1
|
Saha U, Gaine R, Paira S, Das S, Das B. RRM1 and PAB domains of translation initiation factor eIF4G (Tif4631p) play a crucial role in the nuclear degradation of export-defective mRNAs in Saccharomyces cerevisiae. FEBS J 2024; 291:897-926. [PMID: 37994298 DOI: 10.1111/febs.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
In Saccharomyces cerevisiae, the CBC-Tif4631p-dependent exosomal targeting (CTEXT) complex consisting of Cbc1/2p, Tif4631p and Upf3p promotes the exosomal degradation of aberrantly long 3'-extended, export-defective transcripts and a small group of normal (termed 'special') mRNAs. We carried out a systematic analysis of all previously characterized functional domains of the major CTEXT component Tif4631p by deleting each of them and interrogating their involvement in the nuclear surveillance of abnormally long 3'-extended and export-defective messages. Our analyses show that the N-terminal RNA recognition motif 1 (RRM1) and poly(A)-binding protein (PAB) domains of Tif4631p, spanning amino acid residues, 1-82 and 188-299 in its primary structure, respectively, play a crucial role in degrading these aberrant messages. Furthermore, the physical association of the nuclear exosome with the altered/variant CTEXT complex harboring any of the mutant Tif4631p proteins lacking either the RRM1 or PAB domain becomes abolished. This finding indicates that the association between CTEXT and the exosome is accomplished via interaction between these Tif4631p domains with the major exosome component, Rrp6p. Abolition of interaction between altered CTEXT (harboring any of the RRM1/PAB-deleted versions of Tif4631p) and the exosome further leads to the impaired recruitment of the RNA targets to the Rrp6p subunit of the exosome carried out by the RRM1/PAB domains of Tif4631p. When analyzing the Tif4631p-interacting proteins, we identified a DEAD-box RNA helicase (Dbp2p), as an interacting partner that turned out to be a previously unknown component of CTEXT. The present study provides a more complete description of the CTEXT complex and offers insight into the functional relationship of this complex with the nuclear exosome.
Collapse
Grants
- BT/PR27917/BRB/10/1673/2018 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR6078/BRB/10/1114/2012 Department of Biotechnology, Ministry of Science and Technology, India
- 38/1427/16/EMR-II Council of Scientific and Industrial Research, India
- 38/1280/11/EMR-II Council of Scientific and Industrial Research, India
- SR/SO/BB/0066/2012 Department of Science and Technology, Ministry of Science and Technology, India
- Department of Science & Technology and Biotechnology, Government of West Bengal
- SR/WOS-A/LS-1067/2014 Department of Science and Technology, India, WOS-A
Collapse
Affiliation(s)
- Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Rajlaxmi Gaine
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Satarupa Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
2
|
Barman P, Ferdoush J, Kaja A, Chakraborty P, Uprety B, Bhaumik R, Bhaumik R, Bhaumik SR. Ubiquitin-proteasome system regulation of a key gene regulatory factor, Paf1C. Gene 2024; 894:148004. [PMID: 37977317 DOI: 10.1016/j.gene.2023.148004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Paf1 (Polymerase-associated factor 1) complex (Paf1C) is evolutionarily conserved from yeast to humans, and facilitates transcription elongation as well as co-transcriptional histone covalent modifications and mRNA 3'-end processing. Thus, Paf1C is a key player in regulation of eukaryotic gene expression. Paf1C consists of Paf1, Cdc73, Ctr9, Leo1 and Rtf1 in both yeast and humans, but it has an additional component, Ski8, in humans. The abundances of these components regulate the assembly of Paf1C and/or its functions, thus implying the mechanisms involved in regulating the abundances of the Paf1C components in altered gene expression and hence cellular pathologies. Towards finding the mechanisms associated with the abundances of the Paf1C components, we analyzed here whether the Paf1C components are regulated via targeted ubiquitylation and 26S proteasomal degradation. We find that the Paf1C components except Paf1 do not undergo the 26S proteasomal degradation in both yeast and humans. Paf1 is found to be regulated by the ubiquitin-proteasome system (UPS) in yeast and humans. Alteration of such regulation changes Paf1's abundance, leading to aberrant gene expression. Intriguingly, while the Rtf1 component of Paf1C does not undergo the 26S proteasomal degradation, it is found to be ubiquitylated, suggesting that Rtf1 ubiquitylation could be engaged in Paf1C assembly and/or functions. Collectively, our results reveal distinct UPS regulation of the Paf1C components, Paf1 and Rtf1, in a proteolysis-dependent and -independent manners, respectively, with functional implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Bhawana Uprety
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Risa Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
3
|
Ohguchi Y, Ohguchi H. DIS3: The Enigmatic Gene in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24044079. [PMID: 36835493 PMCID: PMC9958658 DOI: 10.3390/ijms24044079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Recent studies have revealed the genetic aberrations involved in the initiation and progression of various cancers, including multiple myeloma (MM), via next-generation sequencing analysis. Notably, DIS3 mutations have been identified in approximately 10% of patients with MM. Moreover, deletions of the long arm of chromosome 13, that includes DIS3, are present in approximately 40% of patients with MM. Regardless of the high incidence of DIS3 mutations and deletions, their contribution to the pathogenesis of MM has not yet been determined. Herein, we summarize the molecular and physiological functions of DIS3, focusing on hematopoiesis, and discuss the characteristics and potential roles of DIS3 mutations in MM. Recent findings highlight the essential roles of DIS3 in RNA homeostasis and normal hematopoiesis and suggest that the reduced activity of DIS3 may be involved in myelomagenesis by increasing genome instability.
Collapse
Affiliation(s)
- Yasuyo Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
4
|
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T. Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 2023; 14:772. [PMID: 36774373 PMCID: PMC9922296 DOI: 10.1038/s41467-023-36402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Anusree Sivadas
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Rippei Hayashi
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Leo Kiss
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Meyerhofstr, 1, D-69117, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany.
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
5
|
Cesaro G, da Soler HT, Guerra-Slompo E, Haouz A, Legrand P, Zanchin N, Guimaraes B. Trypanosoma brucei RRP44: a versatile enzyme for processing structured and non-structured RNA substrates. Nucleic Acids Res 2022; 51:380-395. [PMID: 36583334 PMCID: PMC9841401 DOI: 10.1093/nar/gkac1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 11/25/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rrp44/Dis3 is a conserved eukaryotic ribonuclease that acts on processing and degradation of nearly all types of RNA. It contains an endo- (PIN) and an exonucleolytic (RNB) domain and, its depletion in model organisms supports its essential function for cell viability. In Trypanosoma brucei, depletion of Rrp44 (TbRRP44) blocks maturation of ribosomal RNA, leading to disruption of ribosome synthesis and inhibition of cell proliferation. We have determined the crystal structure of the exoribonucleolytic module of TbRRP44 in an active conformation, revealing novel details of the catalytic mechanism of the RNB domain. For the first time, the position of the second magnesium involved in the two-metal-ion mechanism was determined for a member of the RNase II family. In vitro, TbRRP44 acts preferentially on non-structured uridine-rich RNA substrates. However, we demonstrated for the first time that both TbRRP44 and its homologue from Saccharomyces cerevisiae can also degrade structured substrates without 3'-end overhang, suggesting that Rrp44/Dis3 ribonucleases may be involved in degradation of a wider panel of RNA than has been assumed. Interestingly, deletion of TbRRP44 PIN domain impairs RNA binding to different extents, depending on the type of substrate.
Collapse
Affiliation(s)
- Giovanna Cesaro
- Carlos Chagas Institute, Oswaldo Cruz Foundation, FIOCRUZ, Curitiba-PR, Brazil,Biochemistry Postgraduate Program, Federal University of Paraná, Curitiba-PR, Brazil
| | | | | | - Ahmed Haouz
- Institut Pasteur, Plate-forme de cristallographie-C2RT, UMR-3528 CNRS, Paris, France
| | | | | | | |
Collapse
|
6
|
Brown RE, Su XA, Fair S, Wu K, Verra L, Jong R, Andrykovich K, Freudenreich CH. The RNA export and RNA decay complexes THO and TRAMP prevent transcription-replication conflicts, DNA breaks, and CAG repeat contractions. PLoS Biol 2022; 20:e3001940. [PMID: 36574440 PMCID: PMC9829180 DOI: 10.1371/journal.pbio.3001940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2023] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
Expansion of structure-forming CAG/CTG repetitive sequences is the cause of several neurodegenerative disorders and deletion of repeats is a potential therapeutic strategy. Transcription-associated mechanisms are known to cause CAG repeat instability. In this study, we discovered that Thp2, an RNA export factor and member of the THO (suppressors of transcriptional defects of hpr1Δ by overexpression) complex, and Trf4, a key component of the TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex involved in nuclear RNA polyadenylation and degradation, are necessary to prevent CAG fragility and repeat contractions in a Saccharomyces cerevisiae model system. Depletion of both Thp2 and Trf4 proteins causes a highly synergistic increase in CAG repeat fragility, indicating a complementary role of the THO and TRAMP complexes in preventing genome instability. Loss of either Thp2 or Trf4 causes an increase in RNA polymerase stalling at the CAG repeats and other genomic loci, as well as genome-wide transcription-replication conflicts (TRCs), implicating TRCs as a cause of CAG fragility and instability in their absence. Analysis of the effect of RNase H1 overexpression on CAG fragility, RNAPII stalling, and TRCs suggests that RNAPII stalling with associated R-loops are the main cause of CAG fragility in the thp2Δ mutants. In contrast, CAG fragility and TRCs in the trf4Δ mutant can be compensated for by RPA overexpression, suggesting that excess unprocessed RNA in TRAMP4 mutants leads to reduced RPA availability and high levels of TRCs. Our results show the importance of RNA surveillance pathways in preventing RNAPII stalling, TRCs, and DNA breaks, and show that RNA export and RNA decay factors work collaboratively to maintain genome stability.
Collapse
Affiliation(s)
- Rebecca E. Brown
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Xiaofeng A. Su
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stacey Fair
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Katherine Wu
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Robyn Jong
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Kristin Andrykovich
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Catherine H. Freudenreich
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Singh P, Chaudhuri A, Banerjea M, Marathe N, Das B. Nrd1p identifies aberrant and natural exosomal target messages during the nuclear mRNA surveillance in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:11512-11536. [PMID: 34664673 PMCID: PMC8599857 DOI: 10.1093/nar/gkab930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nuclear degradation of aberrant mRNAs in Saccharomyces cerevisiae is accomplished by the nuclear exosome and its cofactors TRAMP/CTEXT. Evidence from this investigation establishes a universal role of the Nrd1p-Nab3p-Sen1p (NNS) complex in the nuclear decay of all categories of aberrant mRNAs. In agreement with this, both nrd1-1 and nrd1-2 mutations impaired the decay of all classes of aberrant messages. This phenotype is similar to that displayed by GAL::RRP41 and rrp6-Δ mutant yeast strains. Remarkably, however, nrd1ΔCID mutation (lacking the C-terminal domain required for interaction of Nrd1p with RNAPII) only diminished the decay of aberrant messages with defects occurring during the early stage of mRNP biogenesis, without affecting other messages with defects generated later in the process. Co-transcriptional recruitment of Nrd1p on the aberrant mRNAs was vital for their concomitant decay. Strikingly, this recruitment on to mRNAs defective in the early phases of biogenesis is solely dependent upon RNAPII. In contrast, Nrd1p recruitment onto export-defective transcripts with defects occurring in the later stage of biogenesis is independent of RNAPII and dependent on the CF1A component, Pcf11p, which explains the observed characteristic phenotype of nrd1ΔCID mutation. Consistently, pcf11-2 mutation displayed a selective impairment in the degradation of only the export-defective messages.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Neeraja Marathe
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| |
Collapse
|
8
|
Auth M, Nyikó T, Auber A, Silhavy D. The role of RST1 and RIPR proteins in plant RNA quality control systems. PLANT MOLECULAR BIOLOGY 2021; 106:271-284. [PMID: 33864582 PMCID: PMC8116306 DOI: 10.1007/s11103-021-01145-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
To keep mRNA homeostasis, the RNA degradation, quality control and silencing systems should act in balance in plants. Degradation of normal mRNA starts with deadenylation, then deadenylated transcripts are degraded by the SKI-exosome 3'-5' and/or XRN4 5'-3' exonucleases. RNA quality control systems identify and decay different aberrant transcripts. RNA silencing degrades double-stranded transcripts and homologous mRNAs. It also targets aberrant and silencing prone transcripts. The SKI-exosome is essential for mRNA homeostasis, it functions in normal mRNA degradation and different RNA quality control systems, and in its absence silencing targets normal transcripts. It is highly conserved in eukaryotes, thus recent reports that the plant SKI-exosome is associated with RST1 and RIPR proteins and that, they are required for SKI-exosome-mediated decay of silencing prone transcripts were unexpected. To clarify whether RST1 and RIPR are essential for all SKI-exosome functions or only for the elimination of silencing prone transcripts, degradation of different reporter transcripts was studied in RST1 and RIPR inactivated Nicotiana benthamiana plants. As RST1 and RIPR, like the SKI-exosome, were essential for Non-stop and No-go decay quality control systems, and for RNA silencing- and minimum ORF-mediated decay, we propose that RST1 and RIPR are essential components of plant SKI-exosome supercomplex.
Collapse
Affiliation(s)
- Mariann Auth
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Tünde Nyikó
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary
| | - Dániel Silhavy
- Biological Research Centre, Institute of Plant Biology, ELKH, Temesvári krt 62, 6726, Szeged, Hungary.
- Agricultural Biotechnology Institute, Department of Genetics, NARIC, Gödöllő, Hungary.
| |
Collapse
|
9
|
Chen L, Roake CM, Galati A, Bavasso F, Micheli E, Saggio I, Schoeftner S, Cacchione S, Gatti M, Artandi SE, Raffa GD. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep 2021; 30:1358-1372.e5. [PMID: 32023455 PMCID: PMC7156301 DOI: 10.1016/j.celrep.2020.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023] Open
Abstract
Biogenesis of the human telomerase RNA (hTR) involves a complex series of posttranscriptional modifications, including hypermethylation of the 5' mono-methylguanosine cap to a tri-methylguanosine cap (TMG). How the TMG cap affects hTR maturation is unknown. Here, we show that depletion of trimethylguanosine synthase 1 (TGS1), the enzyme responsible for cap hypermethylation, increases levels of hTR and telomerase. Diminished trimethylation increases hTR association with the cap-binding complex (CBC) and with Sm chaperone proteins. Loss of TGS1 causes an increase in accumulation of mature hTR in both the nucleus and the cytoplasm compared with controls. In TGS1 mutant cells, increased hTR assembles with telomerase reverse transcriptase (TERT) protein to yield elevated active telomerase complexes and increased telomerase activity, resulting in telomere elongation in cultured human cells. Our results show that TGS1-mediated hypermethylation of the hTR cap inhibits hTR accumulation, restrains levels of assembled telomerase, and limits telomere elongation.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Stefan Schoeftner
- Cancer Epigenetic Group, Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy; Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy.
| |
Collapse
|
10
|
Olsen KJ, Johnson SJ. Mtr4 RNA helicase structures and interactions. Biol Chem 2021; 402:605-616. [PMID: 33857361 DOI: 10.1515/hsz-2020-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/10/2020] [Indexed: 01/19/2023]
Abstract
Mtr4 is a Ski2-like RNA helicase that plays a central role in RNA surveillance and degradation pathways as an activator of the RNA exosome. Multiple crystallographic and cryo-EM studies over the past 10 years have revealed important insight into the Mtr4 structure and interactions with protein and nucleic acid binding partners. These structures place Mtr4 at the center of a dynamic process that recruits RNA substrates and presents them to the exosome. In this review, we summarize the available Mtr4 structures and highlight gaps in our current understanding.
Collapse
Affiliation(s)
- Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT84322-0300, USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT84322-0300, USA
| |
Collapse
|
11
|
Lloret-Llinares M, Jensen TH. Global Identification of Human Exosome Substrates Using RNA Interference and RNA Sequencing. Methods Mol Biol 2020; 2062:127-145. [PMID: 31768975 DOI: 10.1007/978-1-4939-9822-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The RNA exosome is involved in RNA processing and quality control. In humans, it consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by one or two additional components. Moreover, several protein cofactors interact with the exosome to enable and specify its recruitment to a wide range of substrates. A common strategy to identify these substrates has been to deplete an exosome subunit or a cofactor and subsequently interrogate which transcripts become stabilized. Here, we describe an experimental pipeline including siRNA-mediated depletion of the RNA exosome or its cofactors in HeLa cells, confirmation of the knockdown efficiencies, and the manual or high-throughput identification of exosome targets.
Collapse
Affiliation(s)
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
12
|
Pillon MC, Lo YH, Stanley RE. IT'S 2 for the price of 1: Multifaceted ITS2 processing machines in RNA and DNA maintenance. DNA Repair (Amst) 2019; 81:102653. [PMID: 31324529 PMCID: PMC6764878 DOI: 10.1016/j.dnarep.2019.102653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells utilize sophisticated RNA processing machines to ensure the quality of RNA. Many RNA processing machines have been further implicated in regulating the DNA damage response signifying a strong link between RNA processing and genome maintenance. One of the most intricate and highly regulated RNA processing pathways is the processing of the precursor ribosomal RNA (pre-rRNA), which is paramount for the production of ribosomes. Removal of the Internal Transcribed Spacer 2 (ITS2), located between the 5.8S and 25S rRNA, is one of the most complex steps of ribosome assembly. Processing of the ITS2 is initiated by the newly discovered endoribonuclease Las1, which cleaves at the C2 site within the ITS2, generating products that are further processed by the polynucleotide kinase Grc3, the 5'→3' exonuclease Rat1, and the 3'→5' RNA exosome complex. In addition to their defined roles in ITS2 processing, these critical cellular machines participate in other stages of ribosome assembly, turnover of numerous cellular RNAs, and genome maintenance. Here we summarize recent work defining the molecular mechanisms of ITS2 processing by these essential RNA processing machines and highlight their emerging roles in transcription termination, heterochromatin function, telomere maintenance, and DNA repair.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
13
|
Cesaro G, Carneiro FRG, Ávila AR, Zanchin NIT, Guimarães BG. Trypanosoma brucei RRP44 is involved in an early stage of large ribosomal subunit RNA maturation. RNA Biol 2018; 16:133-143. [PMID: 30593255 DOI: 10.1080/15476286.2018.1564463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosomal RNA precursors undergo a series of structural and chemical modifications to generate matured RNA molecules that will comprise ribosomes. This maturation process involves a large set of accessory proteins as well as ribonucleases, responsible for removal of the external and internal transcribed spacers from the pre-rRNA. Early-diverging eukaryotes belonging to the Kinetoplastida class display several unique characteristics, in particular in terms of RNA synthesis and maturation. These peculiarities include the rRNA biogenesis and the extensive fragmentation of the large ribosomal subunit (LSU) rRNA. The role of specific endo- and exonucleases in the maturation of the unusual rRNA precursor of trypanosomatids remains largely unknown. One of the nucleases involved in rRNA processing is Rrp44, an exosome associated ribonuclease in yeast, which is involved in several metabolic RNA pathways. Here, we investigated the function of Trypanosoma brucei RRP44 orthologue (TbRRP44) in rRNA processing. Our results revealed that TbRRP44 depletion causes unusual polysome profile and accumulation of the complete LSU rRNA precursor, in addition to 5.8S maturation impairment. We also determined the crystal structure of TbRRP44 endonucleolytic domain. Structural comparison with Saccharomyces cerevisiae Rrp44 revealed differences in the catalytic site and substitutions of surface residues, which could provide molecular bases for the lack of interaction of RRP44 with the exosome complex in T. brucei.
Collapse
Affiliation(s)
- Giovanna Cesaro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,b Biochemsitry Postgraduate Program , Federal University of Parana , Curitiba , Brazil
| | - Flávia Raquel Gonçalves Carneiro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,c Center for Technology Development in Healthcare , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | | |
Collapse
|
14
|
Lloret-Llinares M, Karadoulama E, Chen Y, Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L, Sandelin A, Jensen TH. The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res 2018; 46:11502-11513. [PMID: 30212902 PMCID: PMC6265456 DOI: 10.1093/nar/gky817] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Gene expression programs change during cellular transitions. It is well established that a network of transcription factors and chromatin modifiers regulate RNA levels during embryonic stem cell (ESC) differentiation, but the full impact of post-transcriptional processes remains elusive. While cytoplasmic RNA turnover mechanisms have been implicated in differentiation, the contribution of nuclear RNA decay has not been investigated. Here, we differentiate mouse ESCs, depleted for the ribonucleolytic RNA exosome, into embryoid bodies to determine to which degree RNA abundance in the two states can be attributed to changes in transcription versus RNA decay by the exosome. As a general observation, we find that exosome depletion mainly leads to the stabilization of RNAs from lowly transcribed loci, including several protein-coding genes. Depletion of the nuclear exosome cofactor RBM7 leads to similar effects. In particular, transcripts that are differentially expressed between states tend to be more exosome sensitive in the state where expression is low. We conclude that the RNA exosome contributes to down-regulation of transcripts with disparate expression, often in conjunction with transcriptional down-regulation.
Collapse
Affiliation(s)
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Luke A Wojenski
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Geno J Villafano
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
| | - Leighton Core
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | |
Collapse
|
15
|
Singh P, Saha U, Paira S, Das B. Nuclear mRNA Surveillance Mechanisms: Function and Links to Human Disease. J Mol Biol 2018; 430:1993-2013. [PMID: 29758258 DOI: 10.1016/j.jmb.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Production of export-competent mRNAs involves transcription and a series of dynamic processing and modification events of pre-messenger RNAs in the nucleus. Mutations in the genes encoding the transcription and mRNP processing machinery and the complexities involved in the biogenesis events lead to the formation of aberrant messages. These faulty transcripts are promptly eliminated by the nuclear RNA exosome and its cofactors to safeguard the cells and organisms from genetic catastrophe. Mutations in the components of the core nuclear exosome and its cofactors lead to the tissue-specific dysfunction of exosomal activities, which are linked to diverse human diseases and disorders. In this article, we examine the structure and function of both the yeast and human RNA exosome complex and its cofactors, discuss the nature of the various altered amino acid residues implicated in these diseases with the speculative mechanisms of the mutation-induced disorders and project the frontier and prospective avenues of the future research in this field.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Upasana Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Sunirmal Paira
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
16
|
|
17
|
Abstract
The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance.
Collapse
|
18
|
Meola N, Jensen TH. Targeting the nuclear RNA exosome: Poly(A) binding proteins enter the stage. RNA Biol 2017; 14:820-826. [PMID: 28421898 DOI: 10.1080/15476286.2017.1312227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome targeting (PAXT)' connection as an exosome adaptor to human nuclear polyadenylated transcripts has relighted the interest of poly(A) binding proteins (PABPs) in both RNA productive and destructive processes.
Collapse
Affiliation(s)
- Nicola Meola
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| | - Torben Heick Jensen
- a Department of Molecular Biology and Genetics , Aarhus University , Aarhus C , Denmark
| |
Collapse
|
19
|
Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, Jensen TH. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. Mol Cell 2016; 64:520-533. [PMID: 27871484 DOI: 10.1016/j.molcel.2016.09.025] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/18/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One example is the trimeric human nuclear exosome targeting (NEXT) complex, which is composed of hMTR4, the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear poly(A)-binding protein PABPN1. Individual depletion of ZFC3H1 and PABPN1 results in the accumulation of common transcripts that are generally both longer and more extensively polyadenylated than NEXT substrates. Importantly, ZFC3H1/PABPN1 and ZCCHC8/RBM7 contact hMTR4 in a mutually exclusive manner, revealing that the exosome targets nuclear transcripts of different maturation status by substituting its hMTR4-associating adaptors.
Collapse
Affiliation(s)
- Nicola Meola
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Michal Domanski
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark; The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Coline Gentil
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Dennis Pultz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
20
|
Maity A, Chaudhuri A, Das B. DRN and TRAMP degrade specific and overlapping aberrant mRNAs formed at various stages of mRNP biogenesis inSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow088. [DOI: 10.1093/femsyr/fow088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
|
21
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
22
|
Abstract
Our genome is protected from the introduction of mutations by high fidelity replication and an extensive network of DNA damage response and repair mechanisms. However, the expression of our genome, via RNA and protein synthesis, allows for more diversity in translating genetic information. In addition, the splicing process has become less stringent over evolutionary time allowing for a substantial increase in the diversity of transcripts generated. The result is a diverse transcriptome and proteome that harbor selective advantages over a more tightly regulated system. Here, we describe mechanisms in place that both safeguard the genome and promote translational diversity, with emphasis on post-transcriptional RNA processing.
Collapse
Affiliation(s)
- Brian Magnuson
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
23
|
The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17:227-39. [PMID: 26726035 DOI: 10.1038/nrm.2015.15] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA exosome complex is the most versatile RNA-degradation machine in eukaryotes. The exosome has a central role in several aspects of RNA biogenesis, including RNA maturation and surveillance. Moreover, it is emerging as an important player in regulating the expression levels of specific mRNAs in response to environmental cues and during cell differentiation and development. Although the mechanisms by which RNA is targeted to (or escapes from) the exosome are still not fully understood, general principles have begun to emerge, which we discuss in this Review. In addition, we introduce and discuss novel, previously unappreciated functions of the nuclear exosome, including in transcription regulation and in the maintenance of genome stability.
Collapse
|
24
|
Tseng CK, Wang HF, Burns A, Schroeder M, Gaspari M, Baumann P. Human Telomerase RNA Processing and Quality Control. Cell Rep 2015; 13:2232-43. [DOI: 10.1016/j.celrep.2015.10.075] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
|
25
|
Fox MJ, Mosley AL. Rrp6: Integrated roles in nuclear RNA metabolism and transcription termination. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:91-104. [PMID: 26612606 DOI: 10.1002/wrna.1317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/08/2022]
Abstract
The yeast RNA exosome is a eukaryotic ribonuclease complex essential for RNA processing, surveillance, and turnover. It is comprised of a barrel-shaped core and cap as well as a 3'-5' ribonuclease known as Dis3 that contains both endo- and exonuclease domains. A second exonuclease, Rrp6, is added in the nucleus. Dis3 and Rrp6 have both shared and distinct roles in RNA metabolism, and this review will focus primarily on Rrp6 and the roles of the RNA exosome in the nucleus. The functions of the nuclear exosome are modulated by cofactors and interacting partners specific to each type of substrate. Generally, the cofactor TRAMP (Trf4/5-Air2/1-Mtr4 polyadenylation) complex helps unwind unstable RNAs, RNAs requiring processing such as rRNAs, tRNAs, or snRNAs or improperly processed RNAs and direct it toward the exosome. In yeast, Rrp6 interacts with Nrd1, the cap-binding complex, and RNA polymerase II to aid in nascent RNA processing, termination, and polyA tail length regulation. Recent studies have shown that proper termination and processing of short, noncoding RNAs by Rrp6 is particularly important for transcription regulation across the genome and has important implications for regulation of diverse processes at the cellular level. Loss of proper Rrp6 and exosome activity may contribute to various pathologies such as autoimmune disease, neurological disorders, and cancer. WIREs RNA 2016, 7:91-104. doi: 10.1002/wrna.1317 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Melanie J Fox
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Amber L Mosley
- Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
26
|
Robinson SR, Oliver AW, Chevassut TJ, Newbury SF. The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules 2015; 5:1515-39. [PMID: 26193331 PMCID: PMC4598762 DOI: 10.3390/biom5031515] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/03/2022] Open
Abstract
DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3' to 5' degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S. pombe, S. cerevisiae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis.
Collapse
Affiliation(s)
- Sophie R Robinson
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Timothy J Chevassut
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Sarah F Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| |
Collapse
|