1
|
Shiimura Y, Kojima M, Sato T. How the ghrelin receptor recognizes the acyl-modified orexigenic hormone. Front Mol Neurosci 2025; 18:1549366. [PMID: 40260011 PMCID: PMC12009760 DOI: 10.3389/fnmol.2025.1549366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Ghrelin, discovered in 1999 as an endogenous ligand of the growth hormone secretagogue receptor (now known as the ghrelin receptor), is a peptide hormone with diverse physiological activities, such as stimulation of growth hormone release, increased appetite, fat accumulation, thermoregulation, and cardioprotection. As a distinctive feature, ghrelin needs to undergo octanoylation, a specific acyl modification, to exert its biological activities. Although the ghrelin receptor specifically recognizes this modification, the underlying molecular mechanism had remained unclear for decades. Recent advancements in structural biology have facilitated the elucidation of this recognition mechanism 25 years after ghrelin's discovery. This review highlights the structural basis of ghrelin octanoylation, particularly emphasizing the mechanism by which the ghrelin receptor recognizes this acyl-modified hormone.
Collapse
Affiliation(s)
- Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| |
Collapse
|
2
|
Fragmented Elastic Fibers in Focal Dermal Hypoplasia (Goltz-Gorlin Syndrome) Without Focal Dermal Hypoplasia: Report of a Male Case and Review of the Literature. Am J Dermatopathol 2019; 42:653-661. [PMID: 31789838 DOI: 10.1097/dad.0000000000001579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Goltz-Gorlin syndrome (GGS) (focal dermal hypoplasia) is a very rare developmental disorder affecting ectodermal and mesodermal structures. The syndrome is inherited in an X-linked manner, with the majority of affected individuals being female. We report the case of a 51-year-old man presenting with congenital skin lesions, syndactyly, facial and thoracic asymmetry, inguinal and laryngeal papillomas, cryptorchidism, polythelia, and dental anomalies. Molecular genetic analysis confirmed the clinically suspected diagnosis of GGS by detecting a known pathogenic mutation in the PORCN gene, c.502G>A [p.(Gly168Arg)] in the mosaic state. Histopathological examinations of skin biopsies of affected individuals typically show focal dermal hypoplasia and fat herniation; despite numerous skin biopsies, these characteristics were not found in the patient involved. Instead, we observed a notable reduction and fragmentation of the elastic fibers in the upper dermis. A systematic literature review regarding the histopathological presence or absence of dermal hypoplasia and/or information on elastic fibers revealed 240 histopathological descriptions of 173 individuals. Absence of dermal hypoplasia was found in 21 biopsies (8.8%). Information on elastic fibers was given in 47 cases (19.6%), showing decrease/absence in 31 cases and fragmentation of elastic fibers in 11 cases. Therefore, the histopathological absence of dermal hypoplasia does not exclude the diagnosis of the GGS. Decrease and fragmentation of elastic fibers may represent new histopathological clues to the diagnosis of this rare syndrome. At the same time, GGS should be included in the histopathological differential diagnoses of elastolytic disorders.
Collapse
|
3
|
Kaemmerer E, Jeon MK, Berndt A, Liedtke C, Gassler N. Targeting Wnt Signaling via Notch in Intestinal Carcinogenesis. Cancers (Basel) 2019; 11:555. [PMID: 31003440 PMCID: PMC6520938 DOI: 10.3390/cancers11040555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
Proliferation and differentiation of intestinal epithelial cells is assisted by highly specialized and well-regulated signaling cascades. The Wnt pathway, which is one of the fundamental pathways in the intestine, contributes to the organization of proliferative intestinal crypts by positioning and cycling of intestinal stem cells and their derivatives. The Wnt pathway promotes differentiation of intestinal secretory cell types along the crypt-plateau and crypt-villus axis. In contrast to the Wnt pathway, the intestinal Notch cascade participates in cellular differentiation and directs progenitor cells towards an absorptive fate with diminished numbers of Paneth and goblet cells. Opposing activities of Notch and Wnt signaling in the regulation of intestinal stem cells and the enterocytic cell fate have been elucidated recently. In fact, targeting Notch was able to overcome tumorigenesis of intestinal adenomas, prevented carcinogenesis, and counteracted Paneth cell death in the absence of caspase 8. At present, pharmacological Notch inhibition is considered as an interesting tool targeting the intrinsic Wnt pathway activities in intestinal non-neoplastic disease and carcinogenesis.
Collapse
Affiliation(s)
- Elke Kaemmerer
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Min Kyung Jeon
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Alexander Berndt
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany.
| | - Christian Liedtke
- Department of Medicine III, RWTH Aachen University, 52074 Aachen, Germany.
| | - Nikolaus Gassler
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany.
- Section Pathology, Institute of Legal Medicine, University Hospital Jena, 07747 Jena, Germany.
| |
Collapse
|
4
|
Tuladhar R, Yarravarapu N, Ma Y, Zhang C, Herbert J, Kim J, Chen C, Lum L. Stereoselective fatty acylation is essential for the release of lipidated WNT proteins from the acyltransferase Porcupine (PORCN). J Biol Chem 2019; 294:6273-6282. [PMID: 30737280 DOI: 10.1074/jbc.ra118.007268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/08/2019] [Indexed: 01/08/2023] Open
Abstract
The maintenance of adult animal tissues depends upon highly conserved intercellular signaling molecules that include the secreted WNT proteins. Although it is generally accepted that lipidation of WNTs by the acyltransferase Porcupine (PORCN) and their subsequent recognition by the Wntless (WLS) protein is essential for their cellular secretion, the molecular understanding of this process remains limited. Using structurally diverse fatty acyl donor analogs and mouse embryonic fibroblasts expressing PORCN protein from different metazoan phyla, we demonstrate here that PORCN active-site features, which are conserved across the animal kingdom, enforce cis-Δ9 fatty acylation of WNTs. Aberrant acylation of a WNT with an exogenously supplied trans-Δ9 fatty acid induced the accumulation of WNT-PORCN complexes, suggesting that the fatty acyl species is critical for the extrication of lipidated WNTs from PORCN. Our findings reveal a previously unrecognized fatty acyl-selective checkpoint in the manufacturing of a lipoprotein that forms a basis for WNT signaling sensitivity to trans fats and to PORCN inhibitors in clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | - James Kim
- Internal Medicine and .,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | |
Collapse
|
5
|
Mohammadzadeh F, Hosseini V, Mehdizadeh A, Dani C, Darabi M. A method for the gross analysis of global protein acylation by gas-liquid chromatography. IUBMB Life 2018; 71:340-346. [DOI: 10.1002/iub.1975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Fatemeh Mohammadzadeh
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories; Tabriz University of Medical Sciences, Faculty of Medicine; 5166615731, Tabriz Iran
| | - Amir Mehdizadeh
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
- Endocrine Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| | - Christian Dani
- Université Côte d'Azur, CNRS, Inserm, iBV; 06107, Nice France
| | - Masoud Darabi
- Liver and Gastrointestinal Diseases Research Center; Tabriz University of Medical Sciences; 5166614756, Tabriz Iran
| |
Collapse
|
6
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
7
|
Abstract
Membrane-bound O-acyltransferases (MBOATs) are a superfamily of integral transmembrane enzymes that are found in all kingdoms of life1. In bacteria, MBOATs modify protective cell-surface polymers. In vertebrates, some MBOAT enzymes-such as acyl-coenzyme A:cholesterol acyltransferase and diacylglycerol acyltransferase 1-are responsible for lipid biosynthesis or phospholipid remodelling2,3. Other MBOATs, including porcupine, hedgehog acyltransferase and ghrelin acyltransferase, catalyse essential lipid modifications of secreted proteins such as Wnt, hedgehog and ghrelin, respectively4-10. Although many MBOAT proteins are important drug targets, little is known about their molecular architecture and functional mechanisms. Here we present crystal structures of DltB, an MBOAT responsible for the D-alanylation of cell-wall teichoic acid in Gram-positive bacteria11-16, both alone and in complex with the D-alanyl donor protein DltC. DltB contains a ring of 11 peripheral transmembrane helices, which shield a highly conserved extracellular structural funnel extending into the middle of the lipid bilayer. The conserved catalytic histidine residue is located at the bottom of this funnel and is connected to the intracellular DltC through a narrow tunnel. Mutation of either the catalytic histidine or the DltC-binding site of DltB abolishes the D-alanylation of lipoteichoic acid and sensitizes the Gram-positive bacterium Bacillus subtilis to cell-wall stress, which suggests cross-membrane catalysis involving the tunnel. Structure-guided sequence comparison among DltB and vertebrate MBOATs reveals a conserved structural core and suggests that MBOATs from different organisms have similar catalytic mechanisms. Our structures provide a template for understanding structure-function relationships in MBOATs and for developing therapeutic MBOAT inhibitors.
Collapse
|
8
|
Chemical Modulation of WNT Signaling in Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:245-269. [DOI: 10.1016/bs.pmbts.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Asciolla JJ, Miele MM, Hendrickson RC, Resh MD. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine. J Biol Chem 2017; 292:13507-13513. [PMID: 28655768 DOI: 10.1074/jbc.c117.800136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O-acyl transferase family.
Collapse
Affiliation(s)
- James J Asciolla
- From the Cell Biology Program and.,the Biochemistry, Cell Biology and Molecular Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065
| | - Matthew M Miele
- Proteomics and Microchemistry Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Ronald C Hendrickson
- Proteomics and Microchemistry Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York 10065 and
| | - Marilyn D Resh
- From the Cell Biology Program and .,the Biochemistry, Cell Biology and Molecular Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065
| |
Collapse
|
10
|
Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction. Methods Mol Biol 2016. [PMID: 27590147 DOI: 10.1007/978-1-4939-6393-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance.
Collapse
|
11
|
Kaemmerer E, Gassler N. Wnt Lipidation and Modifiers in Intestinal Carcinogenesis and Cancer. Cancers (Basel) 2016; 8:69. [PMID: 27438855 PMCID: PMC4963811 DOI: 10.3390/cancers8070069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022] Open
Abstract
The wingless (Wnt) signaling is suggested as a fundamental hierarchical pathway in regulation of proliferation and differentiation of cells. The Wnt ligands are small proteins of about 40 kDa essentially for regulation and initiation of the Wnt activity. They are secreted proteins requiring acylation for activity in the Wnt signaling cascade and for functional interactivity with transmembrane proteins. Dual lipidation is important for posttranslational activation of the overwhelming number of Wnt proteins and is probably involved in their spatial distribution. The intestinal mucosa, where Wnt signaling is essential in configuration and maintenance, is an established model to study Wnt proteins and their role in carcinogenesis and cancer. The intestinal crypt-villus/crypt-plateau axis, a cellular system with self-renewal, proliferation, and differentiation, is tightly coordinated by a Wnt gradient. In the review, some attention is given to Wnt3, Wnt3A, and Wnt2B as important members of the Wnt family to address the role of lipidation and modifiers of Wnt proteins in intestinal carcinogenesis. Wnt3 is an important player in establishing the Wnt gradient in intestinal crypts and is mainly produced by Paneth cells. Wnt2B is characterized as a mitochondrial protein and shuttles between mitochondria and the nucleus. Porcupine and ACSL5, a long-chain fatty acid activating enzyme, are introduced as modifiers of Wnts and as interesting strategy to targeting Wnt-driven carcinogenesis.
Collapse
Affiliation(s)
- Elke Kaemmerer
- Institute of Pathology, RWTH Aachen University, Aachen 52074, Germany.
- Department of Pediatrics, RWTH Aachen University, Aachen 52074, Germany.
| | - Nikolaus Gassler
- Institute of Pathology, RWTH Aachen University, Aachen 52074, Germany.
- Institute of Pathology, Klinikum Braunschweig, Braunschweig 38114, Germany.
| |
Collapse
|
12
|
Cheng D, Liu J, Han D, Zhang G, Gao W, Hsieh MH, Ng N, Kasibhatla S, Tompkins C, Li J, Steffy A, Sun F, Li C, Seidel HM, Harris JL, Pan S. Discovery of Pyridinyl Acetamide Derivatives as Potent, Selective, and Orally Bioavailable Porcupine Inhibitors. ACS Med Chem Lett 2016; 7:676-80. [PMID: 27437076 DOI: 10.1021/acsmedchemlett.6b00038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022] Open
Abstract
Blockade of aberrant Wnt signaling is an attractive therapeutic approach in multiple cancers. We developed and performed a cellular high-throughput screen for inhibitors of Wnt secretion and pathway activation. A lead structure (GNF-1331) was identified from the screen. Further studies identified the molecular target of GNF-1331 as Porcupine, a membrane bound O-acyl transferase. Structure-activity relationship studies led to the discovery of a novel series of potent and selective Porcupine inhibitors. Compound 19, GNF-6231, demonstrated excellent pathway inhibition and induced robust antitumor efficacy in a mouse MMTV-WNT1 xenograft tumor model.
Collapse
Affiliation(s)
- Dai Cheng
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jun Liu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Dong Han
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Guobao Zhang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Wenqi Gao
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Mindy H. Hsieh
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Nicholas Ng
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shailaja Kasibhatla
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Celin Tompkins
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jie Li
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Auzon Steffy
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Fangxian Sun
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Chun Li
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - H. Martin Seidel
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jennifer L. Harris
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shifeng Pan
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|