1
|
Ordabayev YA, Friedman LJ, Gelles J, Theobald DL. Bayesian machine learning analysis of single-molecule fluorescence colocalization images. eLife 2022; 11:73860. [PMID: 35319463 PMCID: PMC9183235 DOI: 10.7554/elife.73860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/19/2022] [Indexed: 01/07/2023] Open
Abstract
Multi-wavelength single-molecule fluorescence colocalization (CoSMoS) methods allow elucidation of complex biochemical reaction mechanisms. However, analysis of CoSMoS data is intrinsically challenging because of low image signal-to-noise ratios, non-specific surface binding of the fluorescent molecules, and analysis methods that require subjective inputs to achieve accurate results. Here, we use Bayesian probabilistic programming to implement Tapqir, an unsupervised machine learning method that incorporates a holistic, physics-based causal model of CoSMoS data. This method accounts for uncertainties in image analysis due to photon and camera noise, optical non-uniformities, non-specific binding, and spot detection. Rather than merely producing a binary 'spot/no spot' classification of unspecified reliability, Tapqir objectively assigns spot classification probabilities that allow accurate downstream analysis of molecular dynamics, thermodynamics, and kinetics. We both quantitatively validate Tapqir performance against simulated CoSMoS image data with known properties and also demonstrate that it implements fully objective, automated analysis of experiment-derived data sets with a wide range of signal, noise, and non-specific binding characteristics.
Collapse
Affiliation(s)
| | - Larry J Friedman
- Department of Biochemistry, Brandeis UniversityWalthamUnited States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis UniversityWalthamUnited States
| | | |
Collapse
|
2
|
Braun JE, Friedman LJ, Gelles J, Moore MJ. Synergistic assembly of human pre-spliceosomes across introns and exons. eLife 2018; 7:37751. [PMID: 29932423 PMCID: PMC6035042 DOI: 10.7554/elife.37751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023] Open
Abstract
Most human genes contain multiple introns, necessitating mechanisms to effectively define exons and ensure their proper connection by spliceosomes. Human spliceosome assembly involves both cross-intron and cross-exon interactions, but how these work together is unclear. We examined in human nuclear extracts dynamic interactions of single pre-mRNA molecules with individual fluorescently tagged spliceosomal subcomplexes to investigate how cross-intron and cross-exon processes jointly promote pre-spliceosome assembly. U1 subcomplex bound to the 5' splice site of an intron acts jointly with U1 bound to the 5' splice site of the next intron to dramatically increase the rate and efficiency by which U2 subcomplex is recruited to the branch site/3' splice site of the upstream intron. The flanking 5' splice sites have greater than additive effects implying distinct mechanisms facilitating U2 recruitment. This synergy of 5' splice sites across introns and exons is likely important in promoting correct and efficient splicing of multi-intron pre-mRNAs. A gene is a segment of DNA that usually carries the information required to build a protein, the molecules responsible for most of life’s processes. This DNA segment is organized in modules, with coding sections separated by portions of non-coding DNA known as introns. When a gene is ‘turned on’, it gets faithfully copied into a molecule of pre-messenger RNA (pre-mRNA), which contains the alternating coding and non-coding modules. Before it can serve as a template to create a protein, this pre-mRNA must be processed and all the introns removed by a structure called the spliceosome. If this delicate process goes wrong, inaccurate protein templates are produced that may be damaging for the cell. Spliceosomes are precise molecular ‘scissors’ that can recognize where a coding module stops and an intron starts, and then make a snip in the pre-mRNA to remove the non-coding sequence. The spliceosome is a complex molecular machine formed of numerous parts – including one known as U1 snRNP – that must come together. When a pre-mRNA has several introns, a spliceosome assembles anew for each of them. Braun et al. designed a new method that allows them to ‘tag’ spliceosomes extracted from a human cell and follow them as they come together. The experiments show that spliceosomes working on different introns in the same pre-mRNA actually help each other out. As one assembles, this helps the spliceosome that processes the neighboring intron to get built. In particular, the U1 snRNPs processing nearby introns collaborate to promote the assembly and activity of the spliceosomes. This teamwork is likely important to guarantee that multiple introns are cut out quickly and accurately.
Collapse
Affiliation(s)
- Joerg E Braun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States.,Department of Biochemistry, Brandeis University, Waltham, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
3
|
Gleitsman KR, Sengupta RN, Herschlag D. Slow molecular recognition by RNA. RNA (NEW YORK, N.Y.) 2017; 23:1745-1753. [PMID: 28971853 PMCID: PMC5688996 DOI: 10.1261/rna.062026.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/26/2017] [Indexed: 05/28/2023]
Abstract
Molecular recognition is central to biological processes, function, and specificity. Proteins associate with ligands with a wide range of association rate constants, with maximal values matching the theoretical limit set by the rate of diffusional collision. As less is known about RNA association, we compiled association rate constants for all RNA/ligand complexes that we could find in the literature. Like proteins, RNAs exhibit a wide range of association rate constants. However, the fastest RNA association rates are considerably slower than those of the fastest protein associations and fall well below the diffusional limit. The apparently general observation of slow association with RNAs has implications for evolution and for modern-day biology. Our compilation highlights a quantitative molecular property that can contribute to biological understanding and underscores our need to develop a deeper physical understanding of molecular recognition events.
Collapse
Affiliation(s)
- Kristin R Gleitsman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Raghuvir N Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering and Department of Chemistry, Stanford University, Stanford, California 94305, USA
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
4
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
5
|
Stein DF, O'Connor D, Blohmke CJ, Sadarangani M, Pollard AJ. Gene expression profiles are different in venous and capillary blood: Implications for vaccine studies. Vaccine 2016; 34:5306-5313. [PMID: 27642133 DOI: 10.1016/j.vaccine.2016.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Detailed analysis of the immunological pathways leading to robust vaccine responses has become possible with the application of systems biology, including transcriptomic analysis. Venous blood is usually obtained for such studies but others have obtained capillary blood (e.g. finger-prick). Capillary samples are practically advantageous, especially in children. METHODS The aim of this study was to compare gene expression profiles in venous and capillary blood before, 12h and 24h after vaccination with 23-valent pneumococcal polysaccharide or trivalent inactivated seasonal influenza vaccines. RESULTS Gene expression at baseline was markedly different between venous and capillary samples, with 4940 genes differentially expressed, and followed a different pattern of changes after vaccination. At baseline, multiple pathways were upregulated in venous compared to capillary blood, including transforming growth factor-beta receptor signalling and toll-like receptor cascades. After vaccination with the influenza vaccine, there was enrichment for T and NK cell related signatures in capillary blood, and monocyte signatures in venous blood. By contrast, after vaccination with the pneumococcal vaccination, there was enrichment of dendritic cells, monocytes and interferon related signatures in capillary blood, whilst at 24h there was enrichment for T and NK cell related signatures in venous blood. CONCLUSIONS These data show differences between venous and capillary gene expression both at baseline, and post vaccination, which may impact on the conclusions regarding immunological mechanisms drawn from studies using these different sampling methodologies.
Collapse
Affiliation(s)
- D F Stein
- School of Clinical Medicine, University of Cambridge, United Kingdom
| | - D O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.
| | - C J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - M Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - A J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
6
|
Myler LR, Finkelstein IJ. Eukaryotic resectosomes: A single-molecule perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 127:119-129. [PMID: 27498169 DOI: 10.1016/j.pbiomolbio.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) disrupt the physical and genetic continuity of the genome. If unrepaired, DSBs can lead to cellular dysfunction and malignant transformation. Homologous recombination (HR) is a universally conserved DSB repair mechanism that employs the information in a sister chromatid to catalyze error-free DSB repair. To initiate HR, cells assemble the resectosome: a multi-protein complex composed of helicases, nucleases, and regulatory proteins. The resectosome nucleolytically degrades (resects) the free DNA ends for downstream homologous recombination. Several decades of intense research have identified the core resectosome components in eukaryotes, archaea, and bacteria. More recently, these proteins have been characterized via single-molecule approaches. Here, we focus on recent single-molecule studies that have begun to unravel how nucleases, helicases, processivity factors, and other regulatory proteins dictate the extent and efficiency of DNA resection in eukaryotic cells. We conclude with a discussion of outstanding questions that can be addressed via single-molecule approaches.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Hardin JW, Warnasooriya C, Kondo Y, Nagai K, Rueda D. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Nucleic Acids Res 2015; 43:10963-74. [PMID: 26503251 PMCID: PMC4678811 DOI: 10.1093/nar/gkv1011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
In large ribonucleoprotein machines, such as ribosomes and spliceosomes, RNA functions as an assembly scaffold as well as a critical catalytic component. Protein binding to the RNA scaffold can induce structural changes, which in turn modulate subsequent binding of other components. The spliceosomal U4/U6 di-snRNP contains extensively base paired U4 and U6 snRNAs, Snu13, Prp31, Prp3 and Prp4, seven Sm and seven LSm proteins. We have studied successive binding of all protein components to the snRNA duplex during di-snRNP assembly by electrophoretic mobility shift assay and accompanying conformational changes in the U4/U6 RNA 3-way junction by single-molecule FRET. Stems I and II of the duplex were found to co-axially stack in free RNA and function as a rigid scaffold during the entire assembly, but the U4 snRNA 5' stem-loop adopts alternative orientations each stabilized by Prp31 and Prp3/4 binding accounting for altered Prp3/4 binding affinities in presence of Prp31.
Collapse
Affiliation(s)
- John W Hardin
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chandani Warnasooriya
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Yasushi Kondo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Rueda
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| |
Collapse
|