1
|
Zhou K, Sun L, Zhang X, Xu X, Mi K, Ma W, Zhang L, Huang L. Salmonella antimicrobials inherited and the non-inherited resistance: mechanisms and alternative therapeutic strategies. Front Microbiol 2023; 14:1176317. [PMID: 37303797 PMCID: PMC10249997 DOI: 10.3389/fmicb.2023.1176317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Salmonella spp. is one of the most important foodborne pathogens. Typhoid fever and enteritis caused by Salmonella enterica are associated with 16-33 million infections and 500,000 to 600,000 deaths annually worldwide. The eradication of Salmonella is becoming increasingly difficult because of its remarkable capacity to counter antimicrobial agents. In addition to the intrinsic and acquired resistance of Salmonella, increasing studies indicated that its non-inherited resistance, which commonly mentioned as biofilms and persister cells, plays a critical role in refractory infections and resistance evolution. These remind the urgent demand for new therapeutic strategies against Salmonella. This review starts with escape mechanisms of Salmonella against antimicrobial agents, with particular emphasis on the roles of the non-inherited resistance in antibiotic failure and resistance evolution. Then, drug design or therapeutic strategies that show impressive effects in overcoming Salmonella resistance and tolerance are summarized completely, such as overcoming the barrier of outer membrane by targeting MlaABC system, reducing persister cells by limiting hydrogen sulfide, and applying probiotics or predatory bacteria. Meanwhile, according to the clinical practice, the advantages and disadvantages of above strategies are discussed. Finally, we further analyze how to deal with this tricky problems, thus can promote above novel strategies to be applied in the clinic as soon as possible. We believed that this review will be helpful in understanding the relationships between tolerance phenotype and resistance of Salmonella as well as the efficient control of antibiotic resistance.
Collapse
Affiliation(s)
- Kaixiang Zhou
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lei Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Xuehua Zhang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Xiangyue Xu
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Kun Mi
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Wenjin Ma
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lan Zhang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
| | - Lingli Huang
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan, Hubei, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| |
Collapse
|
2
|
Bacterial Membranes Are More Perturbed by the Asymmetric Versus Symmetric Loading of Amphiphilic Molecules. MEMBRANES 2022; 12:membranes12040350. [PMID: 35448320 PMCID: PMC9032087 DOI: 10.3390/membranes12040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Characterizing the biophysical properties of bacterial membranes is critical for understanding the protective nature of the microbial envelope, interaction of biological membranes with exogenous materials, and designing new antibacterial agents. Presented here are molecular dynamics simulations for two cationic quaternary ammonium compounds, and the anionic and nonionic form of a fatty acid molecule interacting with a Staphylococcus aureus bacterial inner membrane. The effect of the tested materials on the properties of the model membranes are evaluated with respect to various structural properties such as the lateral pressure profile, lipid tail order parameter, and the bilayer’s electrostatic potential. Conducting asymmetric loading of molecules in only one leaflet, it was observed that anionic and cationic amphiphiles have a large impact on the Staphylococcus aureus membrane’s electrostatic potential and lateral pressure profile as compared to a symmetric distribution. Nonintuitively, we find that the cationic and anionic molecules induce a similar change in the electrostatic potential, which points to the complexity of membrane interfaces, and how asymmetry can induce biophysical consequences. Finally, we link changes in membrane structure to the rate of electroporation for the membranes, and again find a crucial impact of introducing asymmetry to the system. Understanding these physical mechanisms provides critical insights and viable pathways for the rational design of membrane-active molecules, where controlling the localization is key.
Collapse
|
3
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
4
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
5
|
Matamoros-Recio A, Franco-Gonzalez JF, Forgione RE, Torres-Mozas A, Silipo A, Martín-Santamaría S. Understanding the Antibacterial Resistance: Computational Explorations in Bacterial Membranes. ACS OMEGA 2021; 6:6041-6054. [PMID: 33718695 PMCID: PMC7948216 DOI: 10.1021/acsomega.0c05590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 05/05/2023]
Affiliation(s)
- Alejandra Matamoros-Recio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Research Margarita Salas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Juan Felipe Franco-Gonzalez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Research Margarita Salas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Rosa Ester Forgione
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Research Margarita Salas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Angel Torres-Mozas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Research Margarita Salas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Research Margarita Salas, CIB-CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
6
|
Blumer M, Harris S, Li M, Martinez L, Untereiner M, Saeta PN, Carpenter TS, Ingólfsson HI, Bennett WFD. Simulations of Asymmetric Membranes Illustrate Cooperative Leaflet Coupling and Lipid Adaptability. Front Cell Dev Biol 2020; 8:575. [PMID: 32850783 PMCID: PMC7396604 DOI: 10.3389/fcell.2020.00575] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/15/2020] [Indexed: 01/31/2023] Open
Abstract
Biological membranes are composed of lipid bilayers that are often asymmetric with regards to the lipid composition and/or aqueous solvent they separate. Studying lipid asymmetry both experimentally and computationally is challenging. Molecular dynamics simulations of lipid bilayers with asymmetry are difficult due to finite system sizes and time scales accessible to simulations. Due to the very slow flip-flop rate for phospholipids, one must first choose how many lipids are on each side of the bilayer, but the resulting bilayer may be unstable (or metastable) due to differing tensile and compressive forces between leaflets. Here we use molecular dynamics simulations to investigate a number of different asymmetric membrane systems, both with atomistic and coarse-grained models. Asymmetries studied include differences in number of lipids, lipid composition (unsaturated and saturated tails and different headgroups), and chemical gradients between the aqueous phases. Extensive analysis of the bilayers' properties such as area per lipid, density, and lateral pressure profiles are used to characterize bilayer asymmetry. We also address how cholesterol (which flip-flops relatively quickly) influences membrane asymmetries. Our results show how each leaflet is influenced by the other and can mitigate the structural changes to the bilayer overall structure. Cholesterol can respond to changes in bilayer asymmetry to alleviate some of the effect on the bilayer structure, but that will alter its leaflet distribution, which in turn affects its chemical potential. Ionic imbalances are shown to have a modest change in bilayer structure, despite large changes in the electrostatic potential. Bilayer asymmetry can also induce a modest electrostatic potential across the membrane. Our results highlight the importance of membrane asymmetry on bilayer properties, the influence of lipid headgroups, tails and cholesterol on asymmetry, and the ability of lipids to adapt to different environments.
Collapse
Affiliation(s)
- Madison Blumer
- Harvey Mudd College, Claremont, CA, United States.,Scripps College, Claremont, CA, United States
| | | | - Mengzhe Li
- Harvey Mudd College, Claremont, CA, United States.,Claremont McKenna College, Claremont, CA, United States
| | | | - Michael Untereiner
- Harvey Mudd College, Claremont, CA, United States.,Pomona College, Claremont, CA, United States
| | | | - Timothy S Carpenter
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Helgi I Ingólfsson
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - W F Drew Bennett
- Biochemical and Biophysical Systems Group, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
7
|
Marzuoli I, Margreitter C, Fraternali F. Lipid Head Group Parameterization for GROMOS 54A8: A Consistent Approach with Protein Force Field Description. J Chem Theory Comput 2019; 15:5175-5193. [PMID: 31433640 PMCID: PMC7377650 DOI: 10.1021/acs.jctc.9b00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Membranes
are a crucial component of both bacterial and mammalian
cells, being involved in signaling, transport, and compartmentalization.
This versatility requires a variety of lipid species to tailor the
membrane’s behavior as needed, increasing the complexity of
the system. Molecular dynamics simulations have been successfully
applied to study model membranes and their interactions with proteins,
elucidating some crucial mechanisms at the atomistic detail and thus
complementing experimental techniques. An accurate description of
the functional interplay of the diverse membrane components crucially
depends on the selected parameters that define the adopted force field.
A coherent parameterization for lipids and proteins is therefore needed.
In this work, we propose and validate new lipid head group parameters
for the GROMOS 54A8 force field, making use of recently published
parametrizations for key chemical moieties present in lipids. We make
use additionally of a new canonical set of partial charges for lipids,
chosen to be consistent with the parameterization of soluble molecules
such as proteins. We test the derived parameters on five phosphocholine
model bilayers, composed of lipid patches four times larger than the
ones used in previous studies, and run 500 ns long simulations of
each system. Reproduction of experimental data like area per lipid
and deuterium order parameters is good and comparable with previous
parameterizations, as well as the description of liquid crystal to
gel-phase transition. On the other hand, the orientational behavior
of the head groups is more realistic for this new parameter set, and
this can be crucial in the description of interactions with other
polar molecules. For that reason, we tested the interaction of the
antimicrobial peptide lactoferricin with two model membranes showing
that the new parameters lead to a weaker peptide–membrane binding
and give a more realistic outcome in comparing binding to antimicrobial
versus mammal membranes.
Collapse
Affiliation(s)
- Irene Marzuoli
- Randall Centre for Cell and Molecular Biology , King's College London , London SE1 1UL , U.K
| | - Christian Margreitter
- Randall Centre for Cell and Molecular Biology , King's College London , London SE1 1UL , U.K
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology , King's College London , London SE1 1UL , U.K
| |
Collapse
|
8
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
Maia P, Pérez-Rodríguez G, Pérez-Pérez M, Fdez-Riverola F, Lourenço A, Azevedo NF. Application of agent-based modelling to assess single-molecule transport across the cell envelope of E. coli. Comput Biol Med 2019; 107:218-226. [DOI: 10.1016/j.compbiomed.2019.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
|
10
|
Shearer J, Jefferies D, Khalid S. Outer Membrane Proteins OmpA, FhuA, OmpF, EstA, BtuB, and OmpX Have Unique Lipopolysaccharide Fingerprints. J Chem Theory Comput 2019; 15:2608-2619. [PMID: 30848905 DOI: 10.1021/acs.jctc.8b01059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The outer membrane of Gram-negative bacteria has a highly complex asymmetrical architecture, containing a mixture of phospholipids in the inner leaflet and almost exclusively lipopolysaccharide (LPS) molecules in the outer leaflet. In E. coli, the outer membrane contains a wide range of proteins with a β barrel architecture, that vary in size from the smallest having eight strands to larger barrels composed of 22 strands. Here we report coarse-grained molecular dynamics simulations of six proteins from the E. coli outer membrane OmpA, OmpX, BtuB, FhuA, OmpF, and EstA in a range of membrane environments, which are representative of the in vivo conditions for different strains of E. coli. We show that each protein has a unique pattern of interaction with the surrounding membrane, which is influenced by the composition of the protein, the level of LPS in the outer leaflet, and the differing mobilities of the lipids in the two leaflets of the membrane. Overall we present analyses from over 200 μs of simulation for each protein.
Collapse
Affiliation(s)
- Jonathan Shearer
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| | - Damien Jefferies
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| | - Syma Khalid
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| |
Collapse
|
11
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
12
|
Deplazes E. Molecular simulations of venom peptide-membrane interactions: Progress and challenges. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences; Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University; Bentley, Perth WA 6102 Australia
| |
Collapse
|
13
|
Hsu PC, Bruininks BMH, Jefferies D, Cesar Telles de Souza P, Lee J, Patel DS, Marrink SJ, Qi Y, Khalid S, Im W. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J Comput Chem 2017; 38:2354-2363. [PMID: 28776689 DOI: 10.1002/jcc.24895] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Paulo Cesar Telles de Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Yifei Qi
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| |
Collapse
|
14
|
Blasco P, Patel DS, Engström O, Im W, Widmalm G. Conformational Dynamics of the Lipopolysaccharide from Escherichia coli O91 Revealed by Nuclear Magnetic Resonance Spectroscopy and Molecular Simulations. Biochemistry 2017; 56:3826-3839. [DOI: 10.1021/acs.biochem.7b00106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pilar Blasco
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Dhilon S. Patel
- Department
of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Olof Engström
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Wonpil Im
- Department
of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| |
Collapse
|
15
|
Patel DS, Qi Y, Im W. Modeling and simulation of bacterial outer membranes and interactions with membrane proteins. Curr Opin Struct Biol 2017; 43:131-140. [DOI: 10.1016/j.sbi.2017.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/08/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|
16
|
Holdbrook DA, Huber RG, Piggot TJ, Bond PJ, Khalid S. Dynamics of Crowded Vesicles: Local and Global Responses to Membrane Composition. PLoS One 2016; 11:e0156963. [PMID: 27310814 PMCID: PMC4910979 DOI: 10.1371/journal.pone.0156963] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/22/2016] [Indexed: 11/22/2022] Open
Abstract
The bacterial cell envelope is composed of a mixture of different lipids and proteins, making it an inherently complex organelle. The interactions between integral membrane proteins and lipids are crucial for their respective spatial localization within bacterial cells. We have employed microsecond timescale coarse-grained molecular dynamics simulations of vesicles of varying sizes and with a range of protein and lipid compositions, and used novel approaches to measure both local and global system dynamics, the latter based on spherical harmonics analysis. Our results suggest that both hydrophobic mismatch, enhanced by embedded membrane proteins, and curvature based sorting, due to different modes of undulation, may drive assembly in vesicular systems. Interestingly, the modes of undulation of the vesicles were found to be altered by the specific protein and lipid composition of the vesicle. Strikingly, lipid dynamics were shown to be coupled to proteins up to 6 nm from their surface, a substantially larger distance than has previously been observed, resulting in multi-layered annular rings enriched with particular types of phospholipid. Such large protein-lipid complexes may provide a mechanism for long-range communication. Given the complexity of bacterial membranes, our results suggest that subtle changes in lipid composition may have major implications for lipid and protein sorting under a curvature-based membrane-sorting model.
Collapse
Affiliation(s)
- Daniel A. Holdbrook
- Bioinformatics Institute (A*STAR), 30 Biopolis Str, #07–01 Matrix, Singapore 138671, Singapore
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Roland G. Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Str, #07–01 Matrix, Singapore 138671, Singapore
| | - Thomas J. Piggot
- The Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, United Kingdom
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Peter J. Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str, #07–01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
17
|
Exploiting the porin pathway for polar compound delivery into Gram-negative bacteria. Future Med Chem 2016; 8:1047-62. [PMID: 27303954 DOI: 10.4155/fmc-2016-0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In Gram-negative bacteria, the outer-membrane represents an additional barrier for antibiotics to permeate inside pathogens. Our inability to come up with novel effective antibiotics mostly relies upon insufficient understanding of the molecular basis behind outer-membrane penetration. RESULTS Polar antibiotics can permeate through water-filled porins, such as OmpF and OmpC from Escherichia coli. Through molecular modeling, permeation of imipenem and meropenem was found to be strongly dependent upon capability of drugs to properly align their electric dipole to the internal electric field in the restricted region of the pore. Electrostatics differences between OmpF and OmpC, and modifications along a series of OmpC mutants from E. coli-resistant clinical strains identify a 'preorientation' region, which dramatically affects antibiotic pathway. CONCLUSION A novel perspective is presented, suggesting new molecular properties to be included in drug design.
Collapse
|
18
|
Parkin J, Chavent M, Khalid S. Molecular Simulations of Gram-Negative Bacterial Membranes: A Vignette of Some Recent Successes. Biophys J 2016; 109:461-8. [PMID: 26244728 DOI: 10.1016/j.bpj.2015.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/09/2015] [Accepted: 06/24/2015] [Indexed: 01/05/2023] Open
Abstract
In the following review we use recent examples from the literature to discuss progress in the area of atomistic and coarse-grained molecular dynamics simulations of selected bacterial membranes and proteins, with a particular focus on Gram-negative bacteria. As structural biology continues to provide increasingly high-resolution data on the proteins that reside within these membranes, simulations have an important role to play in linking these data with the dynamical behavior and function of these proteins. In particular, in the last few years there has been significant progress in addressing the issue of biochemical complexity of bacterial membranes such that the heterogeneity of the lipid and protein components of these membranes are now being incorporated into molecular-level models. Thus, in future we can look forward to complementary data from structural biology and molecular simulations combining to provide key details of structure-dynamics-function relationships in bacterial membranes.
Collapse
Affiliation(s)
- Jamie Parkin
- School of Chemistry, University of Southampton, Southampton, UK
| | | | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK.
| |
Collapse
|
19
|
Zhang HY, Xu Q, Li F, Tian PC, Wang YH, Xiong Y, Zhang YH, Wei DQ. Recent progresses of simulations on passive membrane permeations in China. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2015.1135333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Zgurskaya HI, López CA, Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect Dis 2015; 1:512-522. [PMID: 26925460 DOI: 10.1021/acsinfecdis.5b00097] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This paper summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed.
Collapse
Affiliation(s)
- Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|