1
|
Duan M, Plemel RL, Takenaka T, Lin A, Delgado BM, Nattermann U, Nickerson DP, Mima J, Miller EA, Merz AJ. SNARE chaperone Sly1 directly mediates close-range vesicle tethering. J Cell Biol 2024; 223:e202001032. [PMID: 38478018 PMCID: PMC10943277 DOI: 10.1083/jcb.202001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.
Collapse
Affiliation(s)
- Mengtong Duan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachael L. Plemel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Ariel Lin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Biology, California State University, San Bernardino, CA, USA
| | | | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Biophysics, Structure, and Design Graduate Program, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Joji Mima
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Alexey J. Merz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Arab M, Chen T, Lowe M. Mechanisms governing vesicle traffic at the Golgi apparatus. Curr Opin Cell Biol 2024; 88:102365. [PMID: 38705050 DOI: 10.1016/j.ceb.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Vesicle transport at the Golgi apparatus is a well-described process, and the major protein components involved have been identified. This includes the coat proteins that function in cargo sorting and vesicle formation, and the proteins that mediate the downstream events of vesicle tethering and membrane fusion. However, despite this knowledge, there remain significant gaps in our mechanistic understanding of these processes which includes how they are coordinated in space and time. In this review we discuss recent advances that have provided new insights into the mechanisms of Golgi trafficking, focussing on vesicle formation and cargo sorting, and vesicle tethering and fusion. These studies point to a high degree of spatial organisation of trafficking components at the Golgi and indicate an inherent plasticity of trafficking. Going forward, further advancements in technology and more sophisticated functional assays are expected to yield greater understanding of the mechanisms that govern Golgi trafficking events.
Collapse
Affiliation(s)
- Maryam Arab
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tong Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Abstract
Cargo delivery from one compartment to the next relies on the fusion of vesicles with different cellular organelles in a process that requires the concerted action of tethering factors. Although all tethers act to bridge vesicle membranes to mediate fusion, they form very diverse groups as they differ in composition, and in their overall architecture and size, as well as their protein interactome. However, their conserved function relies on a common design. Recent data on class C Vps complexes indicates that tethers play a significant role in membrane fusion beyond vesicle capturing. Furthermore, these studies provide additional mechanistic insights into membrane fusion events and reveal that tethers should be considered as key players of the fusion machinery. Moreover, the discovery of the novel tether FERARI complex has changed our understanding of cargo transport in the endosomal system as it has been shown to mediate 'kiss-and-run' vesicle-target membrane interactions. In this Cell Science at a Glance and the accompanying poster, we compare the structure of the coiled-coil and the multisubunit CATCHR and class C Vps tether families on the basis of their functional analogy. We discuss the mechanism of membrane fusion, and summarize how tethers capture vesicles, mediate membrane fusion at different cellular compartments and regulate cargo traffic.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Golgin Subfamily A Member 5 Is Essential for Production of Extracellular Matrix Proteins during TGF-β1-Induced Periodontal Ligament-Fibroblastic Differentiation. Stem Cells Int 2022; 2022:3273779. [PMID: 35879965 PMCID: PMC9308542 DOI: 10.1155/2022/3273779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) can be differentiated into periodontal ligament- (PDL-) fibroblastic progenitors by treatment with low concentrations of transforming growth factor beta 1 (TGF-β1). Although much is known about the profibrotic effects of TGF-β1, the molecular mechanisms mediating the activation of fibroblasts in periodontal ligament-fibroblastic differentiation are not well known. Our study was to investigate the mechanism of the fibroblastic process in the periodontal ligament differentiation of hPDLSCs through the discovery of novel markers. One of the monoclonal antibodies previously established through decoy immunization was the anti-LG11 antibody, which recognized Golgi subfamily A member 5 (GOLGA5) as a PDL-fibroblastic progenitor-specific antigen. GOLGA5/LG11 was significantly upregulated in TGF-β1-induced PDL-fibroblastic progenitors and accumulated in the PDL region of the tooth root. GOLGA5 plays a role in vesicle tethering and docking between the endoplasmic reticulum and the Golgi apparatus. siRNA-mediated depletion of endogenous GOLGA5 upregulated in TGF-β1-induced PDL-fibroblastic progenitors resulted in downregulation of representative PDL-fibroblastic markers and upregulation of osteoblast markers. When the TGF-β1 signaling pathway was blocked or GOLGA5 was depleted by siRNA, the levels of extracellular matrix (ECM) proteins, such as type I collagen and fibronectin, decreased in PDL-fibroblastic progenitors. In addition, Golgi structures in the perinuclear region underwent fragmentation under these conditions. These results suggest that GOLGA5/LG11 is a PDL-fibroblastic marker with functional importance in ECM protein production and secretion, which are important processes in PDL-fibroblastic differentiation.
Collapse
|
5
|
Clopés J, Shin J, Jahnel M, Grill SW, Zaburdaev V. Thermal fluctuations assist mechanical signal propagation in coiled-coil proteins. Phys Rev E 2021; 104:054403. [PMID: 34942783 DOI: 10.1103/physreve.104.054403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Recently, it has been shown that the long coiled-coil membrane tether protein early endosome antigen 1 (EEA1) switches from a rigid to a flexible conformation upon binding of a signaling protein to its free end. This flexibility switch represents a motorlike activity, allowing EEA1 to generate a force that moves vesicles closer to the membrane they will fuse with. It was hypothesized that the binding-induced signal could propagate along the coiled coil and lead to conformational changes through the localized domains of the protein chain that deviate from a perfect coiled-coil structure. To elucidate, if upon binding of a single protein the corresponding mechanical signal could propagate through the whole 200-nm-long chain, we propose a simplified description of the coiled coil as a one-dimensional Frenkel-Kontorova chain. Using numerical simulations, we find that an initial perturbation of the chain can propagate along its whole length in the presence of thermal fluctuations. This may enable the change of the configuration of the entire molecule and thereby affect its stiffness. Our work sheds light on intramolecular communication and force generation in long coiled-coil proteins.
Collapse
Affiliation(s)
- Judit Clopés
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Jaeoh Shin
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.,Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Biotechnology Center, Technical University Dresden, Tatzberg 47/49, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Biotechnology Center, Technical University Dresden, Tatzberg 47/49, 01307 Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Vasily Zaburdaev
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
6
|
The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Appl Environ Microbiol 2021; 87:AEM.02522-20. [PMID: 33452023 DOI: 10.1128/aem.02522-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Golgins are coiled-coil proteins that play prominent roles in maintaining the structure and function of the Golgi complex. However, the role of golgin proteins in phytopathogenic fungi remains poorly understood. In this study, we functionally characterized the Fusarium graminearum golgin protein RUD3, a homolog of ScRUD3/GMAP-210 in Saccharomyces cerevisiae and mammalian cells. Cellular localization observation revealed that RUD3 is located in the cis-Golgi. Deletion of RUD3 caused defects in vegetative growth, ascospore discharge, deoxynivalenol (DON) production, and virulence. Moreover, the Δrud3 mutant showed reduced expression of tri genes and impairment of the formation of toxisomes, both of which play essential roles in DON biosynthesis. We further used green fluorescent protein (GFP)-tagged SNARE protein SEC22 (SEC22-GFP) as a tool to study the transport between the endoplasmic reticulum (ER) and Golgi and observed that SEC22-GFP was retained in the cis-Golgi in the Δrud3 mutant. RUD3 contains the coiled coil (CC), GRAB-associated 2 (GA2), GRIP-related Arf binding (GRAB), and GRAB-associated 1 (GA1) domains, which except for GA1, are indispensable for normal localization and function of RUD3, whereas only CC is essential for normal RUD3-RUD3 interaction. Together, these results demonstrate how the golgin protein RUD3 mediates retrograde trafficking in the ER-to-Golgi pathway and is necessary for growth, ascospore discharge, DON biosynthesis, and pathogenicity in F. graminearum IMPORTANCE Fusarium head blight (FHB) caused by the fungal pathogen Fusarium graminearum is an economically important disease of wheat and other small grain cereal crops worldwide, and limited effective control strategies are available. A better understanding of the regulation mechanisms of F. graminearum development, deoxynivalenol (DON) biosynthesis, and pathogenicity is therefore important for the development of effective control management of this disease. Golgins are attached via their extreme carboxy terminus to the Golgi membrane and are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. In this study, we systematically characterized a highly conserved Golgin protein, RUD3, and found that it is required for vegetative growth, ascospore discharge, DON production, and pathogenicity in F. graminearum Our findings provide a comprehensive characterization of the golgin family protein RUD3 in plant-pathogenic fungus, which could help to identify a new potential target for effective control of this devastating disease.
Collapse
|
7
|
The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. Cells 2020; 9:cells9122652. [PMID: 33321764 PMCID: PMC7764369 DOI: 10.3390/cells9122652] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in N- and O-linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae. In this review, we describe the molecular machinery involved in vesicle trafficking and tethering at the Golgi apparatus and the effects of mutations in the context of glycan biosynthesis and human diseases.
Collapse
|
8
|
Blackburn JB, D'Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett 2019; 593:2466-2487. [PMID: 31381138 PMCID: PMC6771879 DOI: 10.1002/1873-3468.13570] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
The conserved oligomeric Golgi (COG) complex, a multisubunit tethering complex of the CATCHR (complexes associated with tethering containing helical rods) family, controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle targeting within the Golgi. In humans, COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). The COG complex both physically and functionally interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. Here, we review our current knowledge of COG-related trafficking and glycosylation defects in humans and model organisms, and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Present address:
Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Zinia D'Souza
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Vladimir V. Lupashin
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
9
|
Yang X, Liao CY, Tang J, Bassham DC. Overexpression of trans-Golgi network t-SNAREs rescues vacuolar trafficking and TGN morphology defects in a putative tethering factor mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:703-716. [PMID: 31009161 DOI: 10.1111/tpj.14353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The trans-Golgi network (TGN) is a major site for sorting of cargo to either the vacuole or apoplast. The TGN-localized coiled-coil protein TNO1 is a putative tethering factor that interacts with the TGN t-SNARE SYP41 and is required for correct localization of the SYP61 t-SNARE. An Arabidopsis thaliana tno1 mutant is hypersensitive to salt stress and partially mislocalizes vacuolar proteins to the apoplast, indicating a role in vacuolar trafficking. Here, we show that overexpression of SYP41 or SYP61 significantly increases SYP41-SYP61 complex formation in a tno1 mutant, and rescues the salt sensitivity and defective vacuolar trafficking of the tno1 mutant. The TGN is disrupted and vesicle budding from Golgi cisternae is reduced in the tno1 mutant, and these defects are also rescued by overexpression of SYP41 or SYP61. Our results suggest that the trafficking and Golgi morphology defects caused by loss of TNO1 can be rescued by increasing SYP41-SYP61 t-SNARE complex formation, implicating TNO1 as a tethering factor mediating efficient vesicle fusion at the TGN.
Collapse
Affiliation(s)
- Xiaochen Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
10
|
Lowe M. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front Cell Dev Biol 2019; 7:94. [PMID: 31316978 PMCID: PMC6611411 DOI: 10.3389/fcell.2019.00094] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
The golgins comprise a family of vesicle tethering proteins that act in a selective manner to tether transport vesicles at the Golgi apparatus. Tethering is followed by membrane fusion to complete the delivery of vesicle-bound cargo to the Golgi. Different golgins are localized to different regions of the Golgi, and their ability to selectively tether transport vesicles is important for the specificity of vesicle traffic in the secretory pathway. In recent years, our mechanistic understanding of golgin-mediated tethering has greatly improved. We are also beginning to appreciate how the loss of golgin function can impact upon physiological processes through the use of animal models and the study of human disease. These approaches have revealed that loss of a golgin causes tissue-restricted phenotypes, which can vary in severity and the cell types affected. In many cases, it is possible to attribute these phenotypes to a defect in vesicular traffic, although why certain tissues are sensitive to loss of a particular golgin is still, in most cases, unclear. Here, I will summarize recent progress in our understanding of golgins, focusing on the physiological roles of these proteins, as determined from animal models and the study of disease in humans. I will describe what these in vivo analyses have taught us, as well as highlight less understood aspects, and areas for future investigations.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Anderson NS, Barlowe C. Conserved juxtamembrane domains in the yeast golgin Coy1 drive assembly of a megadalton-sized complex and mediate binding to tethering and SNARE proteins. J Biol Chem 2019; 294:9690-9705. [PMID: 31073031 DOI: 10.1074/jbc.ra119.008107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
The architecture and organization of the Golgi complex depend on a family of coiled-coil proteins called golgins. Golgins are thought to form extended homodimers that are C-terminally anchored to Golgi membranes, whereas their N termini extend into the cytoplasm to initiate vesicle capture. Previously, we reported that the Saccharomyces cerevisiae golgin Coy1 contributes to intra-Golgi retrograde transport and binds to the conserved oligomeric Golgi (COG) complex and multiple retrograde Golgi Q-SNAREs (where SNARE is soluble NSF-attachment protein receptor). Here, using various engineered yeast strains, membrane protein extraction and fractionation methods, and in vitro binding assays, we mapped the Coy1 regions responsible for these activities. We also report that Coy1 assembles into a megadalton-size complex and that assembly of this complex depends on the most C-terminal coiled-coil and a conserved region between this coiled-coil and the transmembrane domain of Coy1. We found that this conserved region is necessary and sufficient for binding the SNARE protein Sed5 and the COG complex. Mutagenesis of conserved arginine residues within the C-terminal coiled-coil disrupted oligomerization, binding, and function of Coy1. Our findings indicate that the stable incorporation of Coy1 into a higher-order oligomer is required for its interactions and role in maintaining Golgi homeostasis. We propose that Coy1 assembles into a docking platform that directs COG-bound vesicles toward cognate SNAREs on the Golgi membrane.
Collapse
Affiliation(s)
- Nadine S Anderson
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Charles Barlowe
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
12
|
Barlow LD, Nývltová E, Aguilar M, Tachezy J, Dacks JB. A sophisticated, differentiated Golgi in the ancestor of eukaryotes. BMC Biol 2018; 16:27. [PMID: 29510703 PMCID: PMC5840792 DOI: 10.1186/s12915-018-0492-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Golgi apparatus is a central meeting point for the endocytic and exocytic systems in eukaryotic cells, and the organelle's dysfunction results in human disease. Its characteristic morphology of multiple differentiated compartments organized into stacked flattened cisternae is one of the most recognizable features of modern eukaryotic cells, and yet how this is maintained is not well understood. The Golgi is also an ancient aspect of eukaryotes, but the extent and nature of its complexity in the ancestor of eukaryotes is unclear. Various proteins have roles in organizing the Golgi, chief among them being the golgins. RESULTS We address Golgi evolution by analyzing genome sequences from organisms which have lost stacked cisternae as a feature of their Golgi and those that have not. Using genomics and immunomicroscopy, we first identify Golgi in the anaerobic amoeba Mastigamoeba balamuthi. We then searched 87 genomes spanning eukaryotic diversity for presence of the most prominent proteins implicated in Golgi structure, focusing on golgins. We show some candidates as animal specific and others as ancestral to eukaryotes. CONCLUSIONS None of the proteins examined show a phyletic distribution that correlates with the morphology of stacked cisternae, suggesting the possibility of stacking as an emergent property. Strikingly, however, the combination of golgins conserved among diverse eukaryotes allows for the most detailed reconstruction of the organelle to date, showing a sophisticated Golgi with differentiated compartments and trafficking pathways in the common eukaryotic ancestor.
Collapse
Affiliation(s)
- Lael D Barlow
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada
| | - Eva Nývltová
- Department of Parasitology (BIOCEV), Faculty of Science, Charles University, Průmyslová 595, 252 42, Vestec, Czech Republic.,Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Rosenstiel Medical Science Building (RMSB) # 2067, Miami, Florida, 33136, USA
| | - Maria Aguilar
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada
| | - Jan Tachezy
- Department of Parasitology (BIOCEV), Faculty of Science, Charles University, Průmyslová 595, 252 42, Vestec, Czech Republic
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada. .,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| |
Collapse
|