1
|
Li X, Guo W, Wen Y, Meng C, Zhang Q, Chen H, Zhao X, Wu B. Structural basis for the RNA binding properties of mouse IGF2BP3. Structure 2025; 33:771-785.e3. [PMID: 39986276 DOI: 10.1016/j.str.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
IGF2BP family proteins (IGF2BPs) contain six tandem RNA-binding domains (RBDs), resulting in highly complex RNA binding properties. Dissecting how IGF2BPs recognize their RNA targets is essential for understanding their regulatory roles in gene expression. Here, we have determined the crystal structures of mouse IGF2BP3 constructs complexed with different RNA substrates. Our structures reveal that the IGF2BP3-RRM12 domains can recognize CA-rich elements up to 5-nt in length, mainly through RRM1. We also captured the antiparallel RNA-binding mode of the IGF2BP3-KH12 domains, with five nucleotides bound by KH1 and two nucleotides bound by KH2. Furthermore, our structural and biochemical studies suggest that the IGF2BP3-KH12 domains could recognize the "zipcode" RNA element within the β-actin mRNA. Finally, we analyzed the similarities and differences of the RNA-binding properties between the KH12 and KH34. Our studies provide structural insights into RNA target recognition by mouse IGF2BP3.
Collapse
Affiliation(s)
- Xiaojia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
2
|
Damberger F, Krepl M, Arora R, Beusch I, Maris C, Dorn G, Šponer J, Ravindranathan S, Allain FT. N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition. Nucleic Acids Res 2024; 52:10683-10704. [PMID: 39180402 PMCID: PMC11417363 DOI: 10.1093/nar/gkae713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.
Collapse
Affiliation(s)
- Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | - Rajika Arora
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Irene Beusch
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Georg Dorn
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 612 00, Czech Republic
| | | | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Moonitz SA, Do NT, Noriega R. Electrostatic modulation of multiple binding events between loquacious-PD and double-stranded RNA. Phys Chem Chem Phys 2024; 26:20739-20744. [PMID: 39049620 DOI: 10.1039/d4cp02151g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Electrostatics can alter the RNA-binding properties of proteins that display structure selectivity without sequence specificity. Loquacious-PD relies on this broad scope response to mediate the interaction of endonucleases with double stranded RNAs. Multimodal spectroscopic probes with in situ perturbations reveal an efficient and stable binding mechanism that disfavors high protein density complexes and is sensitive to local electrostatics.
Collapse
Affiliation(s)
- Sasha A Moonitz
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | - Nhat T Do
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | - Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
4
|
Bano Z, Westhoff P. A K homology (KH) domain protein identified by a forward genetic screen affects bundle sheath anatomy in Arabidopsis thaliana. PLANT DIRECT 2024; 8:e577. [PMID: 38576996 PMCID: PMC10990680 DOI: 10.1002/pld3.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
Because of their photosynthetic capacity, leaves function as solar panels providing the basis for the growth of the entire plant. Although the molecular mechanisms of leaf development have been well studied in model dicot and monocot species, a lot of information is still needed about the interplay of the genes that regulate cell division and differentiation and thereby affect the photosynthetic performance of the leaf. We were specifically interested in understanding the differentiation of mesophyll and bundle sheath cells in Arabidopsis thaliana and aimed to identify genes that are involved in determining bundle sheath anatomy. To this end, we established a forward genetic screen by using ethyl methanesulfonate (EMS) for mutagenizing a reporter line expressing a chloroplast-targeted green fluorescent protein (sGFP) under the control of a bundle sheath-specific promoter. Based on the GFP fluorescence phenotype, numerous mutants were produced, and by pursuing a mapping-by-sequencing approach, the genomic segments containing mutated candidate genes were identified. One of the lines with an enhanced GFP fluorescence phenotype (named ELEVATED BUNDLE SHEATH CELLS SIGNAL 1 [ebss1]) was selected for further study, and the responsible gene was verified by CRISPR/Cas9-based mutagenesis of candidate genes located in the mapped genomic segment. The verified gene, At2g25970, encodes a K homology (KH) domain-containing protein.
Collapse
Affiliation(s)
- Zahida Bano
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
5
|
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M. Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 2023; 14:4233. [PMID: 37454201 PMCID: PMC10349855 DOI: 10.1038/s41467-023-39961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.
Collapse
Affiliation(s)
- Komal Soni
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Pravin Kumar Ankush Jagtap
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sophie Bonnal
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
| | - Arie Geerlof
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Ralf Stehle
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Juan Valcárcel
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
6
|
Hollmann NM, Jagtap PKA, Linse JB, Ullmann P, Payr M, Murciano B, Simon B, Hub JS, Hennig J. Upstream of N-Ras C-terminal cold shock domains mediate poly(A) specificity in a novel RNA recognition mode and bind poly(A) binding protein. Nucleic Acids Res 2023; 51:1895-1913. [PMID: 36688322 PMCID: PMC9976900 DOI: 10.1093/nar/gkac1277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
RNA binding proteins (RBPs) often engage multiple RNA binding domains (RBDs) to increase target specificity and affinity. However, the complexity of target recognition of multiple RBDs remains largely unexplored. Here we use Upstream of N-Ras (Unr), a multidomain RBP, to demonstrate how multiple RBDs orchestrate target specificity. A crystal structure of the three C-terminal RNA binding cold-shock domains (CSD) of Unr bound to a poly(A) sequence exemplifies how recognition goes beyond the classical ππ-stacking in CSDs. Further structural studies reveal several interaction surfaces between the N-terminal and C-terminal part of Unr with the poly(A)-binding protein (pAbp). All interactions are validated by mutational analyses and the high-resolution structures presented here will guide further studies to understand how both proteins act together in cellular processes.
Collapse
Affiliation(s)
- Nele Merret Hollmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Johanna-Barbara Linse
- Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany.,Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Philip Ullmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco Payr
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Brice Murciano
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jochen S Hub
- Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany.,Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.,Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
7
|
Ye X, Yang W, Yi S, Zhao Y, Varani G, Jankowsky E, Yang F. Two distinct binding modes provide the RNA-binding protein RbFox with extraordinary sequence specificity. Nat Commun 2023; 14:701. [PMID: 36759600 PMCID: PMC9911399 DOI: 10.1038/s41467-023-36394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Specificity of RNA-binding proteins for target sequences varies considerably. Yet, it is not understood how certain few proteins achieve markedly higher sequence specificity than most others. Here we show that the RNA Recognition Motif of RbFox accomplishes extraordinary sequence specificity by employing functionally and structurally distinct binding modes. Affinity measurements of RbFox for all binding site variants reveal the existence of two distinct binding modes. The first exclusively accommodates cognate and closely related RNAs with high affinity. The second mode accommodates all other RNAs with reduced affinity by imposing large thermodynamic penalties on non-cognate sequences. NMR studies indicate marked structural differences between the two binding modes, including large conformational rearrangements distant from the RNA-binding site. Distinct binding modes by a single RNA-binding module explain extraordinary sequence selectivity and reveal an unknown layer of functional diversity, cross talk and regulation in RNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, USA.
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
8
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
9
|
Abstract
RNA-binding proteins often contain multiple RNA-binding domains connected by short flexible linkers. This domain arrangement allows the protein to bind the RNA with greater affinity and specificity than would be possible with individual domains and sometimes to remodel its structure. It is therefore important to understand how multiple modules interact with RNA because it is the modular nature of these proteins which specifies their biological function. This chapter is concerned with the use of biolayer interferometry to study protein-RNA interactions.
Collapse
Affiliation(s)
- Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Andres Ramos
- Department of Structural & Molecular Biology, University College London, London, UK
| | - Laura Masino
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK.
| |
Collapse
|
10
|
Binas O, Tants JN, Peter SA, Janowski R, Davydova E, Braun J, Niessing D, Schwalbe H, Weigand JE, Schlundt A. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res 2020; 48:7385-7403. [PMID: 32491174 PMCID: PMC7367199 DOI: 10.1093/nar/gkaa465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Adenylate/uridylate-rich elements (AREs) are the most common cis-regulatory elements in the 3′-untranslated region (UTR) of mRNAs, where they fine-tune turnover by mediating mRNA decay. They increase plasticity and efficacy of mRNA regulation and are recognized by several ARE-specific RNA-binding proteins (RBPs). Typically, AREs are short linear motifs with a high content of complementary A and U nucleotides and often occur in multiple copies. Although thermodynamically rather unstable, the high AU-content might enable transient secondary structure formation and modify mRNA regulation by RBPs. We have recently suggested that the immunoregulatory RBP Roquin recognizes folded AREs as constitutive decay elements (CDEs), resulting in shape-specific ARE-mediated mRNA degradation. However, the structural evidence for a CDE-like recognition of AREs by Roquin is still lacking. We here present structures of CDE-like folded AREs, both in their free and protein-bound form. Moreover, the AREs in the UCP3 3′-UTR are additionally bound by the canonical ARE-binding protein AUF1 in their linear form, adopting an alternative binding-interface compared to the recognition of their CDE structure by Roquin. Strikingly, our findings thus suggest that AREs can be recognized in multiple ways, allowing control over mRNA regulation by adapting distinct conformational states, thus providing differential accessibility to regulatory RBPs.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Elena Davydova
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Braun
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| |
Collapse
|
11
|
Jia M, Gut H, Chao JA. Structural basis of IMP3 RRM12 recognition of RNA. RNA (NEW YORK, N.Y.) 2018; 24:1659-1666. [PMID: 30135093 PMCID: PMC6239170 DOI: 10.1261/rna.065649.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The IMP family of RNA binding proteins, also named as insulin-like growth factor 2 (IGF2) mRNA-binding proteins (IGF2BPs), are highly conserved RNA regulators that are involved in many RNA processing stages, including mRNA stability, localization, and translation. There are three paralogs in the IMP family, IMP1-3, in mammals that all adopt the same domain arrangement with two RNA recognition motifs (RRM) in the N terminus and four KH domains in the C terminus. Here, we report the structure and biochemical characterization of IMP3 RRM12 and its complex with two short RNAs. These structures show that both RRM domains of IMP3 adopt the canonical RRM topology with two α-helices packed on an anti-parallel four stranded β-sheet. The spatial orientation of RRM1 to RRM2 is unique compared with other known tandem RRM structures. In the IMP3 RRM12 complex with RNA, only RRM1 is involved in RNA binding and recognizes a dinucleotide sequence.
Collapse
Affiliation(s)
- Min Jia
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| |
Collapse
|
12
|
Garcia-Moreno M, Järvelin AI, Castello A. Unconventional RNA-binding proteins step into the virus-host battlefront. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1498. [PMID: 30091184 PMCID: PMC7169762 DOI: 10.1002/wrna.1498] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
The crucial participation of cellular RNA‐binding proteins (RBPs) in virtually all steps of virus infection has been known for decades. However, most of the studies characterizing this phenomenon have focused on well‐established RBPs harboring classical RNA‐binding domains (RBDs). Recent proteome‐wide approaches have greatly expanded the census of RBPs, discovering hundreds of proteins that interact with RNA through unconventional RBDs. These domains include protein–protein interaction platforms, enzymatic cores, and intrinsically disordered regions. Here, we compared the experimentally determined census of RBPs to gene ontology terms and literature, finding that 472 proteins have previous links with viruses. We discuss what these proteins are and what their roles in infection might be. We also review some of the pioneering examples of unorthodox RBPs whose RNA‐binding activity has been shown to be critical for virus infection. Finally, we highlight the potential of these proteins for host‐based therapies against viruses. This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes
Collapse
Affiliation(s)
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
13
|
Gallagher C, Ramos A. Joining the dots - protein-RNA interactions mediating local mRNA translation in neurons. FEBS Lett 2018; 592:2932-2947. [PMID: 29856909 DOI: 10.1002/1873-3468.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/26/2023]
Abstract
Establishing and maintaining the complex network of connections required for neuronal communication requires the transport and in situ translation of large groups of mRNAs to create local proteomes. In this Review, we discuss the regulation of local mRNA translation in neurons and the RNA-binding proteins that recognise RNA zipcode elements and connect the mRNAs to the cellular transport networks, as well as regulate their translation control. However, mRNA recognition by the regulatory proteins is mediated by the combinatorial action of multiple RNA-binding domains. This increases the specificity and affinity of the interaction, while allowing the protein to recognise a diverse set of targets and mediate a range of mechanisms for translational regulation. The structural and molecular understanding of the interactions can be used together with novel microscopy and transcriptome-wide data to build a mechanistic framework for the regulation of local mRNA translation.
Collapse
Affiliation(s)
- Christopher Gallagher
- Institute of Structural and Molecular Biology, University College London, UK.,The Francis Crick Institute, London, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
14
|
Post-transcriptional regulation in planarian stem cells. Semin Cell Dev Biol 2018; 87:69-78. [PMID: 29870807 DOI: 10.1016/j.semcdb.2018.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Planarians are known for their immense regenerative abilities. A pluripotent stem cell population provides the cellular source for this process, as well as for the homeostatic cell turnover of the animals. These stem cells, known as neoblasts, present striking similarities at the morphological and molecular level to germ cells, but however, give rise to somatic tissue. Many RNA binding proteins known to be important for germ cell biology are also required for neoblast function, highlighting the importance of post-transcriptional regulation for stem cell control. Many of its aspects, including alternative splicing, alternative polyadenylation, translational control and mRNA deadenylation, as well as small RNAs such as microRNAs and piRNA are critical for stem cells. Their inhibition often abrogates both regeneration and cell turnover, resulting in lethality. Some of aspects of post-transcriptional regulation are conserved from planarian to mammalian stem cells.
Collapse
|