1
|
Toledo-Patiño S, Goetz SK, Shanmugaratnam S, Höcker B, Farías-Rico JA. Molecular handcraft of a well-folded protein chimera. FEBS Lett 2024; 598:1375-1386. [PMID: 38508768 DOI: 10.1002/1873-3468.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Modular assembly is a compelling pathway to create new proteins, a concept supported by protein engineering and millennia of evolution. Natural evolution provided a repository of building blocks, known as domains, which trace back to even shorter segments that underwent numerous 'copy-paste' processes culminating in the scaffolds we see today. Utilizing the subdomain-database Fuzzle, we constructed a fold-chimera by integrating a flavodoxin-like fragment into a periplasmic binding protein. This chimera is well-folded and a crystal structure reveals stable interfaces between the fragments. These findings demonstrate the adaptability of α/β-proteins and offer a stepping stone for optimization. By emphasizing the practicality of fragment databases, our work pioneers new pathways in protein engineering. Ultimately, the results substantiate the conjecture that periplasmic binding proteins originated from a flavodoxin-like ancestor.
Collapse
Affiliation(s)
- Saacnicteh Toledo-Patiño
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Okinawa Institute of Science and Technology Graduate University, Japan
| | | | - Sooruban Shanmugaratnam
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biochemistry, University of Bayreuth, Germany
| | - Birte Höcker
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biochemistry, University of Bayreuth, Germany
| | - José Arcadio Farías-Rico
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| |
Collapse
|
2
|
Khersonsky O, Fleishman SJ. What Have We Learned from Design of Function in Large Proteins? BIODESIGN RESEARCH 2022; 2022:9787581. [PMID: 37850148 PMCID: PMC10521758 DOI: 10.34133/2022/9787581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2023] Open
Abstract
The overarching goal of computational protein design is to gain complete control over protein structure and function. The majority of sophisticated binders and enzymes, however, are large and exhibit diverse and complex folds that defy atomistic design calculations. Encouragingly, recent strategies that combine evolutionary constraints from natural homologs with atomistic calculations have significantly improved design accuracy. In these approaches, evolutionary constraints mitigate the risk from misfolding and aggregation, focusing atomistic design calculations on a small but highly enriched sequence subspace. Such methods have dramatically optimized diverse proteins, including vaccine immunogens, enzymes for sustainable chemistry, and proteins with therapeutic potential. The new generation of deep learning-based ab initio structure predictors can be combined with these methods to extend the scope of protein design, in principle, to any natural protein of known sequence. We envision that protein engineering will come to rely on completely computational methods to efficiently discover and optimize biomolecular activities.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Quezada AG, Díaz-Salazar AJ, Cabrera N, Pérez-Montfort R, Piñeiro Á, Costas M. Interplay between Protein Thermal Flexibility and Kinetic Stability. Structure 2017; 25:167-179. [PMID: 28052236 DOI: 10.1016/j.str.2016.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/18/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Kinetic stability is a key parameter to comprehend protein behavior and it plays a central role to understand how evolution has reached the balance between function and stability in cell-relevant timescales. Using an approach that includes simulations, protein engineering, and calorimetry, we show that there is a clear correlation between kinetic stability determined by differential scanning calorimetry and protein thermal flexibility obtained from a novel method based on temperature-induced unfolding molecular dynamics simulations. Thermal flexibility quantitatively measures the increment of the conformational space available to the protein when energy in provided. The (β/α)8 barrel fold of two closely related by evolution triosephosphate isomerases from two trypanosomes are used as model systems. The kinetic stability-thermal flexibility correlation has predictive power for the studied proteins, suggesting that the strategy and methodology discussed here might be applied to other proteins in biotechnological developments, evolutionary studies, and the design of protein based therapeutics.
Collapse
Affiliation(s)
- Andrea G Quezada
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, México
| | - A Jessica Díaz-Salazar
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, México
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, México
| | - Ángel Piñeiro
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City 04510, México.
| |
Collapse
|
4
|
Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 2015; 11:20140419. [PMID: 25165599 DOI: 10.1098/rsif.2014.0419] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
Collapse
Affiliation(s)
- Tobias Sikosek
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
5
|
Beech BM, Xiong Y, Boschek CB, Baird CL, Bigelow DJ, McAteer K, Squier TC. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering. J Am Chem Soc 2014; 136:13134-7. [DOI: 10.1021/ja506717v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Brenda M. Beech
- School
of Biological Sciences, Washington State University Tri-Cities, Pullman, Washington 99164, United States
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yijia Xiong
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Curt B. Boschek
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Cheryl L. Baird
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Diana J. Bigelow
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kathleen McAteer
- School
of Biological Sciences, Washington State University Tri-Cities, Pullman, Washington 99164, United States
| | - Thomas C. Squier
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|