1
|
Cleavage of LOXL1 by BMP1 and ADAMTS14 Proteases Suggests a Role for Proteolytic Processing in the Regulation of LOXL1 Function. Int J Mol Sci 2022; 23:ijms23063285. [PMID: 35328709 PMCID: PMC8951505 DOI: 10.3390/ijms23063285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Members of the lysyl oxidase (LOX) family catalyze the oxidative deamination of lysine and hydroxylysine residues in collagen and elastin in the initiation step of the formation of covalent cross-links, an essential process for connective tissue maturation. Proteolysis has emerged as an important level of regulation of LOX enzymes with the cleavage of the LOX isoform by metalloproteinases of the BMP1 (bone morphogenetic protein 1) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) families as a model example. Lysyl oxidase-like 1 (LOXL1), an isoform associated with pelvic organ prolapse and pseudoexfoliation (PEX) glaucoma, has also been reported to be proteolytically processed by these proteases. However, precise molecular information on these proteolytic events is not available. In this study, using genetic cellular models, along with proteomic analyses, we describe that LOXL1 is processed by BMP1 and ADAMTS14 and identify the processing sites in the LOXL1 protein sequence. Our data show that BMP1 cleaves LOXL1 in a unique location within the pro-peptide region, whereas ADAMTS14 processes LOXL1 in at least three different sites located within the pro-peptide and in the first residues of the catalytic domain. Taken together, these results suggest a complex regulation of LOXL1 function by BMP1- and ADAMTS14-mediated proteolysis where LOXL1 enzymes retaining variable fragments of N-terminal region may display different capabilities.
Collapse
|
2
|
Jamecna D, Antonny B. Intrinsically disordered protein regions at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159020. [PMID: 34352388 DOI: 10.1016/j.bbalip.2021.159020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder. In this review, we discuss the various roles of intrinsically disordered protein regions (IDPRs) in LTPs as well as in other proteins that are associated with organelle contact sites. We distinguish the following functions: (i) to act as flexible tethers between two membranes; (ii) to act as entropic barriers to prevent protein crowding and regulate membrane tethering geometry; (iii) to define the action range of catalytic domains. These functions are added to other functions of IDPRs in membrane environments, such as mediating protein-protein and protein-membrane interactions. We suggest that the overall efficiency and fidelity of contact sites might require fine coordination between all these IDPR activities.
Collapse
Affiliation(s)
- Denisa Jamecna
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France; Biochemistry Center (BZH), Heidelberg, Germany
| | - Bruno Antonny
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
3
|
Wang YP, Wu EJ, Lurwanu Y, Ding JP, He DC, Waheed A, Nkurikiyimfura O, Liu ST, Li WY, Wang ZH, Yang L, Zhan J. Evidence for a synergistic effect of post-translational modifications and genomic composition of eEF-1α on the adaptation of Phytophthora infestans. Ecol Evol 2021; 11:5484-5496. [PMID: 34026022 PMCID: PMC8131795 DOI: 10.1002/ece3.7442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022] Open
Abstract
Genetic variation plays a fundamental role in pathogen's adaptation to environmental stresses. Pathogens with low genetic variation tend to survive and proliferate more poorly due to their lack of genotypic/phenotypic polymorphisms in responding to fluctuating environments. Evolutionary theory hypothesizes that the adaptive disadvantage of genes with low genomic variation can be compensated for structural diversity of proteins through post-translation modification (PTM) but this theory is rarely tested experimentally and its implication to sustainable disease management is hardly discussed. In this study, we analyzed nucleotide characteristics of eukaryotic translation elongation factor-1α (eEF-lα) gene from 165 Phytophthora infestans isolates and the physical and chemical properties of its derived proteins. We found a low sequence variation of eEF-lα protein, possibly attributable to purifying selection and a lack of intra-genic recombination rather than reduced mutation. In the only two isoforms detected by the study, the major one accounted for >95% of the pathogen collection and displayed a significantly higher fitness than the minor one. High lysine representation enhances the opportunity of the eEF-1α protein to be methylated and the absence of disulfide bonds is consistent with the structural prediction showing that many disordered regions are existed in the protein. Methylation, structural disordering, and possibly other PTMs ensure the ability of the protein to modify its functions during biological, cellular and biochemical processes, and compensate for its adaptive disadvantage caused by sequence conservation. Our results indicate that PTMs may function synergistically with nucleotide codes to regulate the adaptive landscape of eEF-1α, possibly as well as other housekeeping genes, in P. infestans. Compensatory evolution between pre- and post-translational phase in eEF-1α could enable pathogens quickly adapting to disease management strategies while efficiently maintaining critical roles of the protein playing in biological, cellular, and biochemical activities. Implications of these results to sustainable plant disease management are discussed.
Collapse
Affiliation(s)
- Yan-Ping Wang
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - E-Jiao Wu
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Yahuza Lurwanu
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
- Department of Crop Protection Bayero University Kano Kano Nigeria
| | - Ji-Peng Ding
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Dun-Chun He
- School of Economics and Trade Fujian Jiangxia University Fuzhou China
| | - Abdul Waheed
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Oswald Nkurikiyimfura
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Shi-Ting Liu
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Wen-Yang Li
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Zong-Hua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
- Institute of Oceanography Minjiang University Fuzhou China
| | - Lina Yang
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
- Institute of Oceanography Minjiang University Fuzhou China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
4
|
NMR in structure-based drug design. Essays Biochem 2017; 61:485-493. [PMID: 29118095 DOI: 10.1042/ebc20170037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed.
Collapse
|
5
|
Dorival J, Annaval T, Risser F, Collin S, Roblin P, Jacob C, Gruez A, Chagot B, Weissman KJ. Characterization of Intersubunit Communication in the Virginiamycin trans-Acyl Transferase Polyketide Synthase. J Am Chem Soc 2016; 138:4155-67. [DOI: 10.1021/jacs.5b13372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan Dorival
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Thibault Annaval
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Fanny Risser
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Sabrina Collin
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Pierre Roblin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette CEDEX, France
- UR1268 Biopolymères, Interactions Assemblages (BIA), INRA, Rue de la Géraudière
BP 71627, 44316 Nantes CEDEX 3, France
| | - Christophe Jacob
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Arnaud Gruez
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Benjamin Chagot
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| | - Kira J. Weissman
- UMR
7365, Ingénierie Moléculaire et Physiopathologie Articulaire
(IMoPA), CNRS-Université de Lorraine, Biopôle de l’Université de Lorraine, Campus Biologie Santé, 9
Avenue de la Forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy CEDEX, France
| |
Collapse
|
7
|
Karamanos TK, Kalverda AP, Thompson GS, Radford SE. Mechanisms of amyloid formation revealed by solution NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:86-104. [PMID: 26282197 PMCID: PMC4568309 DOI: 10.1016/j.pnmrs.2015.05.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 05/29/2023]
Abstract
Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein-protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
8
|
Hurley JM, Larrondo LF, Loros JJ, Dunlap JC. Conserved RNA helicase FRH acts nonenzymatically to support the intrinsically disordered neurospora clock protein FRQ. Mol Cell 2013; 52:832-43. [PMID: 24316221 DOI: 10.1016/j.molcel.2013.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 11/24/2022]
Abstract
Protein conformation dictates a great deal of protein function. A class of naturally unstructured proteins, termed intrinsically disordered proteins (IDPs), demonstrates that flexibility in structure can be as important mechanistically as rigid structure. At the core of the circadian transcription/translation feedback loop in Neurospora crassa is the protein FREQUENCY (FRQ), shown here shown to share many characteristics of IDPs. FRQ in turn binds to FREQUENCY-Interacting RNA Helicase (FRH), whose clock function has been assumed to relate to its predicted helicase function. However, mutational analyses reveal that the helicase function of FRH is not essential for the clock, and a region of FRH distinct from the helicase region is essential for stabilizing FRQ against rapid degradation via a pathway distinct from its typical ubiquitin-mediated turnover. These data lead to the hypothesis that FRQ is an IDP and that FRH acts nonenzymatically, stabilizing FRQ to enable proper clock circuitry/function.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Jennifer J Loros
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|