1
|
Al-Jubran K, Wen J, Abdullahi A, Roy Chaudhury S, Li M, Ramanathan P, Matina A, De S, Piechocki K, Rugjee KN, Brogna S. Visualization of the joining of ribosomal subunits reveals the presence of 80S ribosomes in the nucleus. RNA (NEW YORK, N.Y.) 2013; 19:1669-83. [PMID: 24129492 PMCID: PMC3884666 DOI: 10.1261/rna.038356.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/13/2013] [Indexed: 05/29/2023]
Abstract
In eukaryotes the 40S and 60S ribosomal subunits are assembled in the nucleolus, but there appear to be mechanisms preventing mRNA binding, 80S formation, and initiation of translation in the nucleus. To visualize association between ribosomal subunits, we tagged pairs of Drosophila ribosomal proteins (RPs) located in different subunits with mutually complementing halves of fluorescent proteins. Pairs of tagged RPs expected to interact, or be adjacent in the 80S structure, showed strong fluorescence, while pairs that were not in close proximity did not. Moreover, the complementation signal is found in ribosomal fractions and it was enhanced by translation elongation inhibitors and reduced by initiation inhibitors. Our technique achieved 80S visualization both in cultured cells and in fly tissues in vivo. Notably, while the main 80S signal was in the cytoplasm, clear signals were also seen in the nucleolus and at other nuclear sites. Furthermore, we detected rapid puromycin incorporation in the nucleolus and at transcription sites, providing an independent indication of functional 80S in the nucleolus and 80S association with nascent transcripts.
Collapse
Affiliation(s)
- Khalid Al-Jubran
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jikai Wen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Akilu Abdullahi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Subhendu Roy Chaudhury
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Min Li
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Preethi Ramanathan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Annunziata Matina
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sandip De
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Kim Piechocki
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Kushal Nivriti Rugjee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
McGary K, Nudler E. RNA polymerase and the ribosome: the close relationship. Curr Opin Microbiol 2013; 16:112-7. [PMID: 23433801 DOI: 10.1016/j.mib.2013.01.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
In bacteria transcription and translation are linked in time and space. When coupled to RNA polymerase (RNAP), the translating ribosome ensures transcriptional processivity by preventing RNAP backtracking. Recent advances in the field have characterized important linker proteins that bridge the gap between transcription and translation: In particular, the NusE(S10):NusG complex and the NusG homolog, RfaH. The direct link between the moving ribosome and RNAP provides a basis for maintaining genomic integrity while enabling efficient transcription and timely translation of various genes within the bacterial cell.
Collapse
Affiliation(s)
- Katelyn McGary
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
3
|
Rugjee KN, Roy Chaudhury S, Al-Jubran K, Ramanathan P, Matina T, Wen J, Brogna S. Fluorescent protein tagging confirms the presence of ribosomal proteins at Drosophila polytene chromosomes. PeerJ 2013; 1:e15. [PMID: 23638349 PMCID: PMC3629075 DOI: 10.7717/peerj.15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/03/2013] [Indexed: 11/20/2022] Open
Abstract
Most ribosomal proteins (RPs) are stoichiometrically incorporated into ribosomal subunits and play essential roles in ribosome biogenesis and function. However, a number of RPs appear to have non-ribosomal functions, which involve direct association with pre-mRNA and transcription factors at transcription sites. The consensus is that the RPs found at these sites are off ribosomal subunits, but observation that different RPs are usually found together suggests that ribosomal or ribosomal-like subunits might be present. Notably, it has previously been reported that antibodies against 20 different RPs stain the same Pol II transcription sites in Drosophila polytene chromosomes. Some concerns, however, were raised about the specificity of the antibodies. To investigate further whether RPs are present at transcription sites in Drosophila, we have generated several transgenic flies expressing RPs (RpS2, RpS5a, RpS9, RpS11, RpS13, RpS18, RpL8, RpL11, RpL32, and RpL36) tagged with either green or red fluorescent protein. Imaging of salivary gland cells showed that these proteins are, as expected, abundant in the cytoplasm as well as in the nucleolus. However, these RPs are also apparent in the nucleus in the region occupied by the chromosomes. Indeed, polytene chromosome immunostaining of a representative subset of tagged RPs confirms the association with transcribed loci. Furthermore, characterization of a strain expressing RpL41 functionally tagged at its native genomic locus with YFP, also showed apparent nuclear accumulation and chromosomal association, suggesting that such a nuclear localization pattern might be a shared feature of RPs and is biologically important. We anticipate that the transgenes described here should provide a useful research tool to visualize ribosomal subunits in Drosophila tissues and to study the non-ribosomal functions of RPs.
Collapse
Affiliation(s)
| | | | | | | | - Tina Matina
- University of Birmingham, School of Biosciences, UK
| | - Jikai Wen
- University of Birmingham, School of Biosciences, UK
| | | |
Collapse
|
4
|
Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, Cagnard N, Carpentier W, Kiss T, Meyuhas O, Pende M. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 2013; 33:474-83. [PMID: 23318442 DOI: 10.1038/onc.2012.606] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 11/04/2012] [Indexed: 12/22/2022]
Abstract
S6 kinases (S6Ks) are mechanistic target of rapamycin substrates that participate in cell growth control. S6Ks phosphorylate ribosomal protein S6 (rpS6) and additional proteins involved in the translational machinery, although the functional roles of these modifications remain elusive. Here we analyze the S6K-dependent transcriptional and translational regulation of gene expression by comparing whole-genome microarray of total and polysomal mouse liver RNA after feeding. We show that tissue lacking S6Ks 1 and 2 (S6K1 and S6K2), displays a defect in the ribosome biogenesis (RiBi) transcriptional program after feeding. Over 75% of RiBi factors are controlled by S6K, including Nop56, Nop14, Gar1, Rrp9, Rrp15, Rrp12 and Pwp2 nucleolar proteins. Importantly, the reduced activity of RiBi transcriptional promoters in S6K1;S6K2(-/-) cells is also observed in rpS6 knock-in mutants that cannot be phosphorylated. As ribosomal protein synthesis is not affected by these mutations, our data reveal a distinct and specific aspect of RiBi under the control of rpS6 kinase activity, that is, the RiBi transcriptional program.
Collapse
Affiliation(s)
- C Chauvin
- 1] INSERM, U845, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, UMRS-845, Paris, France
| | - V Koka
- 1] INSERM, U845, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, UMRS-845, Paris, France
| | - A Nouschi
- 1] INSERM, U845, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, UMRS-845, Paris, France
| | - V Mieulet
- 1] INSERM, U845, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, UMRS-845, Paris, France
| | - C Hoareau-Aveilla
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse-UPS and Centre National de La Recherche Scientifique, Toulouse, France
| | - A Dreazen
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - N Cagnard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, UMRS-845, Paris, France
| | - W Carpentier
- Plateforme Post-Génomique Pitié-Salpétrière, Groupe Hospitalier Pitié-Salpétrière, Université Pierre et Marie Curie, Paris, France
| | - T Kiss
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse-UPS and Centre National de La Recherche Scientifique, Toulouse, France
| | - O Meyuhas
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - M Pende
- 1] INSERM, U845, Paris, France [2] Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, UMRS-845, Paris, France
| |
Collapse
|
5
|
Coléno-Costes A, Jang SM, de Vanssay A, Rougeot J, Bouceba T, Randsholt NB, Gibert JM, Le Crom S, Mouchel-Vielh E, Bloyer S, Peronnet F. New partners in regulation of gene expression: the enhancer of Trithorax and Polycomb Corto interacts with methylated ribosomal protein l12 via its chromodomain. PLoS Genet 2012; 8:e1003006. [PMID: 23071455 PMCID: PMC3469418 DOI: 10.1371/journal.pgen.1003006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/16/2012] [Indexed: 01/24/2023] Open
Abstract
Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA-seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators.
Collapse
Affiliation(s)
- Anne Coléno-Costes
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Suk Min Jang
- Institut Pasteur, Département de Biologie du Développement, Unité de Régulation Epigénétique, Paris, France
- Centre National de la Recherche Scientifique, URA2578, Paris, France
- INSERM Avenir, Paris, France
| | - Augustin de Vanssay
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Répression Épigénétique et Éléments Transposables, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Répression Épigénétique et Éléments Transposables, Paris, France
| | - Julien Rougeot
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Tahar Bouceba
- Plateforme d'Ingénierie des Protéines, Service d'Interaction des Biomolécules, IFR83, Université Pierre et Marie Curie-Paris 6, UMR7622, Paris, France
| | - Neel B. Randsholt
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Jean-Michel Gibert
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Stéphane Le Crom
- École Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Plateforme Génomique, Paris, France
- INSERM, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Analyse des Données à Haut Débit en Génomique Fonctionnelle, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Analyse des Données à Haut Débit en Génomique Fonctionnelle, Paris, France
| | - Emmanuèle Mouchel-Vielh
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Sébastien Bloyer
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Frédérique Peronnet
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| |
Collapse
|
6
|
De S, Varsally W, Falciani F, Brogna S. Ribosomal proteins' association with transcription sites peaks at tRNA genes in Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2011; 17:1713-26. [PMID: 21757508 PMCID: PMC3162336 DOI: 10.1261/rna.2808411] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 06/13/2011] [Indexed: 05/05/2023]
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, but several RPs are also present at transcription sites of eukaryotic chromosomes. Here, we report a genome-wide ChIP-on-chip analysis of the association of three representative 60S RPs with sites in the Schizosaccharomyces pombe chromosomes. All three proteins tend to bind at the same subset of coding and noncoding loci. The data demonstrate selective RNA-dependent interactions between RPs and many transcription sites and suggest that the RPs bind as components of a preassembled multiprotein complex, perhaps 60S or pre-60S subunits. These findings further indicate that the presence of RPs complexes at transcription sites might be a general feature of eukaryotic cells and functionally important. Unexpectedly, the RPs' chromosomal association is highest at centromeres and tRNA genes-the RPs were found at 167 of the 171 tRNA genes assayed. These findings raise the intriguing possibility that RP complexes are involved in tRNA biogenesis and possibly centromere functions.
Collapse
Affiliation(s)
- Sandip De
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Wazeer Varsally
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Francesco Falciani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
7
|
Abstract
Once an mRNA is synthesized and processed, the immediate translation and later destruction of the transcript is not as inevitable as the central molecular biology dogma suggests. Interest in the field of post-transcriptional control continues to grow rapidly, as regulation of these multiple steps in gene expression is implicated in diverse aspects of biology such as metabolism, neurology, reproduction and viral lifecycle regulation. Researchers who utilize various combinations of human studies, animal models, cellular, genetic, biochemical and molecular techniques were brought together at the University of Edinburgh to discuss their latest findings. In this article, we introduce the content of the related reviews presented in this issue of Biochemical Society Transactions which together illustrate a major theme of the meeting content: namely the need to understand how dynamic changes in mRNP (messenger ribonucleoprotein) complexes modulate the multifunctionality of regulatory proteins which link different post-transcriptional regulatory events.
Collapse
|