1
|
Joshi R, Suryawanshi T, Mukherjee S, Shukla S, Majumder A. Chromatin Condensation Delays Senescence in Human Mesenchymal Stem Cells by Safeguarding Nuclear Damages during In Vitro Expansion. J Tissue Eng Regen Med 2024; 2024:1543849. [PMID: 40225747 PMCID: PMC11919206 DOI: 10.1155/2024/1543849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2025]
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that differentiate into adipocytes, chondrocytes, and osteoblasts. Owing to their differentiation potential, hMSCs are among the cells most frequently used for therapeutic applications in tissue engineering and regenerative medicine. However, the number of cells obtained through isolation alone is insufficient for hMSC-based therapies and basic research, which necessitates in vitro expansion. Conventionally, this is often performed on rigid surfaces such as tissue culture plates (TCPs). However, during in vitro expansion, hMSCs lose their proliferative ability and multilineage differentiation potential, rendering them unsuitable for clinical use. Although multiple approaches have been attempted to maintain hMSC stemness during prolonged expansion, finding a suitable culture system remains an unmet need. Recently, a few research groups have shown that hMSCs maintain their stemness over long passages when cultured on soft substrates. In addition, it has been shown that hMSCs cultured on soft substrates have more condensed chromatin and lower levels of histone acetylation compared to those cultured on stiff substrates. Furthermore, it has also been shown that condensing/decondensing chromatin by deacetylation/acetylation can delay replicative senescence in hMSCs during long-term expansion on TCPs. However, the mechanism by which chromatin condensation/decondensation influences nuclear morphology and DNA damage, which are strongly related to the onset of senescence, remains unknown. To answer this question, we cultured hMSCs for long duration in the presence of epigenetic modifiers, histone acetyltransferase inhibitor (HATi), which promotes chromatin condensation by preventing histone acetylation, and histone deacetylase inhibitor (HDACi), which promotes chromatin decondensation, and investigated their effects on various nuclear markers related to senescence. We found that consistent acetylation causes severe nuclear abnormalities, whereas chromatin condensation by deacetylation helps to safeguard the nucleus from damage caused by in vitro expansion.
Collapse
Affiliation(s)
- Rohit Joshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Tejas Suryawanshi
- Centre for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sourav Mukherjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobha Shukla
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Cobb AM, De Silva SA, Hayward R, Sek K, Ulferts S, Grosse R, Shanahan CM. Filamentous nuclear actin regulation of PML NBs during the DNA damage response is deregulated by prelamin A. Cell Death Dis 2022; 13:1042. [PMID: 36522328 PMCID: PMC9755150 DOI: 10.1038/s41419-022-05491-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/16/2022]
Abstract
Nuclear actin participates in a continuously expanding list of core processes within eukaryotic nuclei, including the maintenance of genomic integrity. In response to DNA damage, nuclear actin polymerises into filaments that are involved in the repair of damaged DNA through incompletely defined mechanisms. We present data to show that the formation of nuclear F-actin in response to genotoxic stress acts as a scaffold for PML NBs and that these filamentous networks are essential for PML NB fission and recruitment of microbodies to DNA lesions. Further to this, we demonstrate that the accumulation of the toxic lamin A precursor prelamin A induces mislocalisation of nuclear actin to the nuclear envelope and prevents the establishment of nucleoplasmic F-actin networks in response to stress. Consequently, PML NB dynamics and recruitment to DNA lesions is ablated, resulting in impaired DNA damage repair. Inhibition of nuclear export of formin mDia2 restores nuclear F-actin formation by augmenting polymerisation of nuclear actin in response to stress and rescues PML NB localisation to sites of DNA repair, leading to reduced levels of DNA damage.
Collapse
Affiliation(s)
- Andrew M. Cobb
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Shanelle A. De Silva
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Robert Hayward
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Karolina Sek
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| | - Svenja Ulferts
- grid.5963.9Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Robert Grosse
- grid.5963.9Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Catherine M. Shanahan
- grid.13097.3c0000 0001 2322 6764BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU United Kingdom
| |
Collapse
|
3
|
Gillon A, Steel C, Cornwall J, Sheard P. Increased nuclear permeability is a driver for age-related motoneuron loss. GeroScience 2020; 42:833-847. [PMID: 32002784 PMCID: PMC7286994 DOI: 10.1007/s11357-020-00155-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is the loss of skeletal muscle mass with age, the precise cause of which remains unclear. Several studies have shown that sarcopenia is at least partly driven by denervation which, in turn, is related to loss of motor nerve cells. Recent data suggests degradation of the nucleocytoplasmic barrier and nuclear envelope transport process are contributors to nerve loss in a number of neurodegenerative diseases. Having recently shown that important components of the nuclear barrier are lost with advancing age, we now ask whether these emergent defects accompany increased nuclear permeability, chromatin disorganization and lower motoneuron loss in normal ageing, and if so, whether exercise attenuates these changes. Immunohistochemistry was used on young adult, old and exercised mouse tissues to examine nucleocytoplasmic transport regulatory proteins and chromatin organization. We used a nuclear permeability assay to investigate the patency of the nuclear barrier on extracts of the spinal cord from each group. We found increased permeability in nuclei isolated from spinal cords of old animals that correlated with both mislocalization of essential nuclear transport proteins and chromatin disorganization, and also found that in each case, exercise attenuated the age-associated changes. Findings suggest that the loss of nuclear barrier integrity in combination with previously described defects in nucleocytoplasmic transport may drive increased nuclear permeability and contribute to age-related motoneuron death. These events may be significant indirect drivers of skeletal muscle loss.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Charlotte Steel
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - Jon Cornwall
- Centre for Early Learning in Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip Sheard
- Department of Physiology, School of Biomedical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| |
Collapse
|
4
|
Martins F, Sousa J, Pereira CD, Cruz e Silva OAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process. Aging Cell 2020; 19:e13143. [PMID: 32291910 PMCID: PMC7253059 DOI: 10.1111/acel.13143] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear envelope (NE) is the central organizing unit of the eukaryotic cell serving as a genome protective barrier and mechanotransduction interface between the cytoplasm and the nucleus. The NE is mainly composed of a nuclear lamina and a double membrane connected at specific points where the nuclear pore complexes (NPCs) form. Physiological aging might be generically defined as a functional decline across lifespan observed from the cellular to organismal level. Therefore, during aging and premature aging, several cellular alterations occur, including nuclear‐specific changes, particularly, altered nuclear transport, increased genomic instability induced by DNA damage, and telomere attrition. Here, we highlight and discuss proteins associated with nuclear transport dysfunction induced by aging, particularly nucleoporins, nuclear transport factors, and lamins. Moreover, changes in the structure of chromatin and consequent heterochromatin rearrangement upon aging are discussed. These alterations correlate with NE dysfunction, particularly lamins’ alterations. Finally, telomere attrition is addressed and correlated with altered levels of nuclear lamins and nuclear lamina‐associated proteins. Overall, the identification of molecular mechanisms underlying NE dysfunction, including upstream and downstream events, which have yet to be unraveled, will be determinant not only to our understanding of several pathologies, but as here discussed, in the aging process.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Jéssica Sousa
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Cátia D. Pereira
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| | - Odete A. B. Cruz e Silva
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
- The Discoveries CTR Aveiro Portugal
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory Institute of Biomedicine (iBiMED) Department of Medical Sciences University of Aveiro Aveiro Portugal
| |
Collapse
|
5
|
Dworak N, Makosa D, Chatterjee M, Jividen K, Yang CS, Snow C, Simke WC, Johnson IG, Kelley JB, Paschal BM. A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling. Aging Cell 2019; 18:e12851. [PMID: 30565836 PMCID: PMC6351833 DOI: 10.1111/acel.12851] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/16/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.
Collapse
Affiliation(s)
- Natalia Dworak
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Dawid Makosa
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Mandovi Chatterjee
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Kasey Jividen
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chun-Song Yang
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chelsi Snow
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| | - William C. Simke
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Isaac G. Johnson
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Bryce M. Paschal
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| |
Collapse
|
6
|
Cobb AM, Murray TV, Warren DT, Liu Y, Shanahan CM. Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling. Nucleus 2017; 7:498-511. [PMID: 27676213 PMCID: PMC5120601 DOI: 10.1080/19491034.2016.1239685] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The accumulation of prelamin A is linked to disruption of cellular homeostasis, tissue degeneration and aging. Its expression is implicated in compromised genome stability and increased levels of DNA damage, but to date there is no complete explanation for how prelamin A exerts its toxic effects. As the nuclear lamina is important for DNA replication we wanted to investigate the relationship between prelamin A expression and DNA replication fork stability. In this study we report that the expression of prelamin A in U2OS cells induced both mono-ubiquitination of proliferating cell nuclear antigen (PCNA) and subsequent induction of Pol η, two hallmarks of DNA replication fork stalling. Immunofluorescence microscopy revealed that cells expressing prelamin A presented with high levels of colocalisation between PCNA and γH2AX, indicating collapse of stalled DNA replication forks into DNA double-strand breaks. Subsequent protein-protein interaction assays showed prelamin A interacted with PCNA and that its presence mitigated interactions between PCNA and the mature nuclear lamina. Thus, we propose that the cytotoxicity of prelamin A arises in part, from it actively competing against mature lamin A to bind PCNA and that this destabilises DNA replication to induce fork stalling which in turn contributes to genomic instability.
Collapse
Affiliation(s)
- Andrew M Cobb
- a King's College London , The James Black Center , London , United Kingdom
| | - Thomas V Murray
- a King's College London , The James Black Center , London , United Kingdom
| | - Derek T Warren
- a King's College London , The James Black Center , London , United Kingdom
| | - Yiwen Liu
- a King's College London , The James Black Center , London , United Kingdom
| | | |
Collapse
|
7
|
Cobb AM, Larrieu D, Warren DT, Liu Y, Srivastava S, Smith AJO, Bowater RP, Jackson SP, Shanahan CM. Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient. Aging Cell 2016; 15:1039-1050. [PMID: 27464478 PMCID: PMC5114580 DOI: 10.1111/acel.12506] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 01/29/2023] Open
Abstract
The nuclear lamina is essential for the proper structure and organization of the nucleus. Deregulation of A-type lamins can compromise genomic stability, alter chromatin organization and cause premature vascular aging. Here, we show that accumulation of the lamin A precursor, prelamin A, inhibits 53BP1 recruitment to sites of DNA damage and increases basal levels of DNA damage in aged vascular smooth muscle cells. We identify that this genome instability arises through defective nuclear import of 53BP1 as a consequence of abnormal topological arrangement of nucleoporin NUP153. We show for the first time that this nucleoporin is important for the nuclear localization of Ran and that the deregulated Ran gradient is likely to be compromising the nuclear import of 53BP1. Importantly, many of the defects associated with prelamin A expression were significantly reduced upon treatment with Remodelin, a small molecule recently reported to reverse deficiencies associated with abnormal nuclear lamina.
Collapse
Affiliation(s)
- Andrew M. Cobb
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | - Delphine Larrieu
- Wellcome Trust/Cancer Research UK Gurdon InstituteThe Henry Wellcome Building of Cancer and Developmental BiologyUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
| | - Derek T. Warren
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | - Yiwen Liu
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | - Sonal Srivastava
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | | | | | - Stephen P. Jackson
- Wellcome Trust/Cancer Research UK Gurdon InstituteThe Henry Wellcome Building of Cancer and Developmental BiologyUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
| | | |
Collapse
|
8
|
Ho CY, Shanahan CM. Medial Arterial Calcification: An Overlooked Player in Peripheral Arterial Disease. Arterioscler Thromb Vasc Biol 2016; 36:1475-82. [PMID: 27312224 DOI: 10.1161/atvbaha.116.306717] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
Abstract
Peripheral arterial disease (PAD) is a global health issue that is becoming more prevalent in an aging world population. Diabetes mellitus and chronic kidney disease are also on the increase, and both are associated with accelerated vascular calcification and an unfavorable prognosis in PAD. These data challenge the traditional athero-centric view of PAD, instead pointing toward a disease process complicated by medial arterial calcification. Like atherosclerosis, aging is a potent risk factor for medial arterial calcification, and accelerated vascular aging may underpin the devastating manifestations of PAD, particularly in patients prone to calcification. Consequently, this review will attempt to dissect the relationship between medial arterial calcification and atherosclerosis in PAD and identify common as well as novel risk factors that may contribute to and accelerate progression of PAD. In this context, we focus on the complex interplay between oxidative stress, DNA damage, and vascular aging, as well as the unexplored role of neuropathy.
Collapse
Affiliation(s)
- Chin Yee Ho
- From the King's College London, British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Catherine M Shanahan
- From the King's College London, British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK.
| |
Collapse
|
9
|
Kooman JP, Kotanko P, Schols AMWJ, Shiels PG, Stenvinkel P. Chronic kidney disease and premature ageing. Nat Rev Nephrol 2014; 10:732-42. [PMID: 25287433 DOI: 10.1038/nrneph.2014.185] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease (CKD) shares many phenotypic similarities with other chronic diseases, including heart failure, chronic obstructive pulmonary disease, HIV infection and rheumatoid arthritis. The most apparent similarity is premature ageing, involving accelerated vascular disease and muscle wasting. We propose that in addition to a sedentary lifestyle and psychosocial and socioeconomic determinants, four major disease-induced mechanisms underlie premature ageing in CKD: an increase in allostatic load, activation of the 'stress resistance response', activation of age-promoting mechanisms and impairment of anti-ageing pathways. The most effective current interventions to modulate premature ageing-treatment of the underlying disease, optimal nutrition, correction of the internal environment and exercise training-reduce systemic inflammation and oxidative stress and induce muscle anabolism. Deeper mechanistic insight into the phenomena of premature ageing as well as early diagnosis of CKD might improve the application and efficacy of these interventions and provide novel leads to combat muscle wasting and vascular impairment in chronic diseases.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Peter Kotanko
- Renal Research Institute, 315 East 62nd Street, 4th floor, NY 10065, New York, USA
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, SE-14157 Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
Ageing is a potent, independent risk factor for cardiovascular disease. Calcification of the vascular smooth muscle cell (VSMC) layer of the vessel media is a hallmark of vascular ageing. Young patients with chronic kidney disease (CKD) exhibit an extremely high cardiovascular mortality, equivalent to that seen in octogenarians in the general population. Even children on dialysis develop accelerated medial vascular calcification and arterial stiffening, leading to the suggestion that patients with CKD exhibit a 'premature ageing' phenotype. It is now well documented that uraemic toxins, particularly those associated with dysregulated mineral metabolism, can drive VSMC damage and phenotypic changes that promote vascular calcification; epidemiological data suggest that some of these same risk factors associate with cardiovascular mortality in the aged general population. Importantly, emerging evidence suggests that uraemic toxins may promote DNA damage, a key factor driving cellular ageing, and moreover, that these ageing mechanisms may reiterate some of those seen in patients with genetically induced progeric syndromes caused by nuclear lamina disruption. This new knowledge should pave the way for the development of novel therapies that target tissue-specific ageing mechanisms to treat vascular decline in CKD.
Collapse
|
11
|
Drüeke TB, Olgaard K. Report on 2012 ISN Nexus Symposium: ‘Bone and the Kidney’. Kidney Int 2013; 83:557-62. [DOI: 10.1038/ki.2012.453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Affiliation(s)
- Chin Yee Ho
- Cornell University, Weill Institute for Cell and Molecular Biology, Department of Biomedical Engineering, Ithaca, NY 14853, USA
| | | |
Collapse
|
13
|
Barascu A, Le Chalony C, Pennarun G, Genet D, Zaarour N, Bertrand P. Oxydative stress alters nuclear shape through lamins dysregulation: a route to senescence. Nucleus 2012; 3:411-7. [PMID: 22895091 PMCID: PMC3474660 DOI: 10.4161/nucl.21674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progeroid phenotypes are mainly encountered in 2 types of syndromes: in laminopathies, which are characterized by nuclear shape abnormalities due to lamin A alteration, and in DNA damage response defect syndromes. Because lamin A dysregulation leads to DNA damages, it has been proposed that senescence occurs in both types of syndromes through the accumulation of damages. We recently showed that elevated oxidative stress is responsible for lamin B1 accumulation, nuclear shape alteration and senescence in the DDR syndrome, ataxia telangiectasia (A-T). Interestingly, overexpression of lamin B1 in wild type cells is sufficient to induce senescence without the induction of DNA damages. Here, we will discuss the importance of controlling the lamins level in order for maintenance nuclear architecture and we will comment the relationships of lamins with other senescence mechanisms. Finally, we will describe emerging data reporting redox control by lamins, leading us to propose a general mechanism by which reactive oxygen species can induce senescence through lamin dysregulation and NSA.
Collapse
Affiliation(s)
| | - Catherine Le Chalony
- CEA, DSV; Institut de Radiobiologie Cellulaire et Moléculaire; Laboratoire Réparation et Vieillissement; Fontenay-aux-Roses, France
| | - Gaëlle Pennarun
- CEA, DSV; Institut de Radiobiologie Cellulaire et Moléculaire; Laboratoire Réparation et Vieillissement; Fontenay-aux-Roses, France
| | - Diane Genet
- CEA, DSV; Institut de Radiobiologie Cellulaire et Moléculaire; Laboratoire Réparation et Vieillissement; Fontenay-aux-Roses, France
| | - Nancy Zaarour
- CEA, DSV; Institut de Radiobiologie Cellulaire et Moléculaire; Laboratoire Réparation et Vieillissement; Fontenay-aux-Roses, France
| | - Pascale Bertrand
- CEA, DSV; Institut de Radiobiologie Cellulaire et Moléculaire; Laboratoire Réparation et Vieillissement; Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Zhang L, Brian L, Freedman NJ. Vein graft neointimal hyperplasia is exacerbated by CXCR4 signaling in vein graft-extrinsic cells. J Vasc Surg 2012; 56:1390-7. [PMID: 22796120 DOI: 10.1016/j.jvs.2012.03.254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Because vein graft neointimal hyperplasia engenders vein graft failure, and because most vein graft neointimal cells derive from outside the vein graft, we sought to determine whether vein graft neointimal hyperplasia is affected by activity of the CXC chemokine receptor-4 (CXCR4), which is important for bone marrow-derived cell migration. METHODS In congenic Cxcr4(-/+) and wild-type (WT) recipient mice, we performed interposition grafting of the common carotid artery with the inferior vena cava (IVC) of either Cxcr4(-/+) or WT mice to create four surgically chimeric groups of mice (n ≥ 5 each), characterized by vein graft donor/recipient: WT/WT; Cxcr4(-/+)/WT; WT/Cxcr4(-/+); and Cxcr4(-/+)/Cxcr4(-/+); vein grafts were harvested 6 weeks postoperatively. RESULTS The agonist for CXCR4 is expressed by cells in the arterializing vein graft. Vein graft neointimal hyperplasia was reduced by reducing CXCR4 activity in vein graft-extrinsic cells, but not in vein graft-intrinsic cells: the rank order of neointimal hyperplasia was WT/WT ≈ Cxcr4(-/+)/WT > WT/Cxcr4(-/+) ≈ Cxcr4(-/+)/Cxcr4(-/+); CXCR4 deficiency in graft-extrinsic cells reduced neointimal hyperplasia by 39% to 47% (P < .05). Vein graft medial area was equivalent in all grafts except Cxcr4(-/+)/Cxcr4(-/+), in which the medial area was 60% ± 20% greater (P < .05). Vein graft re-endothelialization was indistinguishable among all three vein graft groups. However, the prevalence of medial leukocytes was 40% ± 10% lower in Cxcr4(-/+)/Cxcr4(-/+) than in WT/WT vein grafts (P < .05), and the prevalence of smooth muscle actin-positive cells was 45% ± 20% higher (P < .05). CONCLUSIONS We conclude that CXCR4 contributes to vein graft neointimal hyperplasia through mechanisms that alter homing to the vein graft of graft-extrinsic cells, particularly leukocytes. CLINICAL RELEVANCE The utility of autologous vein grafts is severely reduced by neointimal hyperplasia, which accelerates subsequent graft atherosclerosis. Our study demonstrates that vein graft neointimal hyperplasia is aggravated by activity of the cell-surface “CXC” chemokine receptor-4 (CXCR4), which is critical for recruitment of bone marrow-derived cells to sites of inflammation. Our model for CXCR4 deficiency used mice with heterozygous deficiency of Cxcr4. Consequently, our results suggest the possibility that a CXCR4 antagonist--like plerixafor, currently in clinical use--could be applied to vein grafts periadventitially, and perhaps achieve beneficial effects on vein graft neointimal hyperplasia.
Collapse
Affiliation(s)
- Lisheng Zhang
- Department of Medicine Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
15
|
Abstract
The fifth U.K. meeting on nuclear envelope disease and chromatin brought together international experts from across the field of nuclear envelope biology to discuss the advancements in a class of tissue-specific degenerative diseases called the laminopathies. Clinically, these range from relatively mild fat-wasting disorders to the severe premature aging condition known as Hutchinson-Gilford progeria syndrome. Since the first association of the nuclear envelope with human inherited disease in 1994, there has been an exponential increase in an unexpected variety of functions associated with nuclear envelope proteins, ranging from mechanical support and nucleocytoskeletal connections to regulation of chromatin organization and gene expression. This Biochemical Society Focused Meeting reinforced the functional complexity of nuclear-associated diseases, revealed new avenues to be investigated and highlighted the signalling pathways suitable as therapeutic targets.
Collapse
|