1
|
Gu XY, Gu SL, Chen ZY, Tong JL, Li XY, Dong H, Zhang CY, Qian WX, Ma XC, Yi CH, Yi YX. Uncovering immune cell heterogeneity in hepatocellular carcinoma by combining single-cell RNA sequencing with T-cell receptor sequencing. World J Hepatol 2025; 17:99046. [PMID: 40027555 PMCID: PMC11866147 DOI: 10.4254/wjh.v17.i2.99046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Understanding the status and function of tumor-infiltrating immune cells is essential for improving immunotherapeutic effects and predicting the clinical response in human patients with carcinoma. However, little is known about tumor-infiltrating immune cells, and the corresponding research results in hepatocellular carcinoma (HCC) are limited. AIM To investigate potential biomarker genes that are important for the development of HCC and to understand how immune cell subsets react throughout this process. METHODS Using single-cell RNA sequencing and T-cell receptor sequencing, the heterogeneity and potential functions of immune cell subpopulations from HCC tissue and normal tissue adjacent to carcinoma, as well as their possible interactions, were analyzed. RESULTS Eight T-cell clusters from patients were analyzed and identified using bioinformatics, including six typical major T-cell clusters and two newly identified T-cell clusters, among which Fc epsilon receptor 1G+ T cells were characterized by the upregulation of Fc epsilon receptor 1G, tyrosine kinase binding protein, and T cell receptor delta constant, whereas metallothionein 1E+ T cells proliferated significantly in tumors. Differentially expressed genes, such as regulator of cell cycle, cysteine and serine rich nuclear protein 1, SMAD7 and metallothionein 1E, were identified as significantly upregulated in tumors and have potential as biomarkers. In association with T-cell receptor analysis, we inferred the clonal expansion characteristics of each T-cell cluster in HCC patients. CONCLUSION We identified lymphocyte subpopulations and potential biomarker genes critical for HCC development and revealed the clonal amplification of infiltrating T cells. These data provide valuable resources for understanding the response of immune cell subsets in HCC.
Collapse
Affiliation(s)
- Xin-Yu Gu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Shuang-Lin Gu
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Zi-Yi Chen
- Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, Hunan Province, China
| | - Jin-Long Tong
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Xiao-Yue Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Hui Dong
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Cai-Yun Zhang
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Wen-Xian Qian
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Xiu-Chang Ma
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Chang-Hua Yi
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- College of Medical Technology, Shaoyang University, Shaoyang 422000, Hunan Province, China
| | - Yong-Xiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
2
|
Pei W, Yin W, Yu T, Zhang X, Zhang Q, Yang X, Shi C, Shen W, Liu G. Dual-Specificity Phosphatase 4 Promotes Malignant Features in Colorectal Cancer Through Cyclic-AMP Response Element Binding Protein/Protein Kinase CAMP-Activated Catalytic Subunit Beta Activation. Dig Dis Sci 2024; 69:2856-2874. [PMID: 38824257 DOI: 10.1007/s10620-024-08481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Previous studies have demonstrated that Dual-specificity phosphatase 4 (DUSP4) plays an important role in the progression of different tumor types. However, the role and mechanism of DUSP4 in colorectal cancer (CRC) remain unclear. AIMS We investigate the role and mechanisms of DUSP4 in CRC. METHODS Immunohistochemistry was used to investigate DUSP4 expression in CRC tissues. Cell proliferation, apoptosis and migration assays were used to validate DUSP4 function in vitro and in vivo. RNA-sequence assay was used to identify the target genes of DUSP4. Human phosphokinase array and inhibitor assays were used to explore the downstream signaling of DUSP4. RESULTS DUSP4 expression was upregulated in CRC tissues relative to normal colorectal tissues, and DUSP4 expression showed a significant positive correlation with CRC stage. Consistently, we found that DUSP4 was highly expressed in colorectal cancer cells compared to normal cells. DUSP4 knockdown inhibits CRC cell proliferation, migration and promotes apoptosis. Furthermore, the ectopic expression of DUSP4 enhanced CRC cell proliferation, migration and diminished apoptosis in vitro and in vivo. Human phosphokinase array data showed that ectopic expression of DUSP4 promotes CREB activation. RNA-sequencing data showed that PRKACB acts as a downstream target gene of DUSP4/CREB and enhances CREB activation through PKA/cAMP signaling. In addition, xenograft model results demonstrated that DUSP4 promotes colorectal tumor progression via PRKACB/CREB activation in vivo. CONCLUSION These findings suggest that DUSP4 promotes CRC progression. Therefore, it may be a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Wenju Pei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wanbin Yin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China
| | - Tao Yu
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Qi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Chunlei Shi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
3
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
4
|
Metabolic Impact of MKP-2 Upregulation in Obesity Promotes Insulin Resistance and Fatty Liver Disease. Nutrients 2022; 14:nu14122475. [PMID: 35745205 PMCID: PMC9228271 DOI: 10.3390/nu14122475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The mechanisms connecting obesity with type 2 diabetes, insulin resistance, nonalcoholic fatty liver disease, and cardiovascular diseases remain incompletely understood. The function of MAPK phosphatase-2 (MKP-2), a type 1 dual-specific phosphatase (DUSP) in whole-body metabolism, and how this contributes to the development of diet-induced obesity, type 2 diabetes (T2D), and insulin resistance is largely unknown. We investigated the physiological contribution of MKP-2 in whole-body metabolism and whether MKP-2 is altered in obesity and human fatty liver disease using MKP-2 knockout mice models and human liver tissue derived from fatty liver disease patients. We demonstrate that, for the first time, MKP-2 expression was upregulated in liver tissue in humans with obesity and fatty liver disease and in insulin-responsive tissues in mice with obesity. MKP-2-deficient mice have enhanced p38 MAPK, JNK, and ERK activities in insulin-responsive tissues compared with wild-type mice. MKP-2 deficiency in mice protects against diet-induced obesity and hepatic steatosis and was accompanied by improved glucose homeostasis and insulin sensitivity. Mkp-2−/− mice are resistant to diet-induced obesity owing to reduced food intake and associated lower respiratory exchange ratio. This was associated with enhanced circulating insulin-like growth factor-1 (IGF-1) and stromal cell-derived factor 1 (SDF-1) levels in Mkp-2−/− mice. PTEN, a negative regulator of Akt, was downregulated in livers of Mkp-2−/− mice, resulting in enhanced Akt activity consistent with increased insulin sensitivity. These studies identify a novel role for MKP-2 in the regulation of systemic metabolism and pathophysiology of obesity-induced insulin resistance and fatty liver disease.
Collapse
|
5
|
Ross JA, Stroud MJ. THE NUCLEUS: Mechanosensing in cardiac disease. Int J Biochem Cell Biol 2021; 137:106035. [PMID: 34242685 DOI: 10.1016/j.biocel.2021.106035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
The nucleus provides a physical and selective chemical boundary to segregate the genome from the cytoplasm. The contents of the nucleus are surrounded by the nuclear envelope, which acts as a hub of mechanosensation, transducing forces from the external cytoskeleton to the nucleus, thus impacting on nuclear morphology, genome organisation, gene transcription and signalling pathways. Muscle tissues such as the heart are unique in that they actively generate large contractile forces, resulting in a distinctive mechanical environment which impacts nuclear properties, function and mechanosensing. In light of this, mutations that affect the function of the nuclear envelope (collectively known as nuclear envelopathies and laminopathies) disproportionately result in striated muscle diseases, which include dilated and arrhythmogenic cardiomyopathies. Here we review the nucleus and its role in mechanotransduction, as well as associated defects that lead to cardiac dysfunction.
Collapse
Affiliation(s)
- Jacob A Ross
- British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Matthew J Stroud
- British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
Zhang P, Fu Y, Ju J, Wan D, Su H, Wang Z, Rui H, Jin Q, Le Y, Hou R. Estradiol inhibits fMLP-induced neutrophil migration and superoxide production by upregulating MKP-2 and dephosphorylating ERK. Int Immunopharmacol 2019; 75:105787. [PMID: 31401382 DOI: 10.1016/j.intimp.2019.105787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
Abstract
Estrogen has been reported to inhibit neutrophil infiltration related inflammation and suppress neutrophils migration in vitro, but the underlying mechanism is not fully understood. By using HL-60 differentiated neutrophil-like cells (dHL-60) and human neutrophils, we examined the effect of 17-β estradiol (E2) on cell migration and superoxide production in response to chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) and explored the mechanisms involved. We found that fMLP significantly induced dHL-60 cell and neutrophil migration and superoxide production, which was inhibited by ERK inhibitor PD98059. E2 significantly inhibited fMLP-induced dHL-60 cell and neutrophil migration and superoxide production at both physiological and pharmacological concentrations. Mechanistic studies showed that pretreatment of these cells with E2 rapidly elevated the protein level of mitogen-activated protein kinase phosphatase 2 (MKP-2) and inhibited fMLP-induced ERK phosphorylation. Pretreatment of these cells with estrogen receptor (ER) antagonist ICI 182780 reversed the inhibition of fMP-induced cell migration and superoxide production, and the induction of MKP-2 expression and the suppression of fMP-induced ERK phosphorylation by E2. However, pretreatment of cells with G-protein coupled ER antagonist G15 had no such effect. Collectively, these results demonstrate that fMLP stimulates neutrophil chemotaxis and superoxide production through activating ERK, and indicate that ER-mediated upregulation of MKP-2 may dephosphorylate ERK and contribute to the inhibitory effect of E2 on neutrophil activation by fMLP. Our study reveals new mechanisms involved in the anti-inflammatory activity of estrogen.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Dapeng Wan
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Hao Su
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Zhaodong Wang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Huajuan Rui
- Department of Clinical Laboratory, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Qianheng Jin
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruixing Hou
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China; Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China.
| |
Collapse
|
7
|
Neamatallah T, Jabbar S, Tate R, Schroeder J, Shweash M, Alexander J, Plevin R. Whole Genome Microarray Analysis of DUSP4-Deletion Reveals A Novel Role for MAP Kinase Phosphatase-2 (MKP-2) in Macrophage Gene Expression and Function. Int J Mol Sci 2019; 20:ijms20143434. [PMID: 31336892 PMCID: PMC6679025 DOI: 10.3390/ijms20143434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Mitogen-activated protein kinase phosphatase-2 (MKP-2) is a type 1 nuclear dual specific phosphatase (DUSP-4). It plays an important role in macrophage inflammatory responses through the negative regulation of Mitogen activated protein kinase (MAPK) signalling. However, information on the effect of MKP-2 on other aspect of macrophage function is limited. Methods: We investigated the impact of MKP-2 in the regulation of several genes that are involved in function while using comparative whole genome microarray analysis in macrophages from MKP-2 wild type (wt) and knock out (ko) mice. Results: Our data showed that the lack of MKP-2 caused a significant down-regulation of colony-stimulating factor-2 (Csf2) and monocyte to macrophage-associated differentiation (Mmd) genes, suggesting a role of MKP-2 in macrophage development. When treated with macrophage colony stimulating factor (M-CSF), Mmd and Csf2 mRNA levels increased but significantly reduced in ko cells in comparison to wt counterparts. This effect of MKP-2 deletion on macrophage function was also observed by cell counting and DNA measurements. On the signalling level, M-CSF stimulation induced extracellular signal-regulated kinases (ERK) phosphorylation, which was significantly enhanced in the absence of MKP-2. Pharmacological inhibition of ERK reduced both Csf2 and Mmd genes in both wild type and ko cultures, which suggested that enhanced ERK activation in ko cultures may not explain effects on gene expression. Interestingly other functional markers were also shown to be reduced in ko macrophages in comparison to wt mice; the expression of CD115, which is a receptor for M-CSF, and CD34, a stem/progenitor cell marker, suggesting global regulation of gene expression by MKP-2. Conclusions: Transcriptome profiling reveals that MKP-2 regulates macrophage development showing candidate targets from monocyte-to-macrophage differentiation and macrophage proliferation. However, it is unclear whether effects upon ERK signalling are able to explain the effects of DUSP-4 deletion on macrophage function.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia.
| | - Shilan Jabbar
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Rothwelle Tate
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Juliane Schroeder
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Muhannad Shweash
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - James Alexander
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Robin Plevin
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
8
|
Haddock AN, Labuzan SA, Haynes AE, Hayes CS, Kakareka KM, Waddell DS. Dual-specificity phosphatase 4 is upregulated during skeletal muscle atrophy and modulates extracellular signal-regulated kinase activity. Am J Physiol Cell Physiol 2019; 316:C567-C581. [DOI: 10.1152/ajpcell.00234.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Skeletal muscle atrophy results from disparate physiological conditions, including denervation, corticosteroid treatment, and aging. The purpose of this study was to describe and characterize the function of dual-specificity phosphatase 4 (Dusp4) in skeletal muscle after it was found to be induced in response to neurogenic atrophy. Quantitative PCR and Western blot analysis revealed that Dusp4 is expressed during myoblast proliferation but rapidly disappears as muscle cells differentiate. The Dusp4 regulatory region was cloned and found to contain a conserved E-box element that negatively regulates Dusp4 reporter gene activity in response to myogenic regulatory factor expression. In addition, the proximal 3′-untranslated region of Dusp4 acts in an inhibitory manner to repress reporter gene activity as muscle cells progress through the differentiation process. To determine potential function, Dusp4 was fused with green fluorescent protein, expressed in C2C12 cells, and found to localize to the nucleus of proliferating myoblasts. Furthermore, Dusp4 overexpression delayed C2C12 muscle cell differentiation and resulted in repression of a MAP kinase signaling pathway reporter gene. Ectopic expression of a Dusp4 dominant negative mutant blocked muscle cell differentiation and attenuated MAP kinase signaling by preferentially targeting the ERK1/2 branch, but not the p38 branch, of the MAP kinase signaling cascade in skeletal muscle cells. The findings presented in this study provide the first description of Dusp4 in skeletal muscle and suggest that Dusp4 may play an important role in the regulation of muscle cell differentiation by regulating MAP kinase signaling.
Collapse
Affiliation(s)
- Ashley N. Haddock
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Sydney A. Labuzan
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Amy E. Haynes
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Caleb S. Hayes
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Karina M. Kakareka
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - David S. Waddell
- Department of Biology, University of North Florida, Jacksonville, Florida
| |
Collapse
|
9
|
Nunes-Xavier CE, Zaldumbide L, Aurtenetxe O, López-Almaraz R, López JI, Pulido R. Dual-Specificity Phosphatases in Neuroblastoma Cell Growth and Differentiation. Int J Mol Sci 2019; 20:ijms20051170. [PMID: 30866462 PMCID: PMC6429076 DOI: 10.3390/ijms20051170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are important regulators of neuronal cell growth and differentiation by targeting proteins essential to neuronal survival in signaling pathways, among which the MAP kinases (MAPKs) stand out. DUSPs include the MAPK phosphatases (MKPs), a family of enzymes that directly dephosphorylate MAPKs, as well as the small-size atypical DUSPs, a group of low molecular-weight enzymes which display more heterogeneous substrate specificity. Neuroblastoma (NB) is a malignancy intimately associated with the course of neuronal and neuroendocrine cell differentiation, and constitutes the source of more common extracranial solid pediatric tumors. Here, we review the current knowledge on the involvement of MKPs and small-size atypical DUSPs in NB cell growth and differentiation, and discuss the potential of DUSPs as predictive biomarkers and therapeutic targets in human NB.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital HF Radiumhospitalet, Oslo 0424, Norway.
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| | - Ricardo López-Almaraz
- Pediatric Oncology and Hematology, Cruces University Hospital, Barakaldo, Bizkaia 48903, Spain.
| | - José I López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain.
| |
Collapse
|
10
|
Schroeder J, Ross K, McIntosh K, Jabber S, Woods S, Crowe J, Patterson Kane J, Alexander J, Lawrence C, Plevin R. Novel protective role for MAP kinase phosphatase 2 in inflammatory arthritis. RMD Open 2019; 5:e000711. [PMID: 30713718 PMCID: PMC6340532 DOI: 10.1136/rmdopen-2018-000711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
Abstract
Objectives We have previously shown mitogen-activated protein kinase phosphatase 2 (MKP-2) to be a key regulator of proinflammatory cytokines in macrophages. In the study presented here, we investigated the role of MKP-2 in inflammatory arthritis with a particular focus on neutrophils. Methods To achieve this, we subjected MKP-2 deficient and wild type mice to collagen antibody induced arthritis, an innate model of arthritis, and determined disease pathology. To further our investigation, we depleted neutrophils in a prophylactic and therapeutic fashion. Last, we used chemotaxis assays to analyse the impact of MKP-2 deletion on neutrophil migration. Results MKP-2-/- mice showed a significant increase in disease pathology linked to elevated levels of proarthritic cytokines and chemokines TNF-α, IL-6 and MCP-1 in comparison to wild type controls. This phenotype is prevented or abolished after administration of neutrophil depleting antibody prior or after onset of disease, respectively. While MCP-1 levels were not affected, neutrophil depletion diminished TNF-α and reduced IL-6, thus linking these cytokines to neutrophils. In vivo imaging showed that MKP-2-/- mice had an increased influx of neutrophils into affected joints, which was higher and potentially prolonged than in wild type animals. Furthermore, using chemotaxis assays we revealed that MKP-2 deficient neutrophils migrate faster towards a Leukotriene B4 gradient. This process correlated with a reduced phosphorylation of ERK in MKP-2-/- neutrophils. Conclusions This is the first study to show a protective role for MKP-2 in inflammatory arthritis.
Collapse
Affiliation(s)
- Juliane Schroeder
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland
| | - Kirsty Ross
- Pure and Applied Chemistry, Technology Innovation Centre, University of Strathclyde, Glasgow, Scotland
| | - Kathryn McIntosh
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Shilan Jabber
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Stuart Woods
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland
| | | | - James Alexander
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Catherine Lawrence
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
11
|
Immunomodulation of dual specificity phosphatase 4 during visceral leishmaniasis. Microbes Infect 2018; 20:111-121. [DOI: 10.1016/j.micinf.2017.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
|
12
|
Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J Mol Cell Cardiol 2016; 101:44-49. [PMID: 27575022 PMCID: PMC5154921 DOI: 10.1016/j.yjmcc.2016.08.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a critical role in regulating cardiac hypertrophy and remodeling in response to increased workload or pathological insults. The spatiotemporal activities and inactivation of MAPKs are tightly controlled by a family of dual-specificity MAPK phosphatases (DUSPs). Over the past 2 decades, we and others have determined the critical role for selected DUSP family members in controlling MAPK activity in the heart and the ensuing effects on ventricular growth and remodeling. More specifically, studies from mice deficient for individual Dusp genes as well as heart-specific inducible transgene-mediated overexpression have implicated select DUSPs as essential signaling effectors in the heart that function by dynamically regulating the level, subcellular and temporal activities of the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38 MAPKs. This review summarizes recent literature on the physiological and pathological roles of MAPK-specific DUSPs in regulating MAPK signaling in the heart and the effect on cardiac growth and remodeling.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
13
|
Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci 2016; 36:2348-54. [PMID: 26911683 DOI: 10.1523/jneurosci.3825-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2(-/-) mice), we show that long-term potentiation is impaired in MKP-2(-/-) mice compared with MKP-2(+/+) controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2(-/-) mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2(-/-) mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling.
Collapse
|
14
|
Emdal KB, Pedersen AK, Bekker-Jensen DB, Tsafou KP, Horn H, Lindner S, Schulte JH, Eggert A, Jensen LJ, Francavilla C, Olsen JV. Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation. Sci Signal 2015; 8:ra40. [PMID: 25921289 DOI: 10.1126/scisignal.2005769] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SH-SY5Y neuroblastoma cells respond to nerve growth factor (NGF)-mediated activation of the tropomyosin-related kinase A (TrkA) with neurite outgrowth, thereby providing a model to study neuronal differentiation. We performed a time-resolved analysis of NGF-TrkA signaling in neuroblastoma cells using mass spectrometry-based quantitative proteomics. The combination of interactome, phosphoproteome, and proteome data provided temporal insights into the molecular events downstream of NGF binding to TrkA. We showed that upon NGF stimulation, TrkA recruits the E3 ubiquitin ligase Cbl-b, which then becomes phosphorylated and ubiquitylated and decreases in abundance. We also found that recruitment of Cbl-b promotes TrkA ubiquitylation and degradation. Furthermore, the amount of phosphorylation of the kinase ERK and neurite outgrowth increased upon Cbl-b depletion in several neuroblastoma cell lines. Our findings suggest that Cbl-b limits NGF-TrkA signaling to control the length of neurites.
Collapse
Affiliation(s)
- Kristina B Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Kalliopi P Tsafou
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Heiko Horn
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany. Department of Pediatric Oncology and Hematology, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany. German Cancer Consortium (DKTK), 13353 Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany. Department of Pediatric Oncology and Hematology, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany. German Cancer Consortium (DKTK), 13353 Berlin, Germany
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
15
|
Ríos P, Nunes-Xavier CE, Tabernero L, Köhn M, Pulido R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 2014; 20:2251-73. [PMID: 24206177 DOI: 10.1089/ars.2013.5709] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE The dual-specificity phosphatases (DUSPs) constitute a heterogeneous group of cysteine-based protein tyrosine phosphatases, whose members exert a pivotal role in cell physiology by dephosphorylation of phosphoserine, phosphothreonine, and phosphotyrosine residues from proteins, as well as other non-proteinaceous substrates. RECENT ADVANCES A picture is emerging in which a selected group of DUSP enzymes display overexpression or hyperactivity that is associated with human disease, especially human cancer, making feasible targeted therapy approaches based on their inhibition. A panoply of molecular and functional studies on DUSPs have been performed in the previous years, and drug-discovery efforts are ongoing to develop specific and efficient DUSP enzyme inhibitors. This review summarizes the current status on inhibitory compounds targeting DUSPs that belong to the MAP kinase phosphatases-, small-sized atypical-, and phosphatases of regenerating liver subfamilies, whose inhibition could be beneficial for the prevention or mitigation of human disease. CRITICAL ISSUES Achieving specificity, potency, and bioavailability are the major challenges in the discovery of DUSP inhibitors for the clinics. Clinical validation of compounds or alternative inhibitory strategies of DUSP inhibition has yet to come. FUTURE DIRECTIONS Further work is required to understand the dual role of many DUSPs in human cancer, their function-structure properties, and to identify their physiologic substrates. This will help in the implementation of therapies based on DUSPs inhibition.
Collapse
Affiliation(s)
- Pablo Ríos
- 1 Genome Biology Unit, European Molecular Biology Laboratory , Heidelberg, Germany
| | | | | | | | | |
Collapse
|
16
|
Fero K, Bergeron SA, Horstick EJ, Codore H, Li GH, Ono F, Dowling JJ, Burgess HA. Impaired embryonic motility in dusp27 mutants reveals a developmental defect in myofibril structure. Dis Model Mech 2013; 7:289-98. [PMID: 24203884 PMCID: PMC3917250 DOI: 10.1242/dmm.013235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An essential step in muscle fiber maturation is the assembly of highly ordered myofibrils that are required for contraction. Much remains unknown about the molecular mechanisms governing the formation of the contractile apparatus. We identified an early embryonic motility mutant in zebrafish caused by integration of a transgene into the pseudophosphatase dual specificity phosphatase 27 (dusp27) gene. dusp27 mutants exhibit near complete paralysis at embryonic and larval stages, producing extremely low levels of spontaneous coiling movements and a greatly diminished touch response. Loss of dusp27 does not prevent somitogenesis but results in severe disorganization of the contractile apparatus in muscle fibers. Sarcomeric structures in mutants are almost entirely absent and only rare triads are observed. These findings are the first to implicate a functional role of dusp27 as a gene required for myofiber maturation and provide an animal model for analyzing the mechanisms governing myofibril assembly.
Collapse
Affiliation(s)
- Kandice Fero
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
p38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity. Autoimmune Dis 2013; 2013:728529. [PMID: 23936634 PMCID: PMC3722958 DOI: 10.1155/2013/728529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/08/2023] Open
Abstract
p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention.
Collapse
|
18
|
Kim SY, Baek SH. Role of Extracellular Signal-Regulated Kinase 1/2 and Reactive Oxygen Species in Toll-Like Receptor 2-Mediated Dual-Specificity Phosphatase 4 Expression. Yeungnam Univ J Med 2013. [DOI: 10.12701/yujm.2013.30.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- So-Yeon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|