1
|
Breideband L, Wächtershäuser KN, Sarkar R, Puspathasan M, Stelzer EH, Pampaloni F. Gravitational forces and matrix stiffness modulate the invasiveness of breast cancer cells in bioprinted spheroids. Mater Today Bio 2025; 31:101640. [PMID: 40124331 PMCID: PMC11930500 DOI: 10.1016/j.mtbio.2025.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
The progression of breast cancer is influenced by the stiffness of the extracellular matrix (ECM), which becomes stiffer as cancer advances due to increased collagen IV and laminin secretion by cancer-associated fibroblasts. Intriguingly, breast cancer cells cultivated in two-dimensions exhibit a less aggressive behavior when exposed to weightlessness, or microgravity conditions. This study aims to elucidate the interplay between matrix stiffness and microgravity on breast cancer progression. For this purpose, three-dimensional spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231) were formed. These spheroids were subsequently bioprinted in hydrogels of varying stiffness, obtained by the mixing of gelatin methacrylate and poly(ethylene) glycol diacrylate mixed at different ratios. The constructs were printed with a custom stereolithography (SLA) bioprinter converted from a low-cost, commercially available 3D printer. These bioprinted structures, encapsulating breast cancer spheroids, were then placed in a clinostat (microgravity simulation device) for a duration of seven days. Comparative analyses were conducted between objects cultured under microgravity and standard earth gravity conditions. Protein expression was characterized through fluorescent microscopy, while gene expression of MCF-7 constructs was analyzed via RNA sequencing. Remarkably, the influence of a stiffer ECM on the protein and gene expression levels of breast cancer cells could be modulated and sometimes even reversed in microgravity conditions. The study's findings hold implications for refining therapeutic strategies for advanced breast cancer stages - an array of genes involved in reversing aggressive or even metastatic behavior might lead to the discovery of new compounds that could be used in a clinical setting.
Collapse
Affiliation(s)
- Louise Breideband
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Kaja Nicole Wächtershäuser
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ryan Sarkar
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Melosha Puspathasan
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ernst H.K. Stelzer
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| |
Collapse
|
2
|
Jadav N, Velamoor S, Huang D, Cassin L, Hazelton N, Eruera AR, Burga LN, Bostina M. Beyond the surface: Investigation of tumorsphere morphology using volume electron microscopy. J Struct Biol 2023; 215:108035. [PMID: 37805154 DOI: 10.1016/j.jsb.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The advent of volume electron microscopy (vEM) has provided unprecedented insights into cellular and subcellular organization, revolutionizing our understanding of cancer biology. This study presents a previously unexplored comparative analysis of the ultrastructural disparities between cancer cells cultured as monolayers and tumorspheres. By integrating a robust workflow that incorporates high-pressure freezing followed by freeze substitution (HPF/FS), serial block face scanning electron microscopy (SBF-SEM), manual and deep learning-based segmentation, and statistical analysis, we have successfully generated three-dimensional (3D) reconstructions of monolayer and tumorsphere cells, including their subcellular organelles. Our findings reveal a significant degree of variation in cellular morphology in tumorspheres. We observed the increased prevalence of nuclear envelope invaginations in tumorsphere cells compared to monolayers. Furthermore, we detected a diverse range of mitochondrial morphologies exclusively in tumorsphere cells, as well as intricate cellular interconnectivity within the tumorsphere architecture. These remarkable ultrastructural differences emphasize the use of tumorspheres as a superior model for cancer research due to their relevance to in vivo conditions. Our results strongly advocate for the utilization of tumorsphere cells in cancer research studies, enhancing the precision and relevance of experimental outcomes, and ultimately accelerating therapeutic advancements.
Collapse
Affiliation(s)
- Nickhil Jadav
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sailakshmi Velamoor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Huang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Léna Cassin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Niki Hazelton
- Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
3
|
Chiarini F, Paganelli F, Balestra T, Capanni C, Fazio A, Manara MC, Landuzzi L, Petrini S, Evangelisti C, Lollini PL, Martelli AM, Lattanzi G, Scotlandi K. Lamin A and the LINC complex act as potential tumor suppressors in Ewing Sarcoma. Cell Death Dis 2022; 13:346. [PMID: 35422060 PMCID: PMC9010457 DOI: 10.1038/s41419-022-04729-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is involved in mechanosignaling and cell migration through dynamic interactions with the LINC complex, formed by the nuclear envelope proteins SUN1, SUN2 and the nesprins. Here, we investigated lamin A role in Ewing Sarcoma (EWS), an aggressive bone tumor affecting children and young adults. In patients affected by EWS, we found a significant inverse correlation between LMNA gene expression and tumor aggressiveness. Accordingly, in experimental in vitro models, low lamin A expression correlated with enhanced cell migration and invasiveness and, in vivo, with an increased metastatic load. At the molecular level, this condition was linked to altered expression and anchorage of nuclear envelope proteins and increased nuclear retention of YAP/TAZ, a mechanosignaling effector. Conversely, overexpression of lamin A rescued LINC complex organization, thus reducing YAP/TAZ nuclear recruitment and preventing cell invasiveness. These effects were also obtained through modulation of lamin A maturation by a statin-based pharmacological treatment that further elicited a more differentiated phenotype in EWS cells. These results demonstrate that drugs inducing nuclear envelope remodeling could be exploited to improve therapeutic strategies for EWS.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy. .,IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Francesca Paganelli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy.,Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Tommaso Balestra
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy.,Alma Mater Studiorum, University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, 40138, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Antonietta Fazio
- Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Maria Cristina Manara
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy
| | - Lorena Landuzzi
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, Bambino Gesu' Children's Hospital IRCCS, 00146, Rome, Italy
| | - Camilla Evangelisti
- Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Pier-Luigi Lollini
- Alma Mater Studiorum, University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, 40138, Bologna, Italy
| | - Alberto M Martelli
- Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy. .,IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Katia Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy.
| |
Collapse
|
4
|
Leech V, Hazel JW, Gatlin JC, Lindsay AE, Manhart A. Mathematical modeling accurately predicts the dynamics and scaling of nuclear growth in discrete cytoplasmic volumes. J Theor Biol 2022; 533:110936. [PMID: 34695383 DOI: 10.1016/j.jtbi.2021.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022]
Abstract
Scaling of nuclear size with cell size has been observed in many species and cell types. In this work we formulate a modeling framework based on the limiting component hypothesis. We derive a family of spatio-temporal mathematical models for nuclear size determination based on different transport and growth mechanisms. We analyse model properties and use in vitro experimental data to identify the most probable mechanism. This suggests that nuclear volume scales with cell volume and that a nucleus controls its import rate as it grows. We further test the model by comparing to data of early frog development, where rapid cell divisions set the relevant time scales.
Collapse
Affiliation(s)
- V Leech
- Dept. of Mathematics, University College London, London WC1H 0AY, UK.
| | - J W Hazel
- Dept. of Molecular Biology, U. Wyoming, Laramie, WY 82071, USA; Cell Division and Organization Group, Marine Biological laboratory, Woods Hole 02543, MA, USA
| | - J C Gatlin
- Dept. of Molecular Biology, U. Wyoming, Laramie, WY 82071, USA; Cell Division and Organization Group, Marine Biological laboratory, Woods Hole 02543, MA, USA.
| | - A E Lindsay
- Dept. of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend 46656, IN, USA.
| | - A Manhart
- Dept. of Mathematics, University College London, London WC1H 0AY, UK.
| |
Collapse
|
5
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
6
|
Bozal-Basterra L, Gonzalez-Santamarta M, Muratore V, Martín-Martín N, Ercilla A, Rodríguez JA, Carracedo A, Sutherland JD, Barrio R. LUZP1 Controls Cell Division, Migration and Invasion Through Regulation of the Actin Cytoskeleton. Front Cell Dev Biol 2021; 9:624089. [PMID: 33869174 PMCID: PMC8049182 DOI: 10.3389/fcell.2021.624089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
LUZP1 is a centrosomal and actin cytoskeleton-localizing protein that regulates both ciliogenesis and actin filament bundling. As the cytoskeleton and cilia are implicated in metastasis and tumor suppression, we examined roles for LUZP1 in the context of cancer. Here we show that LUZP1 exhibits frequent genomic aberrations in cancer, with a predominance of gene deletions. Furthermore, we demonstrate that CRISPR/Cas9-mediated loss of Luzp1 in mouse fibroblasts promotes cell migration and invasion features, reduces cell viability, and increases cell apoptosis, centriole numbers, and nuclear size while altering the actin cytoskeleton. Loss of Luzp1 also induced changes to ACTR3 (Actin Related Protein 3, also known as ARP3) and phospho-cofilin ratios, suggesting regulatory roles in actin polymerization, beyond its role in filament bundling. Our results point to an unprecedented role for LUZP1 in the regulation of cancer features through the control of actin cytoskeleton.
Collapse
Affiliation(s)
- Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - María Gonzalez-Santamarta
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| |
Collapse
|
7
|
Liu H, Yao C, Zhao Y, Chen X, Dong S, Wang L, Davalos RV. In Vitro Experimental and Numerical Studies on the Preferential Ablation of Chemo-Resistant Tumor Cells Induced by High-Voltage Nanosecond Pulsed Electric Fields. IEEE Trans Biomed Eng 2020; 68:2400-2411. [PMID: 33232222 DOI: 10.1109/tbme.2020.3040337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemoresistance causes tumor recurrence and metastasis, resulting in poor clinical outcomes and low survival, and has been considered an obstacle to tumor therapy. The development of novel therapeutic approaches that can effectively kill chemoresistant tumor cells (CRTCs) is therefore critical to overcoming these obstacles. OBJECTIVE Here, we introduce an emerging physical feature-based therapeutic approach based on nanosecond pulsed electric fields (nsPEFs). The goal of this study is to investigate the effect of nsPEFs on CRTCs. METHODS The cell viability, ablation effects on a 3D-cultured scaffold, and lethal thresholds of nsPEFs were evaluated according to fluorescence staining assays. RESULTS nsPEF treatment preferentially affected chemoresistant cells (A549/CDDP) with a higher cell viability inhibition ability/cell death rate, larger ablation area, and lower ablation threshold compared to their respective homologous tumor cells (A549). The experimental and theoretical studies suggested that nsPEFs displayed selective behavior toward intracellular structures. With this selective character, nsPEFs can induce higher electroporation effects (e.g., higher pore number, larger electroporation area, and faster fluorescence dissipation on the nuclear envelope) on CRTCs due to their larger nuclear size and cell membrane capacitance. CONCLUSION These findings demonstrated that nsPEFs induced preferential ablation of CRTCs over their respective homologous tumor cells. SIGNIFICANCE This study provides an experimental and theoretical basis for the study of killing CRTCs by electrical treatments and suggests potential applications in the optimization of novel anti-chemoresistance methods.
Collapse
|