1
|
Das S, Das S, Maity A, Maiti S. Nuclear Protein FNBP4: A Novel Inhibitor of Non-diaphanous Formin FMN1-Mediated Actin Cytoskeleton Dynamics. J Biol Chem 2025:108550. [PMID: 40316024 DOI: 10.1016/j.jbc.2025.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025] Open
Abstract
Formin1 (FMN1), a member of the non-diaphanous formin family, is essential for development and neuronal function. Unlike diaphanous-related formins, FMN1 is not subject to canonical autoinhibition through the DID and DAD domains, nor is it activated by Rho GTPase binding. Recent studies suggest that formins also play roles in the nucleus, influencing DNA damage response and transcriptional regulation. However, the mechanisms regulating formins particularly non-diaphanous ones like FMN1 remain poorly understood. Our previous research identified the interaction between FMN1 and formin-binding protein 4 (FNBP4), prompting further investigation into its functional role in regulating actin dynamics. Results reveal that FNBP4 inhibits FMN1-mediated actin assembly in vitro. It is shown that FNBP4 prevents FMN1 from displacing the capping protein CapZ at the growing barbed end of actin filaments. Additionally, FNBP4 inhibits FMN1's bundling activity in a concentration-dependent manner. Further analysis indicates that FNBP4 interacts with the FH1 domain and the interdomain connector between the FH1 and FH2 domains, creating spatial constraints on the FH2 domain. We propose that FNBP4 acts as a stationary inhibitor of FMN1. In addition, our subcellular localization studies revealed that FNBP4 is exclusively nuclear, supported by the identification of a monopartite nuclear localization signal (NLS) within its sequence, suggesting a potential role in regulating nuclear actin dynamics. This study provides new insights into the regulatory role of FNBP4 in modulating FMN1-mediated actin dynamics, shedding light on regulatory mechanisms specific to non-diaphanous formins.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saikat Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Amrita Maity
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
2
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
3
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
4
|
Innocenti M. Investigating Mammalian Formins with SMIFH2 Fifteen Years in: Novel Targets and Unexpected Biology. Int J Mol Sci 2023; 24:ijms24109058. [PMID: 37240404 DOI: 10.3390/ijms24109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The mammalian formin family comprises fifteen multi-domain proteins that regulate actin dynamics and microtubules in vitro and in cells. Evolutionarily conserved formin homology (FH) 1 and 2 domains allow formins to locally modulate the cell cytoskeleton. Formins are involved in several developmental and homeostatic processes, as well as human diseases. However, functional redundancy has long hampered studies of individual formins with genetic loss-of-function approaches and prevents the rapid inhibition of formin activities in cells. The discovery of small molecule inhibitor of formin homology 2 domains (SMIFH2) in 2009 was a disruptive change that provided a powerful chemical tool to explore formins' functions across biological scales. Here, I critically discuss the characterization of SMIFH2 as a pan-formin inhibitor, as well as growing evidence of unexpected off-target effects. By collating the literature and information hidden in public repositories, outstanding controversies and fundamental open questions about the substrates and mechanism of action of SMIFH2 emerge. Whenever possible, I propose explanations for these discrepancies and roadmaps to address the paramount open questions. Furthermore, I suggest that SMIFH2 be reclassified as a multi-target inhibitor for its appealing activities on proteins involved in pathological formin-dependent processes. Notwithstanding all drawbacks and limitations, SMIFH2 will continue to prove useful in studying formins in health and disease in the years to come.
Collapse
Affiliation(s)
- Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
5
|
Labat-de-Hoz L, Comas L, Rubio-Ramos A, Casares-Arias J, Fernández-Martín L, Pantoja-Uceda D, Martín MT, Kremer L, Jiménez MA, Correas I, Alonso MA. Structure and function of the N-terminal extension of the formin INF2. Cell Mol Life Sci 2022; 79:571. [PMID: 36306014 PMCID: PMC9616786 DOI: 10.1007/s00018-022-04581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
In INF2—a formin linked to inherited renal and neurological disease in humans—the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Comas
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - M Teresa Martín
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
6
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
7
|
Hao L, Liu Y, Yu X, Zhu Y, Zhu Y. Formin homology domains of Daam1 bind to Fascin and collaboratively promote pseudopodia formation and cell migration in breast cancer. Cell Prolif 2021; 54:e12994. [PMID: 33458919 PMCID: PMC7941230 DOI: 10.1111/cpr.12994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Cancer cell migration to secondary organs remains an essential cause of death among breast cancer (BrCa) patients. Cell motility mainly relies on actin dynamics. Our previous reports verified that dishevelled-associated activator of morphogenesis 1 (Daam1) regulates invadopodia extension and BrCa cell motility. However, how Daam1 is involved in actin filament assembly and promotes pseudopodia formation in BrCa cells remains unclear. MATERIALS AND METHODS One hundred human BrCa samples were collected at Women's Hospital of Nanjing Medical University. Immunohistochemistry (IHC) was used to examine Daam1 and Fascin expression. Wound healing and Boyden chamber assays were used to explore cell migration and pseudopodia extension of BrCa cells. Co-IP/pull down and Western blotting were performed to study the physical interaction between Daam1 and Fascin. Immunofluorescence assays were performed to observe whether Daam1 and Fascin were colocalized and mediated actin filament assembly. RESULTS Fascin was upregulated in BrCa tissues compared with that in paracarcinoma tissues. The downregulation of Fascin caused a decline in pseudopodia formation and cell motility. Moreover, we found that Daam1 interacted with Fascin via formin homology (FH) domains, especially the FH2 domain. Immunofluorescence assays showed that Daam1 and Fascin partially colocalized to actin filaments, and the knockdown of Daam1 or Fascin failed to colocalize to short and curved actin filaments. CONCLUSIONS Daam1 specifically binds to Fascin via FH domains and cooperatively facilitates pseudopodia formation and cell migration by promoting actin filament assembly in BrCa.
Collapse
Affiliation(s)
- Leiyu Hao
- Department of PhysiologyNanjing Medical UniversityNanjingChina
| | - Yan Liu
- Department of PhysiologyNanjing Medical UniversityNanjingChina
| | - Xinqian Yu
- Department of PhysiologyNanjing Medical UniversityNanjingChina
| | - Yuerong Zhu
- Qinhuai DistrictNanjing Jinling HospitalNanjingChina
| | - Yichao Zhu
- Department of PhysiologyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Nuclear Morphological Remodeling in Human Granulocytes Is Linked to Prenylation Independently from Cytoskeleton. Cells 2020; 9:cells9112509. [PMID: 33233551 PMCID: PMC7699803 DOI: 10.3390/cells9112509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear shape modulates cell behavior and function, while aberrant nuclear morphologies correlate with pathological phenotype severity. Nevertheless, functions of specific nuclear morphological features and underlying molecular mechanisms remain poorly understood. Here, we investigate a nucleus-intrinsic mechanism driving nuclear lobulation and segmentation concurrent with granulocyte specification, independently from extracellular forces and cytosolic cytoskeleton contributions. Transcriptomic regulation of cholesterol biosynthesis is equally concurrent with nuclear remodeling. Its putative role as a regulatory element is supported by morphological aberrations observed upon pharmacological impairment of several enzymatic steps of the pathway, most prominently the sterol ∆14-reductase activity of laminB-receptor and protein prenylation. Thus, we support the hypothesis of a nuclear-intrinsic mechanism for nuclear shape control with the putative involvement of the recently discovered GGTase III complex. Such process could be independent from or complementary to the better studied cytoskeleton-based nuclear remodeling essential for cell migration in both physiological and pathological contexts such as immune system function and cancer metastasis.
Collapse
|
9
|
D-Aspartate Upregulates DAAM1 Protein Levels in the Rat Testis and Induces Its Localization in Spermatogonia Nucleus. Biomolecules 2020; 10:biom10050677. [PMID: 32353957 PMCID: PMC7277804 DOI: 10.3390/biom10050677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Cell differentiation during spermatogenesis requires a proper actin dynamic, regulated by several proteins, including formins. Disheveled-Associated-Activator of Morphogenesis1 (DAAM1) belongs to the formins and promotes actin polymerization. Our results showed that oral D-Aspartate (D-Asp) administration, an excitatory amino acid, increased DAAM1 protein levels in germ cells cytoplasm of rat testis. Interestingly, after the treatment, DAAM1 also localized in rat spermatogonia (SPG) and mouse GC-1 cells nuclei. We provided bioinformatic evidence that DAAM1 sequence has two predicted NLS, supporting its nuclear localization. The data also suggested a role of D-Asp in promoting DAAM1 shuttling to the nuclear compartment of those proliferative cells. In addition, the proliferative action induced by D-Asp is confirmed by the increased levels of PCNA, a protein expressed in the nucleus of cells in the S phase and p-H3, a histone crucial for chromatin condensation during mitosis and meiosis. In conclusion, we demonstrated, for the first time, an increased DAAM1 protein levels following D-Asp treatment in rat testis and also its localization in the nucleus of rat SPG and in mouse GC-1 cells. Our results suggest an assumed role for this formin as a regulator of actin dynamics in both cytoplasm and nuclei of the germ cells.
Collapse
|
10
|
Argenzio E, Innocenti M. The chloride intracellular channel protein CLIC4 inhibits filopodium formation induced by constitutively active mutants of formin mDia2. FEBS Lett 2020; 594:1750-1758. [PMID: 32145706 DOI: 10.1002/1873-3468.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 11/07/2022]
Abstract
Chloride intracellular channel 4 (CLIC4) functions in diverse actin-dependent processes. Upon Rho activation, CLIC4 reversibly translocates from the cytosol to the plasma membrane to regulate cell adhesion and migration. At the plasma membrane, CLIC4 counters the formation of filopodia, which requires actin assembly by the formin mammalian Diaphanous (mDia)2. To this end, mDia2 must be activated through conversion from the closed to the open conformation. Thus, CLIC4 could harness the activation or the open conformation of mDia2 to inhibit filopodium formation. Here, we find that CLIC4 silencing enhances the filopodia induced by two constitutively active mDia2 mutants. Furthermore, we report that CLIC4 binds the actin-regulatory region of mDia2 in vitro. These results suggest that CLIC4 modulates the activity of the open conformation of mDia2, shedding new light into how cells may control filopodia.
Collapse
Affiliation(s)
- Elisabetta Argenzio
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Metello Innocenti
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Germany
| |
Collapse
|
11
|
Sankaran JS, Sen B, Dudakovic A, Paradise CR, Perdue T, Xie Z, McGrath C, Styner M, Newberg J, Uzer G, van Wijnen AJ, Rubin J. Knockdown of formin mDia2 alters lamin B1 levels and increases osteogenesis in stem cells. Stem Cells 2020; 38:102-117. [PMID: 31648392 PMCID: PMC6993926 DOI: 10.1002/stem.3098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.
Collapse
Affiliation(s)
- Jeyantt S. Sankaran
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Buer Sen
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Amel Dudakovic
- Department of Orthopedic Surgery and Biochemistry and
Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Christopher R. Paradise
- Graduate School of Biomedical Sciences and Center for
Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tony Perdue
- Department of Biology, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Zhihui Xie
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Cody McGrath
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Maya Styner
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Joshua Newberg
- Department of Mechanical and Biomedical Engineering, Boise
State University, Boise, Idaho
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, Boise
State University, Boise, Idaho
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery and Biochemistry and
Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Janet Rubin
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Argenzio E, Klarenbeek J, Kedziora KM, Nahidiazar L, Isogai T, Perrakis A, Jalink K, Moolenaar WH, Innocenti M. Profilin binding couples chloride intracellular channel protein CLIC4 to RhoA-mDia2 signaling and filopodium formation. J Biol Chem 2018; 293:19161-19176. [PMID: 30381396 PMCID: PMC6302171 DOI: 10.1074/jbc.ra118.002779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a cytosolic protein implicated in diverse actin-based processes, including integrin trafficking, cell adhesion, and tubulogenesis. CLIC4 is rapidly recruited to the plasma membrane by RhoA-activating agonists and then partly colocalizes with β1 integrins. Agonist-induced CLIC4 translocation depends on actin polymerization and requires conserved residues that make up a putative binding groove. However, the mechanism and significance of CLIC4 trafficking have been elusive. Here, we show that RhoA activation by either lysophosphatidic acid (LPA) or epidermal growth factor is necessary and sufficient for CLIC4 translocation to the plasma membrane and involves regulation by the RhoA effector mDia2, a driver of actin polymerization and filopodium formation. We found that CLIC4 binds the G-actin–binding protein profilin-1 via the same residues that are required for CLIC4 trafficking. Consistently, shRNA-induced profilin-1 silencing impaired agonist-induced CLIC4 trafficking and the formation of mDia2-dependent filopodia. Conversely, CLIC4 knockdown increased filopodium formation in an integrin-dependent manner, a phenotype rescued by wild-type CLIC4 but not by the trafficking-incompetent mutant CLIC4(C35A). Furthermore, CLIC4 accelerated LPA-induced filopodium retraction. We conclude that through profilin-1 binding, CLIC4 functions in a RhoA–mDia2–regulated signaling network to integrate cortical actin assembly and membrane protrusion. We propose that agonist-induced CLIC4 translocation provides a feedback mechanism that counteracts formin-driven filopodium formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Anastassis Perrakis
- Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
13
|
Cao L, Kerleau M, Suzuki EL, Wioland H, Jouet S, Guichard B, Lenz M, Romet-Lemonne G, Jegou A. Modulation of formin processivity by profilin and mechanical tension. eLife 2018; 7:34176. [PMID: 29799413 PMCID: PMC5969902 DOI: 10.7554/elife.34176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.
Collapse
Affiliation(s)
- Luyan Cao
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Mikael Kerleau
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Emiko L Suzuki
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Sandy Jouet
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | | | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
14
|
Innocenti M. New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. Cell Adh Migr 2018. [PMID: 29513145 DOI: 10.1080/19336918.2018.1448352] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lamellipodia and ruffles are veil-shaped cell protrusions composed of a highly branched actin filament meshwork assembled by the Arp2/3 complex. These structures not only hallmark the leading edge of cells adopting the adhesion-based mesenchymal mode of migration but are also thought to drive cell movement. Although regarded as textbook knowledge, the mechanism of formation of lamellipodia and ruffles has been revisited in the last years leveraging new technologies. Furthermore, recent observations have also challenged our current view of the function of lamellipodia and ruffles in mesenchymal cell migration. Here, I review this literature and compare it with older studies to highlight the controversies and the outstanding open issues in the field. Moreover, I outline simple and plausible explanations to reconcile conflicting results and conclusions. Finally, I integrate the mechanisms regulating actin-based protrusion in a unifying model that accounts for random and ballistic mesenchymal cell migration.
Collapse
Affiliation(s)
- Metello Innocenti
- a Division of Molecular Genetics, The Netherlands Cancer Institute , Plesmanlaan 121, Amsterdam , CX , The Netherlands
| |
Collapse
|
15
|
Li L, Gao Y, Chen H, Jesus T, Tang E, Li N, Lian Q, Ge RS, Cheng CY. Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons. F1000Res 2017; 6:1565. [PMID: 28928959 PMCID: PMC5580414 DOI: 10.12688/f1000research.11421.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 01/13/2023] Open
Abstract
In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP) is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2) in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19) interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin) at the actin-rich apical ectoplasmic specialization (ES) since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin), tight junction (occludin-ZO-1 and claudin 11-ZO-1), and gap junction (connexin 43-plakophilin-2) and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2). In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both) and these polarity (or PCP) protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed.
Collapse
Affiliation(s)
- Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA.,The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Tito Jesus
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Elizabeth Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| |
Collapse
|
16
|
De Conto F, Fazzi A, Razin SV, Arcangeletti MC, Medici MC, Belletti S, Chezzi C, Calderaro A. Mammalian Diaphanous-related formin-1 restricts early phases of influenza A/NWS/33 virus (H1N1) infection in LLC-MK2 cells by affecting cytoskeleton dynamics. Mol Cell Biochem 2017; 437:185-201. [PMID: 28744815 DOI: 10.1007/s11010-017-3107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022]
Abstract
Viruses depend on cellular machinery to efficiently replicate. The host cytoskeleton is one of the first cellular systems hijacked by viruses in order to ensure their intracellular transport and promote the development of infection. Our previous results demonstrated that stable microfilaments and microtubules interfered with human influenza A/NWS/33 virus (H1N1) infection in semi-permissive LLC-MK2 cells. Although formins play a key role in cytoskeletal remodelling, few studies addressed a possible role of these proteins in development of viral infection. Here, we have demonstrated that mammalian Diaphanous-related formin-1 (mDia1) is involved in the control of cytoskeleton dynamics during human influenza A virus infection. First, by employing cytoskeleton-perturbing drugs, we evidenced a cross-talk occurring between microtubules and microfilaments that also has implications on the intracellular localization of mDia1. In influenza A/NWS/33 virus-infected LLC-MK2 cells, mDia1 showed a highly dynamic intracellular localization and partially co-localized with actin and tubulin. A depletion of mDia1 by RNA-mediated RNA interference was found to improve the outcome of influenza A/NWS/33 virus infection and to increase the dynamics of microfilament and microtubule networks in LLC-MK2 cells. Consistent with these findings, observations made in epithelial respiratory cells from paediatric patients with acute respiratory disease assessed that the expression of mDia1 is stimulated by influenza A virus but not by respiratory syncytial virus. Taken together, the obtained results suggest that mDia1 restricts the initiation of influenza A/NWS/33 virus infection in LLC-MK2 cells by counteracting cytoskeletal dynamics.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Alessandra Fazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences and Lomonosow Moscow State University, Moscow, Russia
| | | | | | - Silvana Belletti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|