1
|
Yang L, Ruan Y, Xu H. HIST3H2A promotes the progression of prostate cancer through inhibiting cell necroptosis. BMC Cancer 2024; 24:544. [PMID: 38684944 PMCID: PMC11059659 DOI: 10.1186/s12885-024-12308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
In recent years, there has been an increase in the incidence and mortality rates of prostate cancer (PCa). However, the specific molecular mechanisms underlying its occurrence and development remain unclear, necessitating the identification of new therapeutic targets. Through bioinformatics analysis, we discovered a previously unstudied differential gene called HIST3H2A in prostate cancer. Our study revealed that HIST3H2A is highly expressed in PCa tissues, as confirmed by analysis of both the GEO and UALCAN databases. Further analysis using the KEGG database demonstrated that HIST3H2A regulates the pathway of programmed necroptosis in cells. Additionally, we observed significant up-regulation of HIST3H2A in PCa tissues and cell lines. HIST3H2A was found to regulate cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) process in tumors. Notably, HIST3H2A's role in regulating programmed necroptosis in prostate cancer cells differs from its role in apoptosis. In vitro and in vivo experiments collectively support the key role of HIST3H2A in promoting the development of prostate cancer, highlighting its potential as a therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Lihong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Amigo R, Raiqueo F, Tarifeño E, Farkas C, Gutiérrez JL. Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 2023; 24:15245. [PMID: 37894925 PMCID: PMC10607297 DOI: 10.3390/ijms242015245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.
Collapse
Affiliation(s)
- Roberto Amigo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Fernanda Raiqueo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Estefanía Tarifeño
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Carlos Farkas
- Biomedical Sciences Research Laboratory, Department of Basic Sciences and Morphology, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - José L. Gutiérrez
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| |
Collapse
|
3
|
Barnes T, Korber P. The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. Int J Mol Sci 2021; 22:ijms22158233. [PMID: 34360997 PMCID: PMC8347975 DOI: 10.3390/ijms22158233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(dA:dT) tracts cause nucleosome depletion in many species, e.g., at promoters and replication origins. Their intrinsic biophysical sequence properties make them stiff and unfavorable for nucleosome assembly, as probed by in vitro nucleosome reconstitution. The mere correlation between nucleosome depletion over poly(dA:dT) tracts in in vitro reconstituted and in in vivo chromatin inspired an intrinsic nucleosome exclusion mechanism in vivo that is based only on DNA and histone properties. However, we compile here published and new evidence that this correlation does not reflect mechanistic causation. (1) Nucleosome depletion over poly(dA:dT) in vivo is not universal, e.g., very weak in S. pombe. (2) The energy penalty for incorporating poly(dA:dT) tracts into nucleosomes is modest (<10%) relative to ATP hydrolysis energy abundantly invested by chromatin remodelers. (3) Nucleosome depletion over poly(dA:dT) is much stronger in vivo than in vitro if monitored without MNase and (4) actively maintained in vivo. (5) S. cerevisiae promoters evolved a strand-biased poly(dA) versus poly(dT) distribution. (6) Nucleosome depletion over poly(dA) is directional in vivo. (7) The ATP dependent chromatin remodeler RSC preferentially and directionally displaces nucleosomes towards 5′ of poly(dA). Especially distribution strand bias and displacement directionality would not be expected for an intrinsic mechanism. Together, this argues for an in vivo mechanism where active and species-specific read out of intrinsic sequence properties, e.g., by remodelers, shapes nucleosome organization.
Collapse
|
4
|
Elbahnsi A, Retureau R, Baaden M, Hartmann B, Oguey C. Holding the Nucleosome Together: A Quantitative Description of the DNA–Histone Interface in Solution. J Chem Theory Comput 2018; 14:1045-1058. [DOI: 10.1021/acs.jctc.7b00936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ahmad Elbahnsi
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
- LPTM,
UMR 8089, CNRS, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| | - Romain Retureau
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Brigitte Hartmann
- LBPA,
UMR 8113, ENS Paris-Saclay - CNRS, 61 avenue du Président Wilson, 94235 cedex Cachan, France
| | - Christophe Oguey
- LPTM,
UMR 8089, CNRS, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
| |
Collapse
|
5
|
Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning. PLoS Pathog 2016; 12:e1006080. [PMID: 28033404 PMCID: PMC5198986 DOI: 10.1371/journal.ppat.1006080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/19/2016] [Indexed: 11/19/2022] Open
Abstract
The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome. Nucleosomes are not positioned randomly on DNA but on preferential sites with respect to the underlying DNA sequence. Histones belong to the most conserved eukaryotic proteins, as sequence dependent nucleosome positioning is an essential regulatory feature of nucleosomes, determining the accessibility of regulatory factors to DNA. We determined the biochemical properties of plasmodium histones and show that they are distinct from human forms, explaining the accessible chromatin structure of P. falciparum. Amino acid exchanges in the histones do not present an adaption to the AT-rich genome, but rather reduce the binding affinity to GC-rich DNA sequences, resulting in rather unstable nucleosomes with labile H2A and H2B, requiring extra-nucleosomal positioning signals to keep them on place. Plasmodium chromatin exhibits the shortest nucleosome spacing known to date potentially inhibiting the formation of higher order structures and maintaining chromatin accessible.
Collapse
|
6
|
Yague-Sanz C, Vázquez E, Sánchez M, Antequera F, Hermand D. A conserved role of the RSC chromatin remodeler in the establishment of nucleosome-depleted regions. Curr Genet 2016; 63:187-193. [PMID: 27558480 PMCID: PMC5383693 DOI: 10.1007/s00294-016-0642-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022]
Abstract
The occupancy of nucleosomes governs access to the eukaryotic genomes and results from a combination of biophysical features and the effect of ATP-dependent remodelling complexes. Most promoter regions show a conserved pattern characterized by a nucleosome-depleted region (NDR) flanked by nucleosomal arrays. The conserved RSC remodeler was reported to be critical to establish NDR in vivo in budding yeast but other evidences suggested that this activity may not be conserved in fission yeast. By reanalysing and expanding previously published data, we propose that NDR formation requires, at least partially, RSC in both yeast species. We also discuss the most prominent biological role of RSC and the possibility that non-essential subunits do not define alternate versions of the complex.
Collapse
Affiliation(s)
- Carlo Yague-Sanz
- URPHYM-GEMO, Namur Research College (NARC), The University of Namur, 5000, Namur, Belgium
| | - Enrique Vázquez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Damien Hermand
- URPHYM-GEMO, Namur Research College (NARC), The University of Namur, 5000, Namur, Belgium.
| |
Collapse
|
7
|
High-resolution biophysical analysis of the dynamics of nucleosome formation. Sci Rep 2016; 6:27337. [PMID: 27263658 PMCID: PMC4897087 DOI: 10.1038/srep27337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical "Widom" sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides 'snapshots' of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization.
Collapse
|
8
|
Abstract
Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.
Collapse
|
9
|
Iacovelli F, Falconi M. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools. FEBS J 2015; 282:3298-310. [DOI: 10.1111/febs.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Affiliation(s)
| | - Mattia Falconi
- Department of Biology; University of Rome “Tor Vergata”; Italy
| |
Collapse
|
10
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
11
|
Osberg B, Nuebler J, Korber P, Gerland U. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays. Nucleic Acids Res 2014; 42:13633-45. [PMID: 25428353 PMCID: PMC4267636 DOI: 10.1093/nar/gku1190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the 'softness' of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to 'hard' particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought.
Collapse
Affiliation(s)
- Brendan Osberg
- Theory of Complex Biosystems, Physik-Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Johannes Nuebler
- Theory of Complex Biosystems, Physik-Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | - Ulrich Gerland
- Theory of Complex Biosystems, Physik-Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| |
Collapse
|
12
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
13
|
Xu X, Ben Imeddourene A, Zargarian L, Foloppe N, Mauffret O, Hartmann B. NMR studies of DNA support the role of pre-existing minor groove variations in nucleosome indirect readout. Biochemistry 2014; 53:5601-12. [PMID: 25102280 DOI: 10.1021/bi500504y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated how the intrinsic sequence-dependent properties probed via the phosphate linkages (BI ↔ BII equilibrium) influence the preferred shape of free DNA, and how this affects the nucleosome formation. First, this exploits NMR solution studies of four B-DNA dodecamers that together cover 39 base pairs of the 5' half of the sequence 601, of special interest for nucleosome formation. The results validate our previous prediction of a systematic, general sequence effect on the intrinsic backbone BII propensities. NMR provides new evidence that the backbone behavior is intimately coupled to the minor groove width. Second, application of the backbone behavior predictions to the full sequence 601 and other relevant sequences demonstrates that alternation of intrinsic low and high BII propensities, coupled to intrinsic narrow and wide minor grooves, largely coincides with the sinusoidal variations of the DNA minor groove width observed in crystallographic structures of the nucleosome. This correspondence is much poorer with low affinity sequences. Overall, the results indicate that nucleosome formation involves an indirect readout process implicating pre-existing DNA minor groove conformations. It also illustrates how the prediction of the intrinsic structural DNA behavior offers a powerful framework to gain explanatory insight on how proteins read DNA.
Collapse
Affiliation(s)
- Xiaoqian Xu
- LBPA, UMR 8113, ENS de Cachan CNRS , 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Beshnova DA, Cherstvy AG, Vainshtein Y, Teif VB. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions. PLoS Comput Biol 2014; 10:e1003698. [PMID: 24992723 PMCID: PMC4081033 DOI: 10.1371/journal.pcbi.1003698] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.
Collapse
Affiliation(s)
- Daria A. Beshnova
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| | - Yevhen Vainshtein
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | - Vladimir B. Teif
- Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| |
Collapse
|
15
|
Parmar JJ, Marko JF, Padinhateeri R. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence. Nucleic Acids Res 2013; 42:128-36. [PMID: 24068556 PMCID: PMC3874171 DOI: 10.1093/nar/gkt854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted ‘barriers’ co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that ‘statistical’ positioning of nucleosomes against ‘barriers’, hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.
Collapse
Affiliation(s)
- Jyotsana J Parmar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India, Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA, Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|
16
|
Touat-Todeschini L, Hiriart E, Verdel A. Nucleosome positioning and transcription: fission yeast CHD remodellers make their move. EMBO J 2012; 31:4371-2. [PMID: 23103764 DOI: 10.1038/emboj.2012.284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Regularly positioned nucleosomes are a common feature of 5' ends of most eukaryotic genes. A series of three studies, Shim et al (2012) and Pointner et al (2012) in this issue of The EMBO Journal and Hennig et al (2012) in EMBO Reports, now show that in the fission yeast Schizosaccharomyces pombe this intragenic nucleosome positioning mostly requires two ATP-dependent remodellers of the CHD family, Hrp1 and Hrp3. Moreover, they suggest that Hrp1- and Hrp3-dependent nucleosome spacing contributes to the silencing of cryptic antisense transcription.
Collapse
Affiliation(s)
- Leila Touat-Todeschini
- INSERM, U823, Université Joseph Fourier - Grenoble 1, Institut Albert Bonniot, Faculté de Médecine, La Tronche Cedex, France
| | | | | |
Collapse
|
17
|
From beads on a string to the pearls of regulation: the structure and dynamics of chromatin. Biochem Soc Trans 2012; 40:331-4. [PMID: 22435807 DOI: 10.1042/bst20120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The assembly of eukaryotic chromatin, and the bearing of its structural organization on the regulation of gene expression, were the central topics of a recent conference organized jointly by the Biochemical Society and Wellcome Trust. A range of talks and poster presentations covered topical aspects of this research field and illuminated recent advances in our understanding of the structure and function of chromatin. The two-day meeting had stimulating presentations complemented with lively discourse and interactions of participants. In the present paper, we summarize the topics presented at the meeting, in particular highlighting subjects that are reviewed in more detail within this issue of Biochemical Society Transactions. The reports bring to life the truly fascinating molecular and structural biology of chromatin.
Collapse
|