1
|
Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nat Ecol Evol 2025; 9:613-627. [PMID: 40033103 PMCID: PMC11976288 DOI: 10.1038/s41559-025-02648-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The origin of eukaryotes was a key event in the history of life. Current leading hypotheses propose that a symbiosis between an asgardarchaeal host cell and an alphaproteobacterial endosymbiont represented a crucial step in eukaryotic origin and that metabolic cross-feeding between the partners provided the basis for their subsequent evolutionary integration. A major unanswered question is whether the metabolism of modern eukaryotes bears any vestige of this ancestral syntrophy. Here we systematically analyse the evolutionary origins of the eukaryotic gene repertoires mediating central carbon metabolism. Our phylogenetic and sequence analyses reveal that this gene repertoire is chimeric, with ancestral contributions from Asgardarchaeota and Alphaproteobacteria operating predominantly in glycolysis and the tricarboxylic acid cycle, respectively. Our analyses also reveal the extent to which this ancestral metabolic interplay has been remodelled via gene loss, transfer and subcellular retargeting in the >2 billion years since the origin of eukaryotic cells, and we identify genetic contributions from other prokaryotic sources in addition to the asgardarchaeal host and alphaproteobacterial endosymbiont. Our work demonstrates that, in contrast to previous assumptions, modern eukaryotic metabolism preserves information about the nature of the original asgardarchaeal-alphaproteobacterial interactions and supports syntrophy scenarios for the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Berend Snel
- Theoretical Biology & Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Richards TA, Eme L, Archibald JM, Leonard G, Coelho SM, de Mendoza A, Dessimoz C, Dolezal P, Fritz-Laylin LK, Gabaldón T, Hampl V, Kops GJPL, Leger MM, Lopez-Garcia P, McInerney JO, Moreira D, Muñoz-Gómez SA, Richter DJ, Ruiz-Trillo I, Santoro AE, Sebé-Pedrós A, Snel B, Stairs CW, Tromer EC, van Hooff JJE, Wickstead B, Williams TA, Roger AJ, Dacks JB, Wideman JG. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol 2024; 22:e3002917. [PMID: 39585925 PMCID: PMC11627563 DOI: 10.1371/journal.pbio.3002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2024] [Indexed: 11/27/2024] Open
Abstract
Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA's gene content.
Collapse
Affiliation(s)
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Guy Leonard
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United States of America
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pavel Dolezal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Lillian K. Fritz-Laylin
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Geert J. P. L. Kops
- Hubrecht Institute-KNAW, Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Michelle M. Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Purificacion Lopez-Garcia
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - James O. McInerney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Sergio A. Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Arnau Sebé-Pedrós
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
3
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Donoghue PCJ, Kay C, Spang A, Szöllősi G, Nenarokova A, Moody ERR, Pisani D, Williams TA. Defining eukaryotes to dissect eukaryogenesis. Curr Biol 2023; 33:R919-R929. [PMID: 37699353 DOI: 10.1016/j.cub.2023.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The origin of eukaryotes is among the most contentious debates in evolutionary biology, attracting multiple seemingly incompatible theories seeking to explain the sequence in which eukaryotic characteristics were acquired. Much of the controversy arises from differing views on the defining characteristics of eukaryotes. We argue that eukaryotes should be defined phylogenetically, and that doing so clarifies where competing hypotheses of eukaryogenesis agree and how we may test among aspects of disagreement. Some hypotheses make predictions about the phylogenetic origins of eukaryotic genes and are distinguishable on that basis. However, other hypotheses differ only in the order of key evolutionary steps, like mitochondrial endosymbiosis and nuclear assembly, which cannot currently be distinguished phylogenetically. Stages within eukaryogenesis may be made identifiable through the absolute dating of gene duplicates that map to eukaryotic traits, such as in genes of host or mitochondrial origin that duplicated and diverged functionally prior to emergence of the last eukaryotic common ancestor. In this way, it may finally be possible to distinguish heat from light in the debate over eukaryogenesis.
Collapse
Affiliation(s)
- Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | - Chris Kay
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg 1790 AB, The Netherlands
| | - Gergely Szöllősi
- Department of Biological Physics, Eötvös Lorand University, H-1117 Budapest, Hungary; MTA-ELTE "Lendü let" Evolutionary Genomics Research Group, H-1117 Budapest, Hungary; Institute of Evolution, Centre for Ecological Research, H-1113 Budapest, Hungary
| | - Anna Nenarokova
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK; Bristol Palaeobiology Group, School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK.
| |
Collapse
|
5
|
López-García P, Moreira D. The symbiotic origin of the eukaryotic cell. C R Biol 2023; 346:55-73. [PMID: 37254790 DOI: 10.5802/crbiol.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Eukaryogenesis represented a major evolutionary transition that led to the emergence of complex cells from simpler ancestors. For several decades, the most accepted scenario involved the evolution of an independent lineage of proto-eukaryotes endowed with an endomembrane system, including a nuclear compartment, a developed cytoskeleton and phagocytosis, which engulfed the alphaproteobacterial ancestor of mitochondria. However, the recent discovery by metagenomic and cultural approaches of Asgard archaea, which harbour many genes in common with eukaryotes and are their closest relatives in phylogenomic trees, rather supports scenarios based on the symbiosis of one Asgard-like archaeon and one or more bacteria at the origin of the eukaryotic cell. Here, we review the recent discoveries that led to this conceptual shift, briefly evoking current models of eukaryogenesis and the challenges ahead to discriminate between them and to establish a detailed, plausible scenario that accounts for the evolution of eukaryotic traits from those of their prokaryotic ancestors.
Collapse
|
6
|
Mencía M. Acid digestion and symbiont: Proton sharing at the origin of mitochondriogenesis?: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria: Proton production by a symbiotic bacterium may have been the origin of two hallmark eukaryotic features, acid digestion and mitochondria. Bioessays 2023; 45:e2200136. [PMID: 36373631 DOI: 10.1002/bies.202200136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
The initial relationships between organisms leading to endosymbiosis and the first eukaryote are currently a topic of hot debate. Here, I present a theory that offers a gradual scenario in which the origins of phagocytosis and mitochondria are intertwined in such a way that the evolution of one would not be possible without the other. In this scenario, the premitochondrial bacterial symbiont became initially associated with a protophagocytic host on the basis of cooperation to kill prey with symbiont-produced toxins and reactive oxygen species (ROS). Subsequently, the cooperation was focused on the digestion stage, through the acidification of the protophagocytic cavities via exportation of protons produced by the aerobic respiration of the symbiont. The host gained an improved phagocytic capacity and the symbiont received organic compounds from prey. As the host gradually lost its membrane energetics to develop lysosomal digestion, respiration was centralized in the premitochondrial symbiont for energy production for the consortium.
Collapse
Affiliation(s)
- Mario Mencía
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CBMSO) UAM-CSIC, Universidad Autónoma de Madrid, Madrid, 28409, Spain
| |
Collapse
|
7
|
Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 2022; 6:520-532. [PMID: 35449457 DOI: 10.1038/s41559-022-01733-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The endosymbiotic origin of mitochondria during eukaryogenesis has long been viewed as an adaptive response to the oxygenation of Earth's surface environment, presuming a fundamentally aerobic lifestyle for the free-living bacterial ancestors of mitochondria. This oxygen-centric view has been robustly challenged by recent advances in the Earth and life sciences. While the permanent oxygenation of the atmosphere above trace concentrations is now thought to have occurred 2.2 billion years ago, large parts of the deep ocean remained anoxic until less than 0.5 billion years ago. Neither fossils nor molecular clocks correlate the origin of mitochondria, or eukaryogenesis more broadly, to either of these planetary redox transitions. Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of pervasive deep-sea anoxia and variable surface-water oxygenation. The discovery and cultivation of the Asgard archaea has reinforced metabolic evidence that eukaryogenesis was initially mediated by syntrophic H2 exchange between an archaeal host and an α-proteobacterial symbiont living under anoxia. Together, these results temporally, spatially and metabolically decouple the earliest stages of eukaryogenesis from the oxygen content of the surface ocean and atmosphere. Rather than reflecting the ancestral metabolic state, obligate aerobiosis in eukaryotes is most probably derived, having only become globally widespread over the past 1 billion years as atmospheric oxygen approached modern levels.
Collapse
|
8
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
9
|
Hugoson E, Guliaev A, Ammunét T, Guy L. Host-adaptation in Legionellales is 1.9 Ga, coincident with eukaryogenesis. Mol Biol Evol 2022; 39:6527638. [PMID: 35167692 PMCID: PMC8896642 DOI: 10.1093/molbev/msac037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteria adapting to living in a host cell caused the most salient events in the evolution of eukaryotes, namely the seminal fusion with an archaeon, and the emergence of both mitochondrion and chloroplast. A bacterial clade that may hold the key to understanding these events is the deep-branching gammaproteobacterial order Legionellales-containing among others Coxiella and Legionella-of which all known members grow inside eukaryotic cells. Here, by analyzing 35 novel Legionellales genomes mainly acquired through metagenomics, we show that this group is much more diverse than previously thought, and that key host-adaptation events took place very early in its evolution. Crucial virulence factors like the Type IVB secretion (Dot/Icm) system and two shared effector proteins were gained in the last Legionellales common ancestor (LLCA). Many metabolic gene families were lost in LLCA and its immediate descendants, including functions directly and indirectly related to molybdenum metabolism. On the other hand, genome sizes increased in the ancestors of the Legionella genus. We estimate that LLCA lived circa 1.89 Ga ago, probably predating the last eukaryotic common ancestor (LECA) by circa 0.4-1.0 Ga. These elements strongly indicate that host-adaptation arose only once in Legionellales, and that these bacteria were using advanced molecular machinery to exploit and manipulate host cells early in eukaryogenesis.
Collapse
Affiliation(s)
- Eric Hugoson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, D-24306, Germany
| | - Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Tea Ammunét
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden
| |
Collapse
|
10
|
Medina-Chávez NO, Travisano M. Archaeal Communities: The Microbial Phylogenomic Frontier. Front Genet 2022; 12:693193. [PMID: 35154237 PMCID: PMC8826477 DOI: 10.3389/fgene.2021.693193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Archaea are a unique system for investigating the diversity of life. There are the most diverse group of organisms with the longest evolutionary history of life on Earth. Phylogenomic investigations reveal the complex evolutionary history of Archaea, overturning longstanding views of the history of life. They exist in the harshest environments and benign conditions, providing a system to investigate the basis for living in extreme environments. They are frequently members of microbial communities, albeit generally rare. Archaea were central in the evolution of Eukaryotes and can be used as a proxy for studying life on other planets. Future advances will depend not only upon phylogenomic studies but also on a better understanding of isolation and cultivation techniques.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Skejo J, Garg SG, Gould SB, Hendriksen M, Tria FDK, Bremer N, Franjević D, Blackstone NW, Martin WF. Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biol Evol 2021; 13:evab096. [PMID: 33963405 PMCID: PMC8290118 DOI: 10.1093/gbe/evab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Modern accounts of eukaryogenesis entail an endosymbiotic encounter between an archaeal host and a proteobacterial endosymbiont, with subsequent evolution giving rise to a unicell possessing a single nucleus and mitochondria. The mononucleate state of the last eukaryotic common ancestor (LECA) is seldom, if ever, questioned, even though cells harboring multiple (syncytia, coenocytes, and polykaryons) are surprisingly common across eukaryotic supergroups. Here, we present a survey of multinucleated forms. Ancestral character state reconstruction for representatives of 106 eukaryotic taxa using 16 different possible roots and supergroup sister relationships, indicate that LECA, in addition to being mitochondriate, sexual, and meiotic, was multinucleate. LECA exhibited closed mitosis, which is the rule for modern syncytial forms, shedding light on the mechanics of its chromosome segregation. A simple mathematical model shows that within LECA's multinucleate cytosol, relationships among mitochondria and nuclei were neither one-to-one, nor one-to-many, but many-to-many, placing mitonuclear interactions and cytonuclear compatibility at the evolutionary base of eukaryotic cell origin. Within a syncytium, individual nuclei and individual mitochondria function as the initial lower-level evolutionary units of selection, as opposed to individual cells, during eukaryogenesis. Nuclei within a syncytium rescue each other's lethal mutations, thereby postponing selection for viable nuclei and cytonuclear compatibility to the generation of spores, buffering transitional bottlenecks at eukaryogenesis. The prokaryote-to-eukaryote transition is traditionally thought to have left no intermediates, yet if eukaryogenesis proceeded via a syncytial common ancestor, intermediate forms have persisted to the present throughout the eukaryotic tree as syncytia but have so far gone unrecognized.
Collapse
Affiliation(s)
- Josip Skejo
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hendriksen
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nico Bremer
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Damjan Franjević
- Faculty of Science, Division of Zoology, Department of Biology, University of Zagreb, Evolution Lab, Zagreb, Croatia
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Speijer D. Zombie ideas about early endosymbiosis: Which entry mechanisms gave us the "endo" in different endosymbionts? Bioessays 2021; 43:e2100069. [PMID: 34008202 DOI: 10.1002/bies.202100069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/31/2023]
Abstract
Recently, a review regarding the mechanics and evolution of mitochondrial fission appeared in Nature. Surprisingly, it stated authoritatively that the mitochondrial outer membrane, in contrast with the inner membrane of bacterial descent, was acquired from the host, presumably during uptake. However, it has been known for quite some time that this membrane was also derived from the Gram-negative, alpha-proteobacterium related precursor of present-day mitochondria. The zombie idea of the host membrane still surrounding the endosymbiont is not only wrong, but more importantly, might hamper the proper conception of possible scenarios of eukaryogenesis. Why? Because it steers the imagination not only with regard to possible uptake mechanisms, but also regarding what went on before. Here I critically discuss both the evidence for the continuity of the bacterial outer membrane, the reasons for the persistence of the erroneous host membrane hypothesis and the wider implications of these misconceptions for the ideas regarding events occurring during the first steps towards the evolution of the eukaryotes and later major eukaryotic differentiations. I will also highlight some of the latest insights regarding different instances of endosymbiont evolution.
Collapse
Affiliation(s)
- Dave Speijer
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Knopp M, Stockhorst S, van der Giezen M, Garg SG, Gould SB. The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3. Genome Biol Evol 2021; 13:6248096. [PMID: 33892498 PMCID: PMC8220308 DOI: 10.1093/gbe/evab085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
The identification of the asgard archaea has fueled speculations regarding the nature of the archaeal host in eukaryogenesis and its level of complexity prior to endosymbiosis. Here, we analyzed the coding capacity of 150 eukaryotes, 1,000 bacteria, and 226 archaea, including the only cultured member of the asgard archaea. Clustering methods that consistently recover endosymbiotic contributions to eukaryotic genomes recover an asgard archaeal-unique contribution of a mere 0.3% to protein families present in the last eukaryotic common ancestor, while simultaneously suggesting that this group's diversity rivals that of all other archaea combined. The number of homologs shared exclusively between asgard archaea and eukaryotes is only 27 on average. This tiny asgard archaeal-unique contribution to the root of eukaryotic protein families questions claims that archaea evolved complexity prior to eukaryogenesis. Genomic and cellular complexity remains a eukaryote-specific feature and is best understood as the archaeal host's solution to housing an endosymbiont.
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Simon Stockhorst
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
14
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
15
|
Ndhlovu A, Durand PM, Ramsey G. Programmed cell death as a black queen in microbial communities. Mol Ecol 2020; 30:1110-1119. [PMID: 33253458 DOI: 10.1111/mec.15757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/25/2020] [Indexed: 01/20/2023]
Abstract
Programmed cell death (PCD) in unicellular organisms is in some instances an altruistic trait. When the beneficiaries are clones or close kin, kin selection theory may be used to explain the evolution of the trait, and when the trait evolves in groups of distantly related individuals, group or multilevel selection theory is invoked. In mixed microbial communities, the benefits are also available to unrelated taxa. But the evolutionary ecology of PCD in communities is poorly understood. Few hypotheses have been offered concerning the community role of PCD despite its far-reaching effects. The hypothesis we consider here is that PCD is a black queen. The Black Queen Hypothesis (BQH) outlines how public goods arising from a leaky function are exploited by other taxa in the community. Black Queen (BQ) traits are essential for community survival, but only some members bear the cost of possessing them, while others lose the trait In addition, BQ traits have been defined in terms of adaptive gene loss, and it is unknown whether this has occurred for PCD. Our conclusion is that PCD fulfils the two most important criteria of a BQ (leakiness and costliness), but that more empirical data are needed for assessing the remaining two criteria. In addition, we hold that for viewing PCD as a BQ, the original BQH needs to include social traits. Thus, despite some empirical and conceptual shortcomings, the BQH provides a helpful avenue for investigating PCD in microbial communities.
Collapse
Affiliation(s)
- Andrew Ndhlovu
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Pierre M Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Grant Ramsey
- Institute of Philosophy, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Vosseberg J, van Hooff JJE, Marcet-Houben M, van Vlimmeren A, van Wijk LM, Gabaldón T, Snel B. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat Ecol Evol 2020; 5:92-100. [PMID: 33106602 PMCID: PMC7610411 DOI: 10.1038/s41559-020-01320-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Abstract
Eukaryogenesis is one of the most enigmatic evolutionary transitions, during which simple prokaryotic cells gave rise to complex eukaryotic cells. While evolutionary intermediates are lacking, gene duplications provide information on the order of events by which eukaryotes originated. Here we use a phylogenomics approach to reconstruct successive steps during eukaryogenesis. We found that gene duplications roughly doubled the proto-eukaryotic gene repertoire, with families inherited from the Asgard archaea-related host being duplicated most. By relatively timing events using phylogenetic distances we inferred that duplications in cytoskeletal and membrane trafficking families were among the earliest events, whereas most other families expanded predominantly after mitochondrial endosymbiosis. Altogether, we infer that the host that engulfed the proto-mitochondrion had some eukaryote-like complexity, which drastically increased upon mitochondrial acquisition. This scenario bridges the signs of complexity observed in Asgard archaeal genomes to the proposed role of mitochondria in triggering eukaryogenesis.
Collapse
Affiliation(s)
- Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jolien J E van Hooff
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.,Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain.,Mechanisms of Disease, Institute for Research in Biomedicine, Barcelona, Spain
| | - Anne van Vlimmeren
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.,Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Leny M van Wijk
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain. .,Mechanisms of Disease, Institute for Research in Biomedicine, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77:3503-3523. [PMID: 32008087 PMCID: PMC7452879 DOI: 10.1007/s00018-020-03462-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
Collapse
Affiliation(s)
- István Zachar
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049, Munich, Germany.
| | - Gergely Boza
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
18
|
Abstract
Phagocytosis, or 'cell eating', is a eukaryote-specific process where particulate matter is engulfed via invaginations of the plasma membrane. The origin of phagocytosis has been central to discussions on eukaryogenesis for decades-, where it is argued as being either a prerequisite for, or consequence of, the acquisition of the ancestral mitochondrion. Recently, genomic and cytological evidence has increasingly supported the view that the pre-mitochondrial host cell-a bona fide archaeon branching within the 'Asgard' archaea-was incapable of phagocytosis and used alternative mechanisms to incorporate the alphaproteobacterial ancestor of mitochondria. Indeed, the diversity and variability of proteins associated with phagosomes across the eukaryotic tree suggest that phagocytosis, as seen in a variety of extant eukaryotes, may have evolved independently several times within the eukaryotic crown-group. Since phagocytosis is critical to the functioning of modern marine food webs (without it, there would be no microbial loop or animal life), multiple late origins of phagocytosis could help explain why many of the ecological and evolutionary innovations of the Neoproterozoic Era (e.g. the advent of eukaryotic biomineralization, the 'Rise of Algae' and the origin of animals) happened when they did.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Comparing Early Eukaryotic Integration of Mitochondria and Chloroplasts in the Light of Internal ROS Challenges: Timing is of the Essence. mBio 2020; 11:mBio.00955-20. [PMID: 32430475 PMCID: PMC7240161 DOI: 10.1128/mbio.00955-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
When trying to reconstruct the evolutionary trajectories during early eukaryogenesis, one is struck by clear differences in the developments of two organelles of endosymbiotic origin: the mitochondrion and the chloroplast. From a symbiogenic perspective, eukaryotic development can be interpreted as a process in which many of the defining eukaryotic characteristics arose as a result of mutual adaptions of both prokaryotes (an archaeon and a bacterium) involved. This implies that many steps during the bacterium-to-mitochondrion transition trajectory occurred in an intense period of dramatic and rapid changes. In contrast, the subsequent cyanobacterium-to-chloroplast development in a specific eukaryotic subgroup, leading to the photosynthetic lineages, occurred in a full-fledged eukaryote. The commonalities and differences in the two trajectories shed an interesting light on early, and ongoing, eukaryotic evolutionary driving forces, especially endogenous reactive oxygen species (ROS) formation. Differences between organellar ribosomes, changes to the electron transport chain (ETC) components, and mitochondrial codon reassignments in nonplant mitochondria can be understood when mitochondrial ROS formation, e.g., during high energy consumption in heterotrophs, is taken into account.IMPORTANCE The early eukaryotic evolution was deeply influenced by the acquisition of two endosymbiotic organelles - the mitochondrion and the chloroplast. Here we discuss the possibly important role of reactive oxygen species in these processes.
Collapse
|
20
|
Diversity, ecology and evolution of Archaea. Nat Microbiol 2020; 5:887-900. [PMID: 32367054 DOI: 10.1038/s41564-020-0715-z] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Abstract
Compared to bacteria, our knowledge of archaeal biology is limited. Historically, microbiologists have mostly relied on culturing and single-gene diversity surveys to understand Archaea in nature. However, only six of the 27 currently proposed archaeal phyla have cultured representatives. Advances in genomic sequencing and computational approaches are revolutionizing our understanding of Archaea. The recovery of genomes belonging to uncultured groups from the environment has resulted in the description of several new phyla, many of which are globally distributed and are among the predominant organisms on the planet. In this Review, we discuss how these genomes, together with long-term enrichment studies and elegant in situ measurements, are providing insights into the metabolic capabilities of the Archaea. We also debate how such studies reveal how important Archaea are in mediating an array of ecological processes, including global carbon and nutrient cycles, and how this increase in archaeal diversity has expanded our view of the tree of life and early archaeal evolution, and has provided new insights into the origin of eukaryotes.
Collapse
|
21
|
López-García P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 2020; 5:655-667. [DOI: 10.1038/s41564-020-0710-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/13/2020] [Indexed: 11/10/2022]
|
22
|
Brueckner J, Martin WF. Bacterial Genes Outnumber Archaeal Genes in Eukaryotic Genomes. Genome Biol Evol 2020; 12:282-292. [PMID: 32142116 PMCID: PMC7151554 DOI: 10.1093/gbe/evaa047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Eukaryotes are typically depicted as descendants of archaea, but their genomes are evolutionary chimeras with genes stemming from archaea and bacteria. Which prokaryotic heritage predominates? Here, we have clustered 19,050,992 protein sequences from 5,443 bacteria and 212 archaea with 3,420,731 protein sequences from 150 eukaryotes spanning six eukaryotic supergroups. By downsampling, we obtain estimates for the bacterial and archaeal proportions. Eukaryotic genomes possess a bacterial majority of genes. On average, the majority of bacterial genes is 56% overall, 53% in eukaryotes that never possessed plastids, and 61% in photosynthetic eukaryotic lineages, where the cyanobacterial ancestor of plastids contributed additional genes to the eukaryotic lineage. Intracellular parasites, which undergo reductive evolution in adaptation to the nutrient rich environment of the cells that they infect, relinquish bacterial genes for metabolic processes. Such adaptive gene loss is most pronounced in the human parasite Encephalitozoon intestinalis with 86% archaeal and 14% bacterial derived genes. The most bacterial eukaryote genome sampled is rice, with 67% bacterial and 33% archaeal genes. The functional dichotomy, initially described for yeast, of archaeal genes being involved in genetic information processing and bacterial genes being involved in metabolic processes is conserved across all eukaryotic supergroups.
Collapse
Affiliation(s)
- Julia Brueckner
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
23
|
Common ancestry of eukaryotes and Asgardarchaeota: Three, two or more cellular domains of life? J Theor Biol 2020; 486:110083. [DOI: 10.1016/j.jtbi.2019.110083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/08/2019] [Accepted: 11/15/2019] [Indexed: 11/24/2022]
|
24
|
Abstract
Phagocytosis is usually defined as the cellular process by which cells internalise particulate matter larger than about 0.5 μm in diameter. It is an endocytic process, distinct from pinocytosis and macropinocytosis. These latter processes may internalise small particles suspended the extracellular fluid, but this is a by-product of internalising the fluid, and is not phagocytosis per se. In contrast, phagocytosis is targeted at solid particulates, usually microbes, which are internalised and "digested" either to provide food, or as part of the immune system of higher animals. The mechanism of phagocytosis may have, at its core, many primitive elements, but it is a highly complex and coordinated series of cell biological and molecular events which together result in the uptake of a particle. In this introduction, the basis of phagocytosis and some ideas of its origin are discussed.
Collapse
|
25
|
Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol 2020; 4:138-147. [PMID: 31819234 PMCID: PMC6942926 DOI: 10.1038/s41559-019-1040-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022]
Abstract
Hypotheses about the origin of eukaryotic cells are classically framed within the context of a universal 'tree of life' based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes. We find that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data. Our analyses support a close relationship between eukaryotes and Asgard archaea and identify the Heimdallarchaeota as the current best candidate for the closest archaeal relatives of the eukaryotic nuclear lineage.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London, UK
| | - Gergely J Szöllősi
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Evolutionary Systems Research Group, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, UK.
| |
Collapse
|
26
|
Gilbert SF. Evolutionary transitions revisited: Holobiont evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:307-314. [PMID: 31565856 DOI: 10.1002/jez.b.22903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
John T. Bonner lists four essential transformations in the evolution of life: the emergence of the eukaryotic cell, meiosis, multicellularity, and the nervous system. This paper analyses the mechanisms for those transitions in light of three of Dr. Bonner's earlier hypotheses: (a) that the organism is its life cycle, (b) that evolution consists of alterations of the life cycle, and (c) that development extends beyond the body and into interactions with other organisms. Using the notion of the holobiont life cycle, this paper attempts to show that these evolutionary transitions can be accomplished through various means of symbiosis. Perceiving the organism both as an interspecies consortium and as a life cycle supports a twofold redefinition of the organism as a holobiont constructed by integrating together the life cycles of several species. These findings highlight the importance of symbiosis and the holobiont development in analyses of evolution.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| |
Collapse
|
27
|
Was the Mitochondrion Necessary to Start Eukaryogenesis? Trends Microbiol 2018; 27:96-104. [PMID: 30466901 DOI: 10.1016/j.tim.2018.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Arguments based on cell energetics favour the view that a mitochondrion capable of oxidative phosphorylation was a prerequisite for the evolution of other features of the eukaryotic cell, including increased volume, genome size and, eventually, phagotrophy. Contrary to this we argue that: (i) extant amitochondriate eukaryotes possess voluminous phagotrophic cells with large genomes; (ii) picoeukaryotes demonstrate that phagotrophy is feasible at prokaryotic cell sizes; and (iii) the assumption that evolution of complex features requires extra ATP, often mentioned in this context, is unfounded and should not be used in such considerations. We claim that the diversity of cell organisations and functions observed today in eukaryotes gives no reason to postulate that a mitochondrion must have preceded phagocytosis in eukaryogenesis.
Collapse
|
28
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|
29
|
Fournier GP, Poole AM. A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree. Front Microbiol 2018; 9:1896. [PMID: 30158917 PMCID: PMC6104171 DOI: 10.3389/fmicb.2018.01896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
The recent discovery of the Lokiarchaeota and other members of the Asgard superphylum suggests that closer analysis of the cell biology and evolution of these groups may help shed light on the origin of the eukaryote cell. Asgard lineages often appear in molecular phylogenies as closely related to eukaryotes, and possess “Eukaryote Signature Proteins” coded by genes previously thought to be unique to eukaryotes. This phylogenetic affinity to eukaryotes has been widely interpreted as indicating that Asgard lineages are “eukaryote-like archaea,” with eukaryotes evolving from within a paraphyletic Archaea. Guided by the established principles of systematics, we examine the potential implications of the monophyly of Asgard lineages and Eukarya. We show that a helpful parallel case is that of Synapsida, a group that includes modern mammals and their more “reptile-like” ancestors, united by shared derived characters that evolved in their common ancestor. While this group contains extinct members that share many similarities with modern reptiles and their extinct relatives, they are evolutionarily distinct from Sauropsida, the group which includes modern birds, reptiles, and all other amniotes. Similarly, Asgard lineages and eukaryotes are united by shared derived characters to the exclusion of all other groups. Consequently, the Asgard group is not only highly informative for our understanding of eukaryogenesis, but may be better understood as being early diverging members of a broader group including eukaryotes, for which we propose the name “Eukaryomorpha.” Significantly, this means that the relationship between Eukarya and Asgard lineages cannot, on its own, resolve the debate over 2 vs. 3 Domains of life; instead, resolving this debate depends upon identifying the root of Archaea with respect to Bacteria.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Anthony M Poole
- Bioinformatics Institute, Te Ao Mārama - Centre for Fundamental Inquiry, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The Origin and Diversification of Mitochondria. Curr Biol 2018; 27:R1177-R1192. [PMID: 29112874 DOI: 10.1016/j.cub.2017.09.015] [Citation(s) in RCA: 660] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondria are best known for their role in the generation of ATP by aerobic respiration. Yet, research in the past half century has shown that they perform a much larger suite of functions and that these functions can vary substantially among diverse eukaryotic lineages. Despite this diversity, all mitochondria derive from a common ancestral organelle that originated from the integration of an endosymbiotic alphaproteobacterium into a host cell related to Asgard Archaea. The transition from endosymbiotic bacterium to permanent organelle entailed a massive number of evolutionary changes including the origins of hundreds of new genes and a protein import system, insertion of membrane transporters, integration of metabolism and reproduction, genome reduction, endosymbiotic gene transfer, lateral gene transfer and the retargeting of proteins. These changes occurred incrementally as the endosymbiont and the host became integrated. Although many insights into this transition have been gained, controversy persists regarding the nature of the original endosymbiont, its initial interactions with the host and the timing of its integration relative to the origin of other features of eukaryote cells. Since the establishment of the organelle, proteins have been gained, lost, transferred and retargeted as mitochondria have specialized into the spectrum of functional types seen across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| |
Collapse
|
31
|
Dacks JB, Field MC. Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol 2018; 53:70-76. [PMID: 29929066 PMCID: PMC6141808 DOI: 10.1016/j.ceb.2018.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/09/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Abstract
From unicellular protists to the largest megafauna and flora, all eukaryotes depend upon the organelles and processes of the intracellular membrane trafficking system. Well-defined machinery selectively packages and delivers material between endomembrane organelles and imports and exports material from the cell surface. This process underlies intracellular compartmentalization and facilitates myriad processes that define eukaryotic biology. Membrane trafficking is a landmark in the origins of the eukaryotic cell and recent work has begun to unravel how the revolution in cellular structure occurred.
Collapse
Affiliation(s)
- Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
32
|
Kauko A, Lehto K. Eukaryote specific folds: Part of the whole. Proteins 2018; 86:868-881. [PMID: 29675831 DOI: 10.1002/prot.25517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
The origin of eukaryotes is one of the central transitions in the history of life; without eukaryotes there would be no complex multicellular life. The most accepted scenarios suggest the endosymbiosis of a mitochondrial ancestor with a complex archaeon, even though the details regarding the host and the triggering factors are still being discussed. Accordingly, phylogenetic analyses have demonstrated archaeal affiliations with key informational systems, while metabolic genes are often related to bacteria, mostly to the mitochondrial ancestor. Despite of this, there exists a large number of protein families and folds found only in eukaryotes. In this study, we have analyzed structural superfamilies and folds that probably appeared during eukaryogenesis. These folds typically represent relatively small binding domains of larger multidomain proteins. They are commonly involved in biological processes that are particularly complex in eukaryotes, such as signaling, trafficking/cytoskeleton, ubiquitination, transcription and RNA processing, but according to recent studies, these processes also have prokaryotic roots. Thus the folds originating from an eukaryotic stem seem to represent accessory parts that have contributed in the expansion of several prokaryotic processes to a new level of complexity. This might have taken place as a co-evolutionary process where increasing complexity and fold innovations have supported each other.
Collapse
Affiliation(s)
- Anni Kauko
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Kirsi Lehto
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
33
|
Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol 2018; 2:697-704. [DOI: 10.1038/s41559-018-0477-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
|
34
|
Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc Natl Acad Sci U S A 2018; 115:E1504-E1510. [PMID: 29382768 PMCID: PMC5816194 DOI: 10.1073/pnas.1718707115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The origin of mitochondria is a challenging and intensely debated issue. Mitochondria are ancestrally present in eukaryotes, and their endosymbiotic inclusion was an extremely important step during the transition from prokaryotes to eukaryotes. However, because of the unknown order of eukaryotic inventions (e.g., cytoskeleton, phagocytosis, and endomembranes), it is unknown whether they led to or followed the acquisition of mitochondria. According to the farming hypothesis, the mitochondrial ancestor was captured by a phagocytotic host, but the advantage was not direct metabolic help provided by the symbiont; rather, it was provisioning captured prey to farmers in poor times, like humans farm pigs. Our analytical and computational models prove that farming could lead to stable endosymbiosis without any further benefit assumed between partners. The origin of mitochondria was a major evolutionary transition leading to eukaryotes, and is a hotly debated issue. It is unknown whether mitochondria were acquired early or late, and whether it was captured via phagocytosis or syntrophic integration. We present dynamical models to directly simulate the emergence of mitochondria in an ecoevolutionary context. Our results show that regulated farming of prey bacteria and delayed digestion can facilitate the establishment of stable endosymbiosis if prey-rich and prey-poor periods alternate. Stable endosymbiosis emerges without assuming any initial metabolic benefit provided by the engulfed partner, in a wide range of parameters, despite that during good periods farming is costly. Our approach lends support to the appearance of mitochondria before any metabolic coupling has emerged, but after the evolution of primitive phagocytosis by the urkaryote.
Collapse
|
35
|
|
36
|
Lazcano A, Peretó J. On the origin of mitosing cells: A historical appraisal of Lynn Margulis endosymbiotic theory. J Theor Biol 2017; 434:80-87. [DOI: 10.1016/j.jtbi.2017.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
|
37
|
Serial endosymbiosis or singular event at the origin of eukaryotes? J Theor Biol 2017; 434:58-67. [DOI: 10.1016/j.jtbi.2017.04.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 11/19/2022]
|
38
|
Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 2017; 244:36-52. [PMID: 29103997 PMCID: PMC5801114 DOI: 10.1016/j.virusres.2017.10.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
Virus metagenomics is a young research filed but it has already transformed our understanding of virus diversity and evolution, and illuminated at a new level the connections between virus evolution and the evolution and ecology of the hosts. In this review article, we examine the new picture of the evolution of RNA viruses, the dominant component of the eukaryotic virome, that is emerging from metagenomic data analysis. The major expansion of many groups of RNA viruses through metagenomics allowed the construction of substantially improved phylogenetic trees for the conserved virus genes, primarily, the RNA-dependent RNA polymerases (RdRp). In particular, a new superfamily of widespread, small positive-strand RNA viruses was delineated that unites tombus-like and noda-like viruses. Comparison of the genome architectures of RNA viruses discovered by metagenomics and by traditional methods reveals an extent of gene module shuffling among diverse virus genomes that far exceeds the previous appreciation of this evolutionary phenomenon. Most dramatically, inclusion of the metagenomic data in phylogenetic analyses of the RdRp resulted in the identification of numerous, strongly supported groups that encompass RNA viruses from diverse hosts including different groups of protists, animals and plants. Notwithstanding potential caveats, in particular, incomplete and uneven sampling of eukaryotic taxa, these highly unexpected findings reveal horizontal virus transfer (HVT) between diverse hosts as the central aspect of RNA virus evolution. The vast and diverse virome of invertebrates, particularly nematodes and arthropods, appears to be the reservoir, from which the viromes of plants and vertebrates evolved via multiple HVT events.
Collapse
|
39
|
Gray MW. Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell 2017; 28:1285-1287. [PMID: 28495966 PMCID: PMC5426843 DOI: 10.1091/mbc.e16-07-0509] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 11/11/2022] Open
Abstract
The 1967 article "On the Origin of Mitosing Cells" in the Journal of Theoretical Biology by Lynn Margulis (then Lynn Sagan) is widely regarded as stimulating renewed interest in the long-dormant endosymbiont hypothesis of organelle origins. In her article, not only did Margulis champion an endosymbiotic origin of mitochondria and plastids from bacterial ancestors, but she also posited that the eukaryotic flagellum (undulipodium in her usage) and mitotic apparatus originated from an endosymbiotic, spirochete-like organism. In essence, she presented a comprehensive symbiotic view of eukaryotic cell evolution (eukaryogenesis). Not all of the ideas in her article have been accepted, for want of compelling evidence, but her vigorous promotion of the role of symbiosis in cell evolution unquestionably had a major influence on how subsequent investigators have viewed the origin and evolution of mitochondria and plastids and the eukaryotic cell per se.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
40
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
41
|
Zachar I, Szathmáry E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses : Major unanswered questions point to the importance of early ecology. Biol Direct 2017; 12:19. [PMID: 28806979 PMCID: PMC5557255 DOI: 10.1186/s13062-017-0190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023] Open
Abstract
The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria. REVIEWERS This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.
Collapse
Affiliation(s)
- István Zachar
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
| | - Eörs Szathmáry
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Munich, Germany
| |
Collapse
|
42
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
43
|
Abstract
In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these "primitive" organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.
Collapse
|
44
|
Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B, Zweck J, Wanner G, Geimer S, Samson RY, Bell SD, Huber H, Wirth R, Wurch L, Podar M, Rachel R. A Complex Endomembrane System in the Archaeon Ignicoccus hospitalis Tapped by Nanoarchaeum equitans. Front Microbiol 2017; 8:1072. [PMID: 28659892 PMCID: PMC5468417 DOI: 10.3389/fmicb.2017.01072] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Based on serial sectioning, focused ion beam scanning electron microscopy (FIB/SEM), and electron tomography, we depict in detail the highly unusual anatomy of the marine hyperthermophilic crenarchaeon, Ignicoccus hospitalis. Our data support a complex and dynamic endomembrane system consisting of cytoplasmic protrusions, and with secretory function. Moreover, we reveal that the cytoplasm of the putative archaeal ectoparasite Nanoarchaeum equitans can get in direct contact with this endomembrane system, complementing and explaining recent proteomic, transcriptomic and metabolomic data on this inter-archaeal relationship. In addition, we identified a matrix of filamentous structures and/or tethers in the voluminous inter-membrane compartment (IMC) of I. hospitalis, which might be responsible for membrane dynamics. Overall, this unusual cellular compartmentalization, ultrastructure and dynamics in an archaeon that belongs to the recently proposed TACK superphylum prompts speculation that the eukaryotic endomembrane system might originate from Archaea.
Collapse
Affiliation(s)
- Thomas Heimerl
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Philipps University of MarburgMarburg, Germany
| | | | - Carolin Pickl
- Plant Development and Electron Microscopy, Biocenter LMUMunich, Germany
| | - Veronika Heinz
- Center for Electron Microscopy, University of RegensburgRegensburg, Germany
| | - Benjamin Salecker
- Center for Electron Microscopy, University of RegensburgRegensburg, Germany
| | - Josef Zweck
- Institute of Experimental and Applied Physics, University of RegensburgRegensburg, Germany
| | - Gerhard Wanner
- Plant Development and Electron Microscopy, Biocenter LMUMunich, Germany
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of BayreuthBayreuth, Germany
| | - Rachel Y. Samson
- Molecular and Cellular Biochemistry Department, Indiana UniversityBloomington, IN, United States
| | - Stephen D. Bell
- Molecular and Cellular Biochemistry Department, Indiana UniversityBloomington, IN, United States
| | - Harald Huber
- Microbiology Department, University of RegensburgRegensburg, Germany
| | - Reinhard Wirth
- Microbiology Department, University of RegensburgRegensburg, Germany
| | - Louie Wurch
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, United States
- Microbiology Department, University of TennesseeKnoxville, TN, United States
| | - Mircea Podar
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, United States
- Microbiology Department, University of TennesseeKnoxville, TN, United States
| | - Reinhard Rachel
- Center for Electron Microscopy, University of RegensburgRegensburg, Germany
| |
Collapse
|
45
|
Da Cunha V, Gaia M, Gadelle D, Nasir A, Forterre P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet 2017; 13:e1006810. [PMID: 28604769 PMCID: PMC5484517 DOI: 10.1371/journal.pgen.1006810] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/26/2017] [Accepted: 05/09/2017] [Indexed: 11/22/2022] Open
Abstract
The eocyte hypothesis, in which Eukarya emerged from within Archaea, has been boosted by the description of a new candidate archaeal phylum, "Lokiarchaeota", from metagenomic data. Eukarya branch within Lokiarchaeota in a tree reconstructed from the concatenation of 36 universal proteins. However, individual phylogenies revealed that lokiarchaeal proteins sequences have different evolutionary histories. The individual markers phylogenies revealed at least two subsets of proteins, either supporting the Woese or the Eocyte tree of life. Strikingly, removal of a single protein, the elongation factor EF2, is sufficient to break the Eukaryotes-Lokiarchaea affiliation. Our analysis suggests that the three lokiarchaeal EF2 proteins have a chimeric organization that could be due to contamination and/or homologous recombination with patches of eukaryotic sequences. A robust phylogenetic analysis of RNA polymerases with a new dataset indicates that Lokiarchaeota and related phyla of the Asgard superphylum are sister group to Euryarchaeota, not to Eukarya, and supports the monophyly of Archaea with their rooting in the branch leading to Thaumarchaeota.
Collapse
Affiliation(s)
- Violette Da Cunha
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Département de Microbiologie Paris, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Morgan Gaia
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Département de Microbiologie Paris, France
| | - Daniele Gadelle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Patrick Forterre
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Département de Microbiologie Paris, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris‐Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| |
Collapse
|
46
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
47
|
Physiology, anaerobes, and the origin of mitosing cells 50 years on. J Theor Biol 2017; 434:2-10. [PMID: 28087421 DOI: 10.1016/j.jtbi.2017.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
Abstract
Endosymbiotic theory posits that some organelles or structures of eukaryotic cells stem from free-living prokaryotes that became endosymbionts within a host cell. Endosymbiosis has a long and turbulent history of controversy and debate going back over 100 years. The 1967 paper by Lynn Sagan (later Lynn Margulis) forced a reluctant field to take endosymbiotic theory seriously and to incorporate it into the fabric of evolutionary thinking. Margulis envisaged three cellular partners associating in series at eukaryotic origin: the host (an engulfing bacterium), the mitochondrion (a respiring bacterium), and the flagellum (a spirochaete), with lineages descended from that flagellated eukaryote subsequently acquiring plastids from cyanobacteria, but on multiple different occasions in her 1967 account. Today, the endosymbiotic origin of mitochondria and plastids (each single events, the data now say) is uncontested textbook knowledge. The host has been more elusive, recent findings identifying it as a member of the archaea, not as a sister group of the archaea. Margulis's proposal for a spirochaete origin of flagellae was abandoned by everyone except her, because no data ever came around to support the idea. Her 1967 proposal that mitochondria and plastids arose from different endosymbionts was novel. The paper presented an appealing narrative that linked the origin of mitochondria with oxygen in Earth history: cyanobacteria make oxygen, oxygen starts accumulating in the atmosphere about 2.4 billion years ago, oxygen begets oxygen-respiring bacteria that become mitochondria via symbiosis, followed by later (numerous) multiple, independent symbioses involving cyanobacteria that brought photosynthesis to eukaryotes. With the focus on oxygen, Margulis's account of eukaryote origin was however unprepared to accommodate the discovery of mitochondria in eukaryotic anaerobes. Today's oxygen narrative has it that the oceans were anoxic up until about 580 million years ago, while the atmosphere attained modern oxygen levels only about 400 million years ago. Since eukaryotes are roughly 1.6 billion years old, much of eukaryotic evolution took place in low oxygen environments, readily explaining the persistence across eukaryotic supergroups of eukaryotic anaerobes and anaerobic mitochondria at the focus of endosymbiotic theories that came after the 1967 paper.
Collapse
|
48
|
Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJG. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017; 541:353-358. [PMID: 28077874 DOI: 10.1038/nature21031] [Citation(s) in RCA: 676] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.
Collapse
Affiliation(s)
| | - Eva F Caceres
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Disa Bäckström
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lina Juzokaite
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Emmelien Vancaester
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kiley W Seitz
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Karthik Anantharaman
- Department of Earth and Planetary Sciences, and Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Piotr Starnawski
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Kasper U Kjeldsen
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Matthew B Stott
- GNS Science, Extremophile Research Group, Private Bag 2000, Taupō 3352, New Zealand
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, and Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Andreas Schramm
- Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brett J Baker
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas 78373, USA
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
49
|
Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1851865. [PMID: 28050162 PMCID: PMC5165138 DOI: 10.1155/2016/1851865] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022]
Abstract
The archaeal ancestor scenario (AAS) for the origin of eukaryotes implies the emergence of a new kind of organism from the fusion of ancestral archaeal and bacterial cells. Equipped with this “chimeric” molecular arsenal, the resulting cell would gradually accumulate unique genes and develop the complex molecular machineries and cellular compartments that are hallmarks of modern eukaryotes. In this regard, proteins related to phagocytosis and cell movement should be present in the archaeal ancestor, thus identifying the recently described candidate archaeal phylum “Lokiarchaeota” as resembling a possible candidate ancestor of eukaryotes. Despite its appeal, AAS seems incompatible with the genomic, molecular, and biochemical differences that exist between Archaea and Eukarya. In particular, the distribution of conserved protein domain structures in the proteomes of cellular organisms and viruses appears hard to reconcile with the AAS. In addition, concerns related to taxon and character sampling, presupposing bacterial outgroups in phylogenies, and nonuniform effects of protein domain structure rearrangement and gain/loss in concatenated alignments of protein sequences cast further doubt on AAS-supporting phylogenies. Here, we evaluate AAS against the traditional “three-domain” world of cellular organisms and propose that the discovery of Lokiarchaeota could be better reconciled under the latter view, especially in light of several additional biological and technical considerations.
Collapse
|
50
|
Furukawa R, Nakagawa M, Kuroyanagi T, Yokobori SI, Yamagishi A. Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases. J Mol Evol 2016; 84:51-66. [PMID: 27889804 DOI: 10.1007/s00239-016-9768-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022]
Abstract
The three-domain phylogenetic system of life has been challenged, particularly with regard to the position of Eukarya. The recent increase of known genome sequences has allowed phylogenetic analyses of all extant organisms using concatenated sequence alignment of universally conserved genes; these data supported the two-domain hypothesis, which place eukaryal species as ingroups of the Domain Archaea. However, the origin of Eukarya is complicated: the closest archaeal species to Eukarya differs in single-gene phylogenetic analyses depending on the genes. In this report, we performed molecular phylogenetic analyses of 23 aminoacyl-tRNA synthetases (ARS). Cytoplasmic ARSs in 12 trees showed a monophyletic Eukaryotic branch. One ARS originated from TACK superphylum. One ARS originated from Euryarchaeota and three originated from DPANN superphylum. Four ARSs originated from different bacterial species. The other 8 cytoplasmic ARSs were split into two or three groups in respective trees, which suggested that the cytoplasmic ARSs were replaced by secondary ARSs, and the original ARSs have been lost during evolution of Eukarya. In these trees, one original cytoplasmic ARS was derived from Euryarchaeota and three were derived from DPANN superphylum. Our results strongly support the two-domain hypothesis. We discovered that rampant-independent lateral gene transfers from several archaeal species of DPANN superphylum have contributed to the formation of Eukaryal cells. Based on our phylogenetic analyses, we proposed a model for the establishment of Eukarya.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Mizuho Nakagawa
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Takuya Kuroyanagi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Laboratory of Extremophiles, Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| |
Collapse
|