural information over the past decade, it is still under debate how the molecular switch from repression to activation mediated by CSL occurs at Notch target genes and whether it will be possible to manipulate these transcription complexes therapeutically in the future.
Collapse
|
11
|
Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor. Proc Natl Acad Sci U S A 2017; 114:E9243-E9252. [PMID: 29078291 DOI: 10.1073/pnas.1706083114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered regions (IDRs) play important roles in proteins that regulate gene expression. A prominent example is the intracellular domain of the Notch receptor (NICD), which regulates the transcription of Notch-responsive genes. The NICD sequence includes an intrinsically disordered RAM region and a conserved ankyrin (ANK) domain. The 111-residue RAM region mediates bivalent interactions of NICD with the transcription factor CSL. Although the sequence of RAM is poorly conserved, the linear patterning of oppositely charged residues shows minimal variation. The conformational properties of polyampholytic IDRs are governed as much by linear charge patterning as by overall charge content. Here, we used sequence design to assess how changing the charge patterning within RAM affects its conformational properties, the affinity of NICD to CSL, and Notch transcriptional activity. Increased segregation of oppositely charged residues leads to linear decreases in the global dimensions of RAM and decreases the affinity of a construct including a C-terminal ANK domain (RAMANK) for CSL. Increasing charge segregation from WT RAM sharply decreases transcriptional activation for all permutants. Activation also decreases for some, but not all, permutants with low charge segregation, although there is considerable variation. Our results suggest that the RAM linker is more than a passive tether, contributing local and/or long-range sequence features that modulate interactions within NICD and with downstream components of the Notch pathway. We propose that sequence features within IDRs have evolved to ensure an optimal balance of sequence-encoded conformational properties, interaction strengths, and cellular activities.
Collapse
|
12
|
The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Dev Cell 2017; 41:228-241. [PMID: 28486129 DOI: 10.1016/j.devcel.2017.04.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway relies on a proteolytic cascade to release its transcriptionally active intracellular domain, on force to unfold a protective domain and permit proteolysis, on extracellular domain glycosylation to tune the forces exerted by endocytosed ligands, and on a motley crew of nuclear proteins, chromatin modifiers, ubiquitin ligases, and a few kinases to regulate activity and half-life. Herein we provide a review of recent molecular insights into how Notch signals are triggered and how cell shape affects these events, and we use the new insights to illuminate a few perplexing observations.
Collapse
|
13
|
Optimal Affinity Enhancement by a Conserved Flexible Linker Controls p53 Mimicry in MdmX. Biophys J 2017; 112:2038-2042. [PMID: 28487147 DOI: 10.1016/j.bpj.2017.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 04/17/2017] [Indexed: 01/10/2023] Open
Abstract
MdmX contains an intramolecular binding motif that mimics the binding of the p53 tumor suppressor. This intramolecular binding motif is connected to the p53 binding domain of MdmX by a conserved flexible linker that is 85 residues long. The sequence of this flexible linker has an identity of 51% based on multiple protein sequence alignments of 52 MdmX homologs. We used polymer statistics to estimate a global KD value for p53 binding to MdmX in the presence of the flexible linker and the intramolecular binding motif by assuming the flexible linker behaves as a wormlike chain. The global KD estimated from the wormlike chain modeling was nearly identical to the value measured using isothermal titration calorimetry. According to our calculations and measurements, the intramolecular binding motif reduces the apparent affinity of p53 for MdmX by a factor of 400. This study promotes a more quantitative understanding of the role that flexible linkers play in intramolecular binding and provides valuable information to further studies of cellular inhibition of the p53/MdmX interaction.
Collapse
|
14
|
Nodelman IM, Horvath KC, Levendosky RF, Winger J, Ren R, Patel A, Li M, Wang MD, Roberts E, Bowman GD. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome. Nucleic Acids Res 2016; 44:7580-91. [PMID: 27174939 PMCID: PMC5027475 DOI: 10.1093/nar/gkw406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/29/2016] [Indexed: 12/21/2022] Open
Abstract
Chromatin remodelers are essential for establishing and maintaining the placement of nucleosomes along genomic DNA. Yet how chromatin remodelers recognize and respond to distinct chromatin environments surrounding nucleosomes is poorly understood. Here, we use Lac repressor as a tool to probe how a DNA-bound factor influences action of the Chd1 remodeler. We show that Chd1 preferentially shifts nucleosomes away from Lac repressor, demonstrating that a DNA-bound factor defines a barrier for nucleosome positioning. Rather than an absolute block in sliding, the barrier effect was achieved by altered rates of nucleosome sliding that biased redistribution of nucleosomes away from the bound Lac repressor site. Remarkably, in addition to slower sliding toward the LacO site, the presence of Lac repressor also stimulated sliding in the opposite direction. These experiments therefore demonstrate that Chd1 responds to the presence of a bound protein on both entry and exit sides of the nucleosome. This sensitivity to both sides of the nucleosome allows for a faster and sharper response than would be possible by responding to only the entry side, and we speculate that dual entry/exit sensitivity is also important for regularly spaced nucleosome arrays generated by Chd1 and the related ISWI remodelers.
Collapse
Affiliation(s)
- Ilana M Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kyle C Horvath
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Jessica Winger
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ren Ren
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ashok Patel
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ming Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D Wang
- Department of Physics, LASSP, Cornell University, Ithaca, NY 14853, USA Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Elijah Roberts
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Cunha ES, Hatem CL, Barrick D. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity. Proteins 2016; 84:1043-54. [PMID: 27071357 DOI: 10.1002/prot.25047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/22/2022]
Abstract
Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eva S Cunha
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218.,Department of Structural Biology, Max Plank Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt am Main, D-60438, Germany
| | - Christine L Hatem
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| |
Collapse
|
16
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
17
|
Sherry KP, Johnson SE, Hatem CL, Majumdar A, Barrick D. Effects of Linker Length and Transient Secondary Structure Elements in the Intrinsically Disordered Notch RAM Region on Notch Signaling. J Mol Biol 2015; 427:3587-3597. [PMID: 26344835 DOI: 10.1016/j.jmb.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 12/14/2022]
Abstract
Formation of the bivalent interaction between the Notch intracellular domain (NICD) and the transcription factor CBF-1/RBP-j, Su(H), Lag-1 (CSL) is a key event in Notch signaling because it switches Notch-responsive genes from a repressed state to an activated state. Interaction of the intrinsically disordered RBP-j-associated molecule (RAM) region of NICD with CSL is thought to both disrupt binding of corepressor proteins to CSL and anchor NICD to CSL, promoting interaction of the ankyrin domain of NICD with CSL through an effective concentration mechanism. To quantify the role of disorder in the RAM linker region on the effective concentration enhancement of Notch transcriptional activation, we measured the effects of linker length variation on activation. The resulting activation profile has general features of a worm-like chain model for effective concentration. However, deviations from the model for short sequence deletions suggest that RAM contains sequence-specific structural elements that may be important for activation. Structural characterization of the RAM linker with sedimentation velocity analytical ultracentrifugation and NMR spectroscopy reveals that the linker is compact and contains three transient helices and two extended and dynamic regions. To test if these secondary structure elements are important for activation, we made sequence substitutions to change the secondary structure propensities of these elements and measured transcriptional activation of the resulting variants. Substitutions to two of these nonrandom elements (helix 2, extended region 1) have effects on activation, but these effects do not depend on the nature of the substituting residues. Thus, the primary sequences of these elements, but not their secondary structures, are influencing signaling.
Collapse
Affiliation(s)
- Kathryn P Sherry
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Scott E Johnson
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Christine L Hatem
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Ananya Majumdar
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Doug Barrick
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr Opin Struct Biol 2015; 32:102-12. [PMID: 25863585 DOI: 10.1016/j.sbi.2015.03.008] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) showcase the importance of conformational plasticity and heterogeneity in protein function. We summarize recent advances that connect information encoded in IDP sequences to their conformational properties and functions. We focus on insights obtained through a combination of atomistic simulations and biophysical measurements that are synthesized into a coherent framework using polymer physics theories.
Collapse
|
19
|
Contreras AN, Yuan Z, Kovall RA. Thermodynamic binding analysis of Notch transcription complexes from Drosophila melanogaster. Protein Sci 2015; 24:812-22. [PMID: 25650119 DOI: 10.1002/pro.2652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/22/2022]
Abstract
Notch is an intercellular signaling pathway that is highly conserved in metazoans and is essential for proper cellular specification during development and in the adult organism. Misregulated Notch signaling underlies or contributes to the pathogenesis of many human diseases, most notably cancer. Signaling through the Notch pathway ultimately results in changes in gene expression, which is regulated by the transcription factor CSL. Upon pathway activation, CSL forms a ternary complex with the intracellular domain of the Notch receptor (NICD) and the transcriptional coactivator Mastermind (MAM) that activates transcription from Notch target genes. While detailed in vitro studies have been conducted with mammalian and worm orthologous proteins, less is known regarding the molecular details of the Notch ternary complex in Drosophila. Here we thermodynamically characterize the assembly of the fly ternary complex using isothermal titration calorimetry. Our data reveal striking differences in the way the RAM (RBP-J associated molecule) and ANK (ankyrin) domains of NICD interact with CSL that is specific to the fly. Additional analysis using cross-species experiments suggest that these differences are primarily due to fly CSL, while experiments using point mutants show that the interface between fly CSL and ANK is likely similar to the mammalian and worm interface. Finally, we show that the binding of the fly RAM domain to CSL does not affect interactions of the corepressor Hairless with CSL. Taken together, our data suggest species-specific differences in ternary complex assembly that may be significant in understanding how CSL regulates transcription in different organisms.
Collapse
Affiliation(s)
- Ashley N Contreras
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, 45267
| | | | | |
Collapse
|
20
|
Abstract
Intrinsically disordered proteins (IDPs) are important components of the cellular signalling machinery, allowing the same polypeptide to undertake different interactions with different consequences. IDPs are subject to combinatorial post-translational modifications and alternative splicing, adding complexity to regulatory networks and providing a mechanism for tissue-specific signalling. These proteins participate in the assembly of signalling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles. Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
Collapse
|
21
|
Toptygin D. Analysis of time-dependent red shifts in fluorescence emission from tryptophan residues in proteins. Methods Mol Biol 2014; 1076:215-256. [PMID: 24108628 DOI: 10.1007/978-1-62703-649-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Instantaneous fluorescence emission spectra measured at different times after excitation often shift to the red as the delay between the excitation pulse and fluorescence detection is increased. In the case of Trp fluorescence in proteins, the time-dependent red shift (TDRS) may have its origins in relaxation, heterogeneity, or a mixture of the two. In those cases where it is possible to rule out the contribution of heterogeneity, the TDRS can be used to study nonequilibrium relaxation dynamics of the protein matrix and the solvent on the picosecond and nanosecond time scales. Here we describe the experimental and computational procedures involved in recording spectrally and time-resolved fluorescence, detecting heterogeneity, and extracting information about protein/solvent relaxation dynamics.
Collapse
Affiliation(s)
- Dmitri Toptygin
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
22
|
Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure 2013; 22:70-81. [PMID: 24290140 DOI: 10.1016/j.str.2013.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022]
Abstract
Notch refers to a highly conserved cell-to-cell signaling pathway with essential roles in embryonic development and tissue maintenance. Dysfunctional signaling causes human disease, highlighting the importance of pathway regulation. Notch signaling ultimately results in the activation of target genes, which is regulated by the nuclear effector CSL (CBF-1/RBP-J, Su(H), Lag-1). CSL dually functions as an activator and a repressor of transcription through differential interactions with coactivator or corepressor proteins, respectively. Although the structures of CSL-coactivator complexes have been determined, the structures of CSL-corepressor complexes are unknown. Here, using a combination of structural, biophysical, and cellular approaches, we characterize the structure and function of CSL in complex with the corepressor KyoT2. Collectively, our studies provide molecular insights into how KyoT2 binds CSL with high affinity and competes with coactivators, such as Notch, for binding CSL. These studies are important for understanding how CSL functions as both an activator and a repressor of transcription of Notch target genes.
Collapse
|
23
|
Nucleosome sliding by Chd1 does not require rigid coupling between DNA-binding and ATPase domains. EMBO Rep 2013; 14:1098-103. [PMID: 24126763 DOI: 10.1038/embor.2013.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 11/08/2022] Open
Abstract
Chromatin remodellers are ATP-dependent motor proteins that physically reposition and reorganize nucleosomes. Chd1 and Iswi-type remodellers possess a DNA-binding domain (DBD) needed for efficient nucleosome mobilization; however, it has not been clear how this domain physically contributes to remodelling. Here we show that the Chd1 DBD promotes nucleosome sliding simply by tethering the remodeller to nucleosome substrates. Nucleosome sliding activity was largely resistant to increasing length and flexibility of the linker connecting the DBD and ATPase motor, arguing that the ATPase motor does not shift DNA onto the nucleosome by pulling on the DBD.
Collapse
|
24
|
Das RK, Mittal A, Pappu RV. How is functional specificity achieved through disordered regions of proteins? Bioessays 2012; 35:17-22. [DOI: 10.1002/bies.201200115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Johnson SE, Barrick D. Dissecting and circumventing the requirement for RAM in CSL-dependent Notch signaling. PLoS One 2012; 7:e39093. [PMID: 22876274 PMCID: PMC3410904 DOI: 10.1371/journal.pone.0039093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/18/2012] [Indexed: 01/22/2023] Open
Abstract
The Notch signaling pathway is an intercellular communication network vital to metazoan development. Notch activation leads to the nuclear localization of the intracellular portion (NICD) of the Notch receptor. Once in the nucleus, NICD binds the transcription factor CSL through a bivalent interaction involving the high-affinity RAM region and the lower affinity ANK domain, converting CSL from a transcriptionally-repressed to an active state. This interaction is believed to directly displace co-repressor proteins from CSL and recruit co-activator proteins. Here we investigate the consequences of this bivalent organization in converting CSL from the repressed to active form. One proposed function of RAM is to promote the weak ANK:CSL interaction; thus, fusion of CSL-ANK should bypass this function of RAM. We find that a CSL-ANK fusion protein is transcriptionally active in reporter assays, but that the addition of RAM in trans further increases transcriptional activity, suggesting another role of RAM in activation. A single F235L point substitution, which disrupts co-repressor binding to CSL, renders the CSL-ANK fusion fully active and refractory to further stimulation by RAM in trans. These results suggest that in the context of a mammalian CSL-ANK fusion protein, the main role of RAM is to displace co-repressor proteins from CSL.
Collapse
Affiliation(s)
- Scott E. Johnson
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Douglas Barrick
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Conformational locking upon cooperative assembly of notch transcription complexes. Structure 2012; 20:340-9. [PMID: 22325781 DOI: 10.1016/j.str.2011.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/01/2011] [Accepted: 12/17/2011] [Indexed: 11/23/2022]
Abstract
The Notch intracellular domain (NICD) forms a transcriptional activation complex with the DNA-binding factor CSL and a transcriptional co-activator of the Mastermind family (MAML). The "RAM" region of NICD recruits Notch to CSL, facilitating the binding of MAML at the interface between the ankyrin (ANK) repeat domain of NICD and CSL. Here, we report the X-ray structure of a human MAML1/RAM/ANK/CSL/DNA complex, and probe changes in component dynamics upon stepwise assembly of a MAML1/NICD/CSL complex using HX-MS. Association of CSL with NICD exerts remarkably little effect on the exchange kinetics of the ANK domain, whereas MAML1 binding greatly retards the exchange kinetics of ANK repeats 2-3. These exchange patterns identify critical features contributing to the cooperative assembly of Notch transcription complexes (NTCs), highlight the importance of MAML recruitment in rigidifying the ANK domain and stabilizing its interface with CSL, and rationalize the requirement for MAML1 in driving cooperative dimerization of NTCs on paired-site DNA.
Collapse
|
27
|
Chen J. Towards the physical basis of how intrinsic disorder mediates protein function. Arch Biochem Biophys 2012; 524:123-31. [PMID: 22579883 DOI: 10.1016/j.abb.2012.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 02/06/2023]
Abstract
Intrinsically disordered proteins (IDPs) are an important class of functional proteins that is highly prevalent in biology and has broad association with human diseases. In contrast to structured proteins, free IDPs exist as heterogeneous and dynamical conformational ensembles under physiological conditions. Many concepts have been discussed on how such intrinsic disorder may provide crucial functional advantages, particularly in cellular signaling and regulation. Establishing the physical basis of these proposed phenomena requires not only detailed characterization of the disordered conformational ensembles, but also mechanistic understanding of the roles of various ensemble properties in IDP interaction and regulation. Here, we review the experimental and computational approaches that may be integrated to address many important challenges of establishing a "structural" basis of IDP function, and discuss some of the key emerging ideas on how the conformational ensembles of IDPs may mediate function, especially in coupled binding and folding interactions.
Collapse
Affiliation(s)
- Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
28
|
Abstract
Proteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question 'why would a particular domain need to be unstructured?' are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder-order continuum.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Molecular Biology MB2, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Kato Y. The multiple roles of Notch signaling during left-right patterning. Cell Mol Life Sci 2011; 68:2555-67. [PMID: 21544546 PMCID: PMC11114802 DOI: 10.1007/s00018-011-0695-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/28/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
The establishment of left-right (LR) asymmetry is regulated by intricate signaling mechanisms during embryogenesis and this asymmetry is critical for morphogenesis as well as the positioning of internal organs within the organism. Recent progress including elucidation of ion transporters, leftward nodal flow, and regulation of asymmetric gene expression contributes to our understanding of how the breaking of the symmetry is initiated and how this laterality information is subsequently transmitted to the organ primordium. A number of developmental signaling pathways have been implicated in this complex process. In this review, we will focus on the roles of the Notch signaling pathway during development of LR asymmetry. The Notch signaling pathway is a short-range communication system between neighboring cells. While Notch signaling plays essential roles in regulating the morphogenesis of the node and left-specific expression of Nodal in the lateral plate mesoderm, a hallmark gene in LR patterning, Notch signaling also suppresses the expression of Pitx2 that is a direct downstream target of Nodal during later stages of development. This negative activity of Notch signaling towards left-specific activity was recently shown to be inhibited by the B cell lymphoma 6 (BCL6)/BCL6 co-repressor (BcoR) transcriptional repressor complex in a target-specific manner. The complex regulation of Notch-dependent gene expression for LR asymmetry will be highlighted in this review.
Collapse
Affiliation(s)
- Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
30
|
VanderWielen BD, Yuan Z, Friedmann DR, Kovall RA. Transcriptional repression in the Notch pathway: thermodynamic characterization of CSL-MINT (Msx2-interacting nuclear target protein) complexes. J Biol Chem 2011; 286:14892-902. [PMID: 21372128 DOI: 10.1074/jbc.m110.181156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Notch pathway is a conserved cell-to-cell signaling mechanism that mediates cell fate decisions in metazoans. Canonical signaling results in changes in gene expression, which is regulated by the nuclear effector of the pathway CSL (CBF1/RBP-J, Su(H), Lag-1). CSL is a DNA binding protein that functions as either a repressor or an activator of transcription, depending upon whether it is complexed by transcriptional corepressor or coactivator proteins, respectively. In stark contrast to CSL-coactivator complexes, e.g. the transcriptionally active CSL-Notch-Mastermind ternary complex, the structure and function of CSL-corepressor complexes are poorly understood. The corepressor MINT (Msx2-interacting nuclear target protein) has been shown in vivo to antagonize Notch signaling and shown in vitro to biochemically interact with CSL; however, the molecular details of this interaction are only partially defined. Here, we provide a quantitative thermodynamic binding analysis of CSL-MINT complexes. Using isothermal titration calorimetry, we demonstrate that MINT forms a high affinity complex with CSL, and we also delineate the domains of MINT and CSL that are necessary and sufficient for complex formation. Moreover, we show in cultured cells that this region of MINT can inhibit Notch signaling in transcriptional reporter assays. Taken together, our results provide functional insights into how CSL is converted from a repressor to an activator of transcription.
Collapse
Affiliation(s)
- Bradley D VanderWielen
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Protein disorder is abundant in proteomes throughout all kingdoms of life and serves many biologically important roles. Disordered states of proteins are challenging to study experimentally due to their structural heterogeneity and tendency to aggregate. Computer simulations, which are not impeded by these properties, have recently emerged as a useful tool to characterize the conformational ensembles of intrinsically disordered proteins. In this review, we provide a survey of computational studies of protein disorder with an emphasis on the interdisciplinary nature of these studies. The application of simulation techniques to the study of disordered states is described in the context of experimental and bioinformatics approaches. Experimental data can be incorporated into simulations, and simulations can provide predictions for experiment. In this way, simulations have been integrated into the existing methodologies for the study of disordered state ensembles. We provide recent examples of simulations of disordered states from the literature and our own work. Throughout the review, we emphasize important predictions and biophysical understanding made possible through the use of simulations. This review is intended as both an overview and a guide for structural biologists and theoretical biophysicists seeking accurate, atomic-level descriptions of disordered state ensembles.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | |
Collapse
|
32
|
Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci U S A 2010; 107:8183-8. [PMID: 20404210 DOI: 10.1073/pnas.0911107107] [Citation(s) in RCA: 466] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) adopt heterogeneous ensembles of conformations under physiological conditions. Understanding the relationship between amino acid sequence and conformational ensembles of IDPs can help clarify the role of disorder in physiological function. Recent studies revealed that polar IDPs favor collapsed ensembles in water despite the absence of hydrophobic groups--a result that holds for polypeptide backbones as well. By studying highly charged polypeptides, a different archetype of IDPs, we assess how charge content modulates the intrinsic preference of polypeptide backbones for collapsed structures. We characterized conformational ensembles for a set of protamines in aqueous milieus using molecular simulations and fluorescence measurements. Protamines are arginine-rich IDPs involved in the condensation of chromatin during spermatogenesis. Simulations based on the ABSINTH implicit solvation model predict the existence of a globule-to-coil transition, with net charge per residue serving as the discriminating order parameter. The transition is supported by quantitative agreement between simulation and experiment. Local conformational preferences partially explain the observed trends of polymeric properties. Our results lead to the proposal of a schematic protein phase diagram that should enable prediction of polymeric attributes for IDP conformational ensembles using easily calculated physicochemical properties of amino acid sequences. Although sequence composition allows the prediction of polymeric properties, interresidue contact preferences of protamines with similar polymeric attributes suggest that certain details of conformational ensembles depend on the sequence. This provides a plausible mechanism for specificity in the functions of IDPs.
Collapse
|
33
|
Kovall RA, Blacklow SC. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol 2010; 92:31-71. [PMID: 20816392 DOI: 10.1016/s0070-2153(10)92002-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Notch proteins are the receptors in a highly conserved signal transduction system used to communicate signals between cells that contact each other. Studies investigating structure-function relationships in Notch signaling have gained substantial momentum in recent years. Here, we summarize the current understanding of the molecular logic of Notch signal transduction, emphasizing structural and biochemical studies of Notch receptors, their ligands, and complexes of intracellular Notch proteins with their target transcription factors. Recent advances in the structure-based modulation of Notch-signaling activity are also discussed.
Collapse
Affiliation(s)
- Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
34
|
Johnson SE, Ilagan MXG, Kopan R, Barrick D. Thermodynamic analysis of the CSL x Notch interaction: distribution of binding energy of the Notch RAM region to the CSL beta-trefoil domain and the mode of competition with the viral transactivator EBNA2. J Biol Chem 2009; 285:6681-92. [PMID: 20028974 DOI: 10.1074/jbc.m109.019968] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Notch signaling pathway is a cell-cell communication network giving rise to cell differentiation during metazoan development. Activation of the pathway releases the intracellular portion of the Notch receptor to translocate to the nucleus, where it is able to interact with the effector transcription factor CSL, converting CSL from a transcriptional repressor to an activator. This conversion is dependent upon the high affinity binding of the RAM region of the Notch receptor to the beta-trefoil domain (BTD) of CSL. Here we probe the energetics of binding to BTD of each conserved residue of RAM through the use of isothermal titration calorimetry and single residue substitution. We find that although the highly conserved PhiW PhiP motif is the largest determinant of binding, energetically significant interactions are contributed by N-terminal residues, including a conserved Arg/Lys-rich region. Additionally, we present a thermodynamic analysis of the interaction between the Epstein-Barr virus protein EBNA2 with BTD and explore the extent to which the EBNA2- and RAM-binding sites on BTD are nonoverlapping, as proposed by Fuchs et al. (Fuchs, K. P., Bommer, G., Dumont, E., Christoph, B., Vidal, M., Kremmer, E., and Kempkes, B. (2001) Eur. J. Biochem. 268, 4639-4646). Combining these results with displacement isothermal titration calorimetry, we propose a mechanism by which the PhiW PhiP motif of RAM and EBNA2 compete with one another for binding at the hydrophobic pocket of BTD using overlapping but specific interactions that are unique to each BTD ligand.
Collapse
Affiliation(s)
- Scott E Johnson
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
Collapse
Affiliation(s)
- Raphael Kopan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ma. Xenia G. Ilagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
36
|
Abstract
Many cellular proteins are intrinsically disordered and undergo folding, in whole or in part, upon binding to their physiological targets. The past few years have seen an exponential increase in papers describing characterization of intrinsically disordered proteins, both free and bound to targets. Although NMR spectroscopy remains the favored tool, a number of new biophysical techniques are proving exceptionally useful in defining the limits of the conformational ensembles. Advances have been made in prediction of the recognition elements in disordered proteins, in elucidating the kinetics and mechanism of the coupled folding and binding process, and in understanding the role of post-translational modifications in tuning the biological response. Here we review these and other recent advances that are providing new insights into the conformational propensities and interactions of intrinsically disordered proteins and are beginning to reveal general principles underlying their biological functions.
Collapse
Affiliation(s)
- Peter E Wright
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | |
Collapse
|
37
|
Maarouf CL, Daugs ID, Spina S, Vidal R, Kokjohn TA, Patton RL, Kalback WM, Luehrs DC, Walker DG, Castaño EM, Beach TG, Ghetti B, Roher AE. Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations. Mol Neurodegener 2008; 3:20. [PMID: 19021905 PMCID: PMC2600784 DOI: 10.1186/1750-1326-3-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/20/2008] [Indexed: 01/19/2023] Open
Abstract
Background Mutations in the presenilin (PSEN) genes are associated with early-onset familial Alzheimer's disease (FAD). Biochemical characterizations and comparisons have revealed that many PSEN mutations alter γ-secretase activity to promote accumulation of toxic Aβ42 peptides. In this study, we compared the histopathologic and biochemical profiles of ten FAD cases expressing independent PSEN mutations and determined the degradation patterns of amyloid-β precursor protein (AβPP), Notch, N-cadherin and Erb-B4 by γ-secretase. In addition, the levels of Aβ40/42 peptides were quantified by ELISA. Results We observed a wide variation in type, number and distribution of amyloid deposits and neurofibrillary tangles. Four of the ten cases examined exhibited a substantial enrichment in the relative proportions of Aβ40 over Aβ42. The AβPP N-terminal and C-terminal fragments and Tau species, assessed by Western blots and scanning densitometry, also demonstrated a wide variation. The Notch-1 intracellular domain was negligible by Western blotting in seven PSEN cases. There was significant N-cadherin and Erb-B4 peptide heterogeneity among the different PSEN mutations. Conclusion These observations imply that missense mutations in PSEN genes can alter a range of key γ-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations. Beyond the broad common features of dementia, plaques and tangles, the various PSEN mutations resulted in a wide heterogeneity and complexity and differed from sporadic AD.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gordon WR, Arnett KL, Blacklow SC. The molecular logic of Notch signaling--a structural and biochemical perspective. J Cell Sci 2008; 121:3109-19. [PMID: 18799787 PMCID: PMC2696053 DOI: 10.1242/jcs.035683] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Notch signaling pathway constitutes an ancient and conserved mechanism for cell-cell communication in metazoan organisms, and has a central role both in development and in adult tissue homeostasis. Here, we summarize structural and biochemical advances that contribute new insights into three central facets of canonical Notch signal transduction: (1) ligand recognition, (2) autoinhibition and the switch from protease resistance to protease sensitivity, and (3) the mechanism of nuclear-complex assembly and the induction of target-gene transcription. These advances set the stage for future mechanistic studies investigating ligand-dependent activation of Notch receptors, and serve as a foundation for the development of mechanism-based inhibitors of signaling in the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Wendy R. Gordon
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Kelly L. Arnett
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Stephen C. Blacklow
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Kovall RA. More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 2008; 27:5099-109. [PMID: 18758478 DOI: 10.1038/onc.2008.223] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Notch pathway is a short-range signaling mechanism between neighboring cells that results in changes in gene expression. Extracellular interactions between Notch receptors and ligands trigger proteolytic cleavage of the receptor Notch. Following cleavage, the freed intracellular domain of Notch (NotchIC) moves from the cytoplasm to the nucleus, engaging the DNA-binding transcription factor CBF-1, Su(H), Lag-1 (CSL)--the nuclear effector of the pathway. NotchIC, together with the transcriptional coactivator Mastermind, form a ternary complex with CSL that activates transcription from genes that are responsive to Notch signaling. Illuminating the molecular details that underlie formation of the transcriptionally active CSL-NotchIC-Mastermind ternary complex is key for understanding how genes are turned on in response to a Notch signal. Recently, several studies using biophysical and computational methods have scrutinized how the CSL-NotchIC-Mastermind ternary complex forms and the role individual domains play in this process. These detailed analyses have provided a wealth of molecular insights into the assembly of a Notch pathway active transcription complex but have also raised several intriguing, yet confounding questions. This review will focus on the findings of these recent biophysical studies and provide speculative models that address these unanswered questions.
Collapse
Affiliation(s)
- R A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA.
| |
Collapse
|
40
|
Friedmann DR, Wilson JJ, Kovall RA. RAM-induced allostery facilitates assembly of a notch pathway active transcription complex. J Biol Chem 2008; 283:14781-91. [PMID: 18381292 DOI: 10.1074/jbc.m709501200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Notch pathway is a conserved cell-to-cell signaling mechanism, in which extracellular signals are transduced into transcriptional outputs through the nuclear effector CSL. CSL is converted from a repressor to an activator through the formation of the CSL-NotchIC-Mastermind ternary complex. The RAM (RBP-J associated molecule) domain of NotchIC avidly interacts with CSL; however, its role in assembly of the CSL-NotchIC-Mastermind ternary complex is not understood. Here we provide a comprehensive thermodynamic, structural, and biochemical analysis of the RAM-CSL interaction for components from both mouse and worm. Our binding data show that RAM and CSL form a high affinity complex in the presence or absence of DNA. Our structural studies reveal a striking distal conformational change in CSL upon RAM binding, which creates a docking site for Mastermind to bind to the complex. Finally, we show that the addition of a RAM peptide in trans facilitates formation of the CSL-NotchIC-Mastermind ternary complex in vitro.
Collapse
Affiliation(s)
- David R Friedmann
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | |
Collapse
|