1
|
Payá G, Bautista V, Camacho M, Esclapez J, Bonete MJ. Comprehensive Bioinformatics Analysis of the Biodiversity of Lsm Proteins in the Archaea Domain. Microorganisms 2023; 11:1196. [PMID: 37317170 DOI: 10.3390/microorganisms11051196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal Lsm proteins still require further exploration. In this work, different bioinformatics tools are used to understand the diversity and distribution of 168 Lsm proteins in 109 archaeal species to increase the global understanding of these proteins. All 109 archaeal species analyzed encode one to three Lsm proteins in their genome. Lsm proteins can be classified into two groups based on molecular weight. Regarding the gene environment of lsm genes, many of these genes are located adjacent to transcriptional regulators of the Lrp/AsnC and MarR families, RNA-binding proteins, and ribosomal protein L37e. Notably, only proteins from species of the class Halobacteria conserved the internal and external residues of the RNA-binding site identified in Pyrococcus abyssi, despite belonging to different taxonomic orders. In most species, the Lsm genes show associations with 11 genes: rpl7ae, rpl37e, fusA, flpA, purF, rrp4, rrp41, hel308, rpoD, rpoH, and rpoN. We propose that most archaeal Lsm proteins are related to the RNA metabolism, and the larger Lsm proteins could perform different functions and/or act through other mechanisms of action.
Collapse
Affiliation(s)
- Gloria Payá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| |
Collapse
|
2
|
Matsuda R, Suzuki S, Kurosawa N. Genetic Study of Four Candidate Holliday Junction Processing Proteins in the Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Int J Mol Sci 2022; 23:ijms23020707. [PMID: 35054893 PMCID: PMC8775617 DOI: 10.3390/ijms23020707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Homologous recombination (HR) is thought to be important for the repair of stalled replication forks in hyperthermophilic archaea. Previous biochemical studies identified two branch migration helicases (Hjm and PINA) and two Holliday junction (HJ) resolvases (Hjc and Hje) as HJ-processing proteins; however, due to the lack of genetic evidence, it is still unclear whether these proteins are actually involved in HR in vivo and how their functional relation is associated with the process. To address the above questions, we constructed hjc-, hje-, hjm-, and pina single-knockout strains and double-knockout strains of the thermophilic crenarchaeon Sulfolobus acidocaldarius and characterized the mutant phenotypes. Notably, we succeeded in isolating the hjm- and/or pina-deleted strains, suggesting that the functions of Hjm and PINA are not essential for cellular growth in this archaeon, as they were previously thought to be essential. Growth retardation in Δpina was observed at low temperatures (cold sensitivity). When deletion of the HJ resolvase genes was combined, Δpina Δhjc and Δpina Δhje exhibited severe cold sensitivity. Δhjm exhibited severe sensitivity to interstrand crosslinkers, suggesting that Hjm is involved in repairing stalled replication forks, as previously demonstrated in euryarchaea. Our findings suggest that the function of PINA and HJ resolvases is functionally related at lower temperatures to support robust cellular growth, and Hjm is important for the repair of stalled replication forks in vivo.
Collapse
|
3
|
Modelling single-molecule kinetics of helicase translocation using high-resolution nanopore tweezers (SPRNT). Essays Biochem 2021; 65:109-127. [PMID: 33491732 DOI: 10.1042/ebc20200027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Single-molecule picometer resolution nanopore tweezers (SPRNT) is a technique for monitoring the motion of individual enzymes along a nucleic acid template at unprecedented spatiotemporal resolution. We review the development of SPRNT and the application of single-molecule kinetics theory to SPRNT data to develop a detailed model of helicase motion along a single-stranded DNA substrate. In this review, we present three examples of questions SPRNT can answer in the context of the Superfamily 2 helicase Hel308. With Hel308, SPRNT's spatiotemporal resolution enables resolution of two distinct enzymatic substates, one which is dependent upon ATP concentration and one which is ATP independent. By analyzing dwell-time distributions and helicase back-stepping, we show, in detail, how SPRNT can be used to determine the nature of these observed steps. We use dwell-time distributions to discern between three different possible models of helicase backstepping. We conclude by using SPRNT's ability to discern an enzyme's nucleotide-specific location along a DNA strand to understand the nature of sequence-specific enzyme kinetics and show that the sequence within the helicase itself affects both step dwell-time and backstepping probability while translocating on single-stranded DNA.
Collapse
|
4
|
Huang Q, Mayaka JB, Zhong Q, Zhang C, Hou G, Ni J, Shen Y. Phosphorylation of the Archaeal Holliday Junction Resolvase Hjc Inhibits Its Catalytic Activity and Facilitates DNA Repair in Sulfolobus islandicus REY15A. Front Microbiol 2019; 10:1214. [PMID: 31214148 PMCID: PMC6555300 DOI: 10.3389/fmicb.2019.01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation is one of the main protein post-translational modifications and regulates DNA repair in eukaryotes. Archaeal genomes encode eukaryotic-like DNA repair proteins and protein kinases (ePKs), and several proteins involved in homologous recombination repair (HRR) including Hjc, a conserved Holliday junction (HJ) resolvase in Archaea, undergo phosphorylation, indicating that phosphorylation plays important roles in HRR. Herein, we performed phosphorylation analysis of Hjc by various ePKs from Sulfolobus islandicus. It was shown that SiRe_0171, SiRe_2030, and SiRe_2056, were able to phosphorylate Hjc in vitro. These ePKs phosphorylated Hjc at different Ser/Thr residues: SiRe_0171 on S34, SiRe_2030 on both S9 and T138, and SiRe_2056 on T138. The HJ cleavage activity of the phosphorylation-mimic mutants was analyzed and the results showed that the cleavage activity of S34E was completely lost and that of S9E had greatly reduced. S. islandicus strain expressing S34E in replacement of the wild type Hjc was resistant to higher doses of DNA damaging agents. Furthermore, SiRe_0171 deletion mutant exhibited higher sensitivity to DNA damaging agents, suggesting that Hjc phosphorylation by SiRe_0171 enhanced the DNA repair capability. Our results revealed that HJ resolvase is regulated by protein phosphorylation, reminiscent of the regulation of eukaryotic HJ resolvases GEN1 and Yen1.
Collapse
Affiliation(s)
- Qihong Huang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Joseph Badys Mayaka
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qing Zhong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chao Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guihua Hou
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
5
|
White MF, Allers T. DNA repair in the archaea-an emerging picture. FEMS Microbiol Rev 2018; 42:514-526. [PMID: 29741625 DOI: 10.1093/femsre/fuy020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
There has long been a fascination in the DNA repair pathways of archaea, for two main reasons. Firstly, many archaea inhabit extreme environments where the rate of physical damage to DNA is accelerated. These archaea might reasonably be expected to have particularly robust or novel DNA repair pathways to cope with this. Secondly, the archaea have long been understood to be a lineage distinct from the bacteria, and to share a close relationship with the eukarya, particularly in their information processing systems. Recent discoveries suggest the eukarya arose from within the archaeal domain, and in particular from lineages related to the TACK superphylum and Lokiarchaea. Thus, archaeal DNA repair proteins and pathways can represent a useful model system. This review focuses on recent advances in our understanding of archaeal DNA repair processes including base excision repair, nucleotide excision repair, mismatch repair and double-strand break repair. These advances are discussed in the context of the emerging picture of the evolution and relationship of the three domains of life.
Collapse
Affiliation(s)
- Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife KY16 9ST, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
6
|
De Falco M, Massa F, Rossi M, De Felice M. The Sulfolobus solfataricus RecQ-like DNA helicase Hel112 inhibits the NurA/HerA complex exonuclease activity. Extremophiles 2018; 22:581-589. [PMID: 29488113 DOI: 10.1007/s00792-018-1018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 02/03/2023]
Abstract
ATPase/Helicases and nucleases play important roles in DNA end-resection, a critical step during homologous recombination repair in all organisms. In hyperthermophilic archaea the exo-endonuclease NurA and the ATPase HerA cooperate with the highly conserved Mre11-Rad50 complex in 3' single-stranded DNA (ssDNA) end processing to coordinate repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA complex. In this study we demonstrate that the NurA exonuclease activity is inhibited by the Sulfolobus solfataricus RecQ-like Hel112 helicase. Inhibition occurs both in the presence and in the absence of HerA, but is much stronger when NurA is in complex with HerA. In contrast, the endonuclease activity of NurA is not affected by the presence of Hel112. Taken together these results suggest that the functional interaction between NurA/HerA and Hel112 is important for DNA end-resection in archaeal homologous recombination.
Collapse
Affiliation(s)
- Mariarosaria De Falco
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 80131, Naples, Italy.
| | - Federica Massa
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 80131, Naples, Italy
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 80131, Naples, Italy
| | - Mariarita De Felice
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 80131, Naples, Italy.
| |
Collapse
|
7
|
Liew LP, Lim ZY, Cohen M, Kong Z, Marjavaara L, Chabes A, Bell SD. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase. Cell Rep 2017; 17:1657-1670. [PMID: 27806303 PMCID: PMC5134839 DOI: 10.1016/j.celrep.2016.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022] Open
Abstract
In many organisms, hydroxyurea (HU) inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment. Sulfolobus has a HU-insensitive class II ribonucleotide reductase HU impairs DNA replication and is toxic to Sulfolobus cells HU treatment leads to selective loss of the regulatory subunit of DNA primase
Collapse
Affiliation(s)
- Li Phing Liew
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Zun Yi Lim
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Matan Cohen
- Department of Biology, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197 Umeå, Sweden
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE 90197 Umeå, Sweden
| | - Stephen D Bell
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA; Department of Biology, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA.
| |
Collapse
|
8
|
Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc Natl Acad Sci U S A 2017; 114:11932-11937. [PMID: 29078357 DOI: 10.1073/pnas.1711282114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes that operate on DNA or RNA perform the core functions of replication and expression in all of biology. To gain high-resolution access to the detailed mechanistic behavior of these enzymes, we developed single-molecule picometer-resolution nanopore tweezers (SPRNT), a single-molecule technique in which the motion of polynucleotides through an enzyme is measured by a nanopore. SPRNT reveals two mechanical substates of the ATP hydrolysis cycle of the superfamily 2 helicase Hel308 during translocation on single-stranded DNA (ssDNA). By analyzing these substates at millisecond resolution, we derive a detailed kinetic model for Hel308 translocation along ssDNA that sheds light on how superfamily 1 and 2 helicases turn ATP hydrolysis into motion along DNA. Surprisingly, we find that the DNA sequence within Hel308 affects the kinetics of helicase translocation.
Collapse
|
9
|
Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLoS Genet 2017; 13:e1006818. [PMID: 28570559 PMCID: PMC5472330 DOI: 10.1371/journal.pgen.1006818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/15/2017] [Accepted: 05/13/2017] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase ν (pol ν), encoded by the POLN gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Here we report an in-depth analysis of pol ν–defective mice and human cells. POLN is very weakly expressed in most tissues, with the highest relative expression in testis. We constructed multiple mouse models for Poln disruption and detected no anatomic abnormalities, alterations in lifespan, or changed causes of mortality. Mice with inactive Poln are fertile and have normal testis morphology. However, pol ν–disrupted mice have a modestly reduced crossover frequency at a meiotic recombination hot spot harboring insertion/deletion polymorphisms. These polymorphisms are suggested to generate a looped-out primer and a hairpin structure during recombination, substrates on which pol ν can operate. Pol ν-defective mice had no alteration in DNA end-joining during immunoglobulin class-switching, in contrast to animals defective in the related DNA polymerase θ (pol θ). We examined the response to DNA crosslinking agents, as purified pol ν has some ability to bypass major groove peptide adducts and residues of DNA crosslink repair. Inactivation of Poln in mouse embryonic fibroblasts did not alter cellular sensitivity to mitomycin C, cisplatin, or aldehydes. Depletion of POLN from human cells with shRNA or siRNA did not change cellular sensitivity to mitomycin C or alter the frequency of mitomycin C-induced radial chromosomes. Our results suggest a function of pol ν in meiotic homologous recombination in processing specific substrates. The restricted and more recent evolutionary appearance of pol ν (in comparison to pol θ) supports such a specialized role. The work described here fills a current gap in the study of the 16 known DNA polymerases in vertebrate genomes. Until now, experiments with genetically disrupted mice have been reported for all but pol ν, encoded by the POLN gene. To intensively analyze the role of mammalian pol ν we generated multiple Poln-deficient murine models. We discovered that Poln is uniquely upregulated during testicular development and that it is enriched in spermatocytes. This, and phylogenetic analysis indicate a testis-specific function. We observed a modest reduction in meiotic recombination at a recombination hotspot in Poln-deficient mice. Pol ν has been suggested to function in DNA crosslink repair. However, we found no increased DNA crosslink sensitivity in Poln-deficient mice or POLN-depleted human cells. This is a major difference from some previous findings, and we support our conclusion by multiple experimental approaches, and by the very low or absent expression of functional pol ν in mammalian somatic cells. The present work represents the first description and comprehensive analysis of mice deficient in pol ν, and the first thorough phenotypic analysis in human cells.
Collapse
|
10
|
Liu DN, Zhou YF, Peng AF, Long XH, Chen XY, Liu ZL, Xia H. HELQ reverses the malignant phenotype of osteosarcoma cells via CHK1-RAD51 signaling pathway. Oncol Rep 2016; 37:1107-1113. [PMID: 28000895 DOI: 10.3892/or.2016.5329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
HELQ is a DNA helicase important for repair of DNA lesions and has been linked to several types of cancer. However, little is known about its relationship with osteosarcoma (OS) and its mechanism. In the present study, the expression of HELQ and its downstream mediators in OS cells was assayed by quantitative PCR and western blot analysis. The function of HELQ in OS cells was investigated by Transwell invasion, wound healing, CCK8 assays and Comet assay. The results demonstrated that HELQ gene and protein were expressed in OS cells. OS cell invasion, migration, proliferation and DNA damage repair were enhanced by HELQ knock-down with shRNA-lentivirus and inhibited by HELQ overexpression with lentivirus transfection. Furthermore, the antitumor activities of HELQ may be associated with upregulated expression of the DNA damage-related proteins CHK1 and RAD51. Our findings indicated that HELQ confers an anti-invasive phenotype on OS cells by activating the CHK1-RAD51 signaling pathway and suggested that HELQ could be recognized as a promising therapeutic target for OS and other types of malignant tumors.
Collapse
Affiliation(s)
- Dong Ning Liu
- Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yun Fei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ai Fen Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xuan Yin Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Hong Xia
- Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
11
|
Song X, Ni J, Shen Y. Structure-Based Genetic Analysis of Hel308a in the Hyperthermophilic Archaeon Sulfolobus islandicus. J Genet Genomics 2016; 43:405-13. [PMID: 27317310 DOI: 10.1016/j.jgg.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
In archaea, the HEL308 homolog Hel308a (or Hjm) is implicated in stalled replication fork repair. The biochemical properties and structures of Hjm homologs are well documented, but in vivo mechanistic information is limited. Herein, a structure-based functional analysis of Hjm was performed in the genetically tractable hyperthermophilic archaeon, Sulfolobus islandicus. Results showed that domain V and residues within it, which affect Hjm activity and regulation, are essential and that the domain V-truncated mutants and site-directed mutants within domain V cannot complement hjm chromosomal deletion. Chromosomal hjm deletion can be complemented by ectopic expression of hjm under the control of its native promoter but not an artificial arabinose promoter. Cellular Hjm levels are kept constant under ultraviolet (UV) and methyl methanesulfonate (MMS) treatment conditions in a strain carrying a plasmid to induce Hjm overexpression. These results suggest that Hjm expression and activity are tightly controlled, probably at the translational level.
Collapse
Affiliation(s)
- Xueguo Song
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
12
|
Chamieh H, Ibrahim H, Kozah J. Genome-wide identification of SF1 and SF2 helicases from archaea. Gene 2015; 576:214-28. [PMID: 26456193 DOI: 10.1016/j.gene.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022]
Abstract
Archaea microorganisms have long been used as model organisms for the study of protein molecular machines. Archaeal proteins are particularly appealing to study since archaea, even though prokaryotic, possess eukaryotic-like cellular processes. Super Family I (SF1) and Super Family II (SF2) helicase families have been studied in many model organisms, little is known about their presence and distribution in archaea. We performed an exhaustive search of homologs of SF1 and SF2 helicase proteins in 95 complete archaeal genomes. In the present study, we identified the complete sets of SF1 and SF2 helicases in archaea. Comparative analysis between archaea, human and the bacteria E. coli SF1 and SF2 helicases, resulted in the identification of seven helicase families conserved among representatives of the domains of life. This analysis suggests that these helicase families are highly conserved throughout evolution. We highlight the conserved motifs of each family and characteristic domains of the detected families. Distribution of SF1/SF2 families show that Ski2-like, Lhr, Sfth and Rad3-like helicases are ubiquitous among archaeal genomes while the other families are specific to certain archaeal groups. We also report the presence of a novel SF2 helicase specific to archaea domain named Archaea Specific Helicase (ASH). Phylogenetic analysis indicated that ASH has evolved in Euryarchaeota and is evolutionary related to the Ski2-like family with specific characteristic domains. Our study provides the first exhaustive analysis of SF1 and SF2 helicases from archaea. It expands the variety of SF1 and SF2 archaeal helicases known to exist to date and provides a starting point for new biochemical and genetic studies needed to validate their biological functions.
Collapse
Affiliation(s)
- Hala Chamieh
- Faculty of Science, Department of Biology, Lebanese University, Tripoli, Lebanon; Centre AZM pour la Recherche en Biotechnologie et ses Applications, Laboratoire de Biotechnologie Appliquée, Ecole Doctorale Sciences et Technologies, Mitein Street, Tripoli, Lebanon.
| | - Hiba Ibrahim
- Faculty of Science, Department of Environmental and Biological Science, Beirut Arab University, Tripoli, Lebanon
| | - Juliana Kozah
- Faculty of Science, Université Saint Esprit de Kaslik, Jounieh, Lebanon
| |
Collapse
|
13
|
Jamroze A, Perugino G, Valenti A, Rashid N, Rossi M, Akhtar M, Ciaramella M. The reverse gyrase from Pyrobaculum calidifontis, a novel extremely thermophilic DNA topoisomerase endowed with DNA unwinding and annealing activities. J Biol Chem 2014; 289:3231-43. [PMID: 24347172 PMCID: PMC3916527 DOI: 10.1074/jbc.m113.517649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/05/2013] [Indexed: 12/29/2022] Open
Abstract
Reverse gyrase is a DNA topoisomerase specific for hyperthermophilic bacteria and archaea. It catalyzes the peculiar ATP-dependent DNA-positive supercoiling reaction and might be involved in the physiological adaptation to high growth temperature. Reverse gyrase comprises an N-terminal ATPase and a C-terminal topoisomerase domain, which cooperate in enzyme activity, but details of its mechanism of action are still not clear. We present here a functional characterization of PcalRG, a novel reverse gyrase from the archaeon Pyrobaculum calidifontis. PcalRG is the most robust and processive reverse gyrase known to date; it is active over a wide range of conditions, including temperature, ionic strength, and ATP concentration. Moreover, it holds a strong ATP-inhibited DNA cleavage activity. Most important, PcalRG is able to induce ATP-dependent unwinding of synthetic Holliday junctions and ATP-stimulated annealing of unconstrained single-stranded oligonucleotides. Combined DNA unwinding and annealing activities are typical of certain helicases, but until now were shown for no other reverse gyrase. Our results suggest for the first time that a reverse gyrase shares not only structural but also functional features with evolutionary conserved helicase-topoisomerase complexes involved in genome stability.
Collapse
Affiliation(s)
- Anmbreen Jamroze
- From the Institute of Protein Biochemistry and
- the School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Giuseppe Perugino
- From the Institute of Protein Biochemistry and
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy and
| | - Anna Valenti
- From the Institute of Protein Biochemistry and
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy and
| | - Naeem Rashid
- the School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mosè Rossi
- From the Institute of Protein Biochemistry and
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy and
| | - Muhammad Akhtar
- the School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Maria Ciaramella
- From the Institute of Protein Biochemistry and
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy and
| |
Collapse
|
14
|
Luebben SW, Kawabata T, Akre MK, Lee WL, Johnson CS, O'Sullivan MG, Shima N. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res 2013; 41:10283-97. [PMID: 24005041 PMCID: PMC3905894 DOI: 10.1093/nar/gkt676] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
HELQ is a superfamily 2 DNA helicase found in archaea and metazoans. It has been implicated in processing stalled replication forks and in repairing DNA double-strand breaks and inter-strand crosslinks. Though previous studies have suggested the possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant mechanism for inter-strand crosslink repair in vertebrates, this connection remains elusive. Here, we investigated this question in mice using the Helqgt and Fancc− strains. Compared with Fancc−/− mice lacking FANCC, a component of the FA core complex, Helqgt/gt mice exhibited a mild of form of FA-like phenotypes including hypogonadism and cellular sensitivity to the crosslinker mitomycin C. However, unlike Fancc−/− primary fibroblasts, Helqgt/gt cells had intact FANCD2 mono-ubiquitination and focus formation. Notably, for all traits examined, Helq was non-epistatic with Fancc, as Helqgt/gt;Fancc−/− double mutants displayed significantly worsened phenotypes than either single mutant. Importantly, this was most noticeable for the suppression of spontaneous chromosome instability such as micronuclei and 53BP1 nuclear bodies, known consequences of persistently stalled replication forks. These findings suggest that mammalian HELQ contributes to genome stability in unchallenged conditions through a mechanism distinct from the function of FANCC.
Collapse
Affiliation(s)
- Spencer W Luebben
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA, Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA, Masonic Cancer Center, Minneapolis, MN 55455, USA and College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yousefzadeh MJ, Wood RD. DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair (Amst) 2013; 12:1-9. [PMID: 23219161 PMCID: PMC3534860 DOI: 10.1016/j.dnarep.2012.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
In mammalian cells, POLQ (pol θ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. POLQ has been implicated by different experiments to play a role in resistance to ionizing radiation and defense against genomic instability, in base excision repair, and in immunological diversification. The protein is formed by an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which functions in resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in multicellular eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies defective in Mus308 are sensitive to DNA interstrand crosslinking agents, while mammalian cells defective in POLQ are primarily sensitive to DNA double-strand breaking agents. Cells from Polq(-/-) mice are hypersensitive to radiation and peripheral blood cells display increased spontaneous and ionizing radiation-induced levels of micronuclei (a hallmark of gross chromosomal aberrations), though mice apparently develop normally. Loss of POLQ in human and mouse cells causes sensitivity to ionizing radiation and other double strand breaking agents and increased DNA damage signaling. Retrospective studies of clinical samples show that higher levels of POLQ gene expression in breast and colorectal cancer are correlated with poorer outcomes for patients. A clear understanding of the mechanism of action and physiologic function of POLQ in the cell is likely to bear clinical relevance.
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA
| | | |
Collapse
|
16
|
Abstract
In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.
Collapse
Affiliation(s)
- Olivier Cordin
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
17
|
Valenti A, De Felice M, Perugino G, Bizard A, Nadal M, Rossi M, Ciaramella M. Synergic and opposing activities of thermophilic RecQ-like helicase and topoisomerase 3 proteins in Holliday junction processing and replication fork stabilization. J Biol Chem 2012; 287:30282-95. [PMID: 22722926 DOI: 10.1074/jbc.m112.366377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ family helicases and topoisomerase 3 enzymes form evolutionary conserved complexes that play essential functions in DNA replication, recombination, and repair, and in vitro, show coordinate activities on model recombination and replication intermediates. Malfunctioning of these complexes in humans is associated with genomic instability and cancer-prone syndromes. Although both RecQ-like and topoisomerase 3 enzymes are present in archaea, only a few of them have been studied, and no information about their functional interaction is available. We tested the combined activities of the RecQ-like helicase, Hel112, and the topoisomerase 3, SsTop3, from the thermophilic archaeon Sulfolobus solfataricus. Hel112 showed coordinate DNA unwinding and annealing activities, a feature shared by eukaryotic RecQ homologs, which resulted in processing of synthetic Holliday junctions and stabilization of model replication forks. SsTop3 catalyzed DNA relaxation and annealing. When assayed in combination, SsTop3 inhibited the Hel112 helicase activity on Holliday junctions and stimulated formation and stabilization of such structures. In contrast, Hel112 did not affect the SsTop3 DNA relaxation activity. RecQ-topoisomerase 3 complexes show structural similarity with the thermophile-specific enzyme reverse gyrase, which catalyzes positive supercoiling of DNA and was suggested to play a role in genome stability at high temperature. Despite such similarity and the high temperature of reaction, the SsTop3-Hel112 complex does not induce positive supercoiling and is thus likely to play different roles. We propose that the interplay between Hel112 and SsTop3 might regulate the equilibrium between recombination and anti-recombination activities at replication forks.
Collapse
Affiliation(s)
- Anna Valenti
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Hong Y, Chu M, Li Y, Ni J, Sheng D, Hou G, She Q, Shen Y. Dissection of the functional domains of an archaeal Holliday junction helicase. DNA Repair (Amst) 2011; 11:102-11. [PMID: 22062475 DOI: 10.1016/j.dnarep.2011.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Helicases and nucleases form complexes that play very important roles in DNA repair pathways some of which interact with each other at Holliday junctions. In this study, we present in vitro and in vivo analysis of Hjm and its interaction with Hjc in Sulfolobus. In vitro studies employed Hjm from the hyperthermophilic archaeon Sulfolobus tokodaii (StoHjm) and its truncated derivatives, and characterization of the StoHjm proteins revealed that the N-terminal module (residues 1-431) alone was capable of ATP hydrolysis and DNA binding, while the C-terminal one (residues 415-704) was responsible for regulating the helicase activity. The region involved in StoHjm-StoHjc (Hjc from S. tokodaii) interaction was identified as part of domain II, domain III (Winged Helix motif), and domain IV (residues 366-645) for StoHjm. We present evidence supporting that StoHjc regulates the helicase activity of StoHjm by inducing conformation change of the enzyme. Furthermore, StoHjm is able to prevent the formation of Hjc/HJ high complex, suggesting a regulation mechanism of Hjm to the activity of Hjc. We show that Hjm is essential for cell viability using recently developed genetic system and mutant propagation assay, suggesting that Hjm/Hjc mediated resolution of stalled replication forks is of crucial importance in archaea. A tentative pathway with which Hjm/Hjc interaction could have occurred at stalled replication forks is discussed.
Collapse
Affiliation(s)
- Ye Hong
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liang C, Marsit CJ, Houseman EA, Butler R, Nelson HH, McClean MD, Kelsey KT. Gene-environment interactions of novel variants associated with head and neck cancer. Head Neck 2011; 34:1111-8. [PMID: 22052802 DOI: 10.1002/hed.21867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/03/2011] [Accepted: 05/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A genome-wide association study for upper aerodigestive tract cancers identified 19 candidate single-nucleotide polymorphisms (SNPs). We used these SNPs to investigate the potential gene-gene and gene-environment interactions in head and neck squamous cell carcinoma (HNSCC) risk. METHODS The 19 variants were genotyped using Taqman assays among 575 cases and 676 controls in our population-based case-control study. RESULTS A restricted cubic spline model suggested both ADH1B and HEL308 modified the association between smoking pack-years and HNSCC. Classification and regression tree analysis demonstrated a higher-order interaction between smoking status, ADH1B, FLJ13089, and FLJ35784 in HNSCC risk. Compared with ever smokers carrying ADH1B T/C+T/T genotypes, smokers carrying ADH1B C/C genotype and FLJ13089 A/G+A/A genotypes had the highest risk of HNSCC (odds ratio = 1.84). CONCLUSIONS Our results suggest that the risk associated with these variants may be specifically important among specific exposure groups.
Collapse
Affiliation(s)
- Caihua Liang
- Department of Community Health, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Most of the core components of the archaeal chromosomal DNA replication apparatus share significant protein sequence similarity with eukaryotic replication factors, making the Archaea an excellent model system for understanding the biology of chromosome replication in eukaryotes. The present review summarizes current knowledge of how the core components of the archaeal chromosome replication apparatus interact with one another to perform their essential functions.
Collapse
|
21
|
Abstract
Hel308 is a superfamily 2 helicase/translocase that is conserved throughout archaea and in some eukaryotes for repair of genotoxic lesions such as ICLs (interstrand DNA cross-links). Atomic structures of archaeal Hel308 have allowed mechanistic insights into ATPase and helicase functions, but have also highlighted structures that currently lack a known function, such as an unexpected WH (winged helix) domain. This domain and similar overall protein structural organization was also identified in other superfamily 2 helicases that process RNA molecules in eukaryotes: Brr2, Mtr4 and Prp43p. We survey the structure of Hel308 with regard to its WH domain in particular and its function(s) in maintaining structural integrity of the overall Hel308 ring structure, and possibly during interactions of Hel308 with other proteins and/or forked DNA.
Collapse
|
22
|
Tafel AA, Wu L, McHugh PJ. Human HEL308 localizes to damaged replication forks and unwinds lagging strand structures. J Biol Chem 2011; 286:15832-40. [PMID: 21398521 PMCID: PMC3091193 DOI: 10.1074/jbc.m111.228189] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HEL308 is a superfamily II DNA helicase, conserved from archaea through to humans. HEL308 family members were originally isolated by their similarity to the Drosophila melanogaster Mus308 protein, which contributes to the repair of replication-blocking lesions such as DNA interstrand cross-links. Biochemical studies have established that human HEL308 is an ATP-dependent enzyme that unwinds DNA with a 3' to 5' polarity, but little else is know about its mechanism. Here, we show that GFP-tagged HEL308 localizes to replication forks following camptothecin treatment. Moreover, HEL308 colocalizes with two factors involved in the repair of damaged forks by homologous recombination, Rad51 and FANCD2. Purified HEL308 requires a 3' single-stranded DNA region to load and unwind duplex DNA structures. When incubated with substrates that model stalled replication forks, HEL308 preferentially unwinds the parental strands of a structure that models a fork with a nascent lagging strand, and the unwinding action of HEL308 is specifically stimulated by human replication protein A. Finally, we show that HEL308 appears to target and unwind from the junction between single-stranded to double-stranded DNA on model fork structures. Together, our results suggest that one role for HEL308 at sites of blocked replication might be to open up the parental strands to facilitate the loading of subsequent factors required for replication restart.
Collapse
Affiliation(s)
- Agnieszka A Tafel
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
23
|
Bacterial and eukaryotic systems collide in the three Rs of Methanococcus. Biochem Soc Trans 2011; 39:111-5. [DOI: 10.1042/bst0390111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methanococcus maripaludis S2 is a methanogenic archaeon with a well-developed genetic system. Its mesophilic nature offers a simple system in which to perform complementation using bacterial and eukaryotic genes. Although information-processing systems in archaea are generally more similar to those in eukaryotes than those in bacteria, the order Methanococcales has a unique complement of DNA replication proteins, with multiple MCM (minichromosome maintenance) proteins and no obvious originbinding protein. A search for homologues of recombination and repair proteins in M. maripaludis has revealed a mixture of bacterial, eukaryotic and some archaeal-specific homologues. Some repair pathways appear to be completely absent, but it is possible that archaeal-specific proteins could carry out these functions. The replication, recombination and repair systems in M. maripaludis are an interesting mixture of eukaryotic and bacterial homologues and could provide a system for uncovering novel interactions between proteins from different domains of life.
Collapse
|
24
|
Adelman CA, Boulton SJ. Metabolism of postsynaptic recombination intermediates. FEBS Lett 2010; 584:3709-16. [PMID: 20493853 DOI: 10.1016/j.febslet.2010.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/14/2010] [Indexed: 11/25/2022]
Abstract
DNA double strand breaks and blocked or collapsed DNA replication forks are potentially genotoxic lesions that can result in deletions, aneuploidy or cell death. Homologous recombination (HR) is an essential process employed during repair of these forms of damage. HR allows for accurate restoration of the damaged DNA through use of a homologous template for repair. Although inroads have been made towards understanding the mechanisms of HR, ambiguity still surrounds aspects of the process. Until recently, relatively little was known concerning metabolism of postsynaptic RAD51 filaments or how synthesis dependent strand annealing intermediates are processed. This review discusses recent findings implicating RTEL1, HELQ and the Caenorhabditis elegans RAD51 paralog RFS-1 in post-strand exchange events during HR.
Collapse
Affiliation(s)
- Carrie A Adelman
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, South Mimms, UK
| | | |
Collapse
|