1
|
Wintgens S, Müller J, Drees F, Spona D, Bonda L, Hartmann L, Hegemann JH, Schmidt S. Sulfated Glycosaminoglycans as Inhibitors for Chlamydia Infections: Molecular Weight and Sulfation Dependence. Macromol Biosci 2025; 25:e2400443. [PMID: 39838590 PMCID: PMC11995835 DOI: 10.1002/mabi.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs. It is shown that increased sulfation and higher molecular weight enhance GAG binding to OmcB. These findings are further validated using cell assays, which shows that the addition of sulfated GAGs reduces OmcB-cell binding and inhibits the attachment of C. pneumoniae elementary bodies (EBs), underscoring the pivotal role of specific GAGs in chlamydial infections. Notably, heparin exhibites a stronger inhibitory effect on OmcB compare to GAGs with similar sulfation degrees and molecular weights, suggesting that particular molecular architectures may optimize binding interactions.
Collapse
Affiliation(s)
- Sebastian Wintgens
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Janita Müller
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
| | - Felicitas Drees
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| | - Dominik Spona
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Lorand Bonda
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
| | - Laura Hartmann
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| | - Johannes H. Hegemann
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Stephan Schmidt
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| |
Collapse
|
2
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
3
|
Diab L, Al Kattar S, Oueini N, Hawi J, Chrabieh A, Dosh L, Jurjus R, Leone A, Jurjus A. Syndecan-1: a key player in health and disease. Immunogenetics 2024; 77:9. [PMID: 39688651 DOI: 10.1007/s00251-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
Syndecan-1 (SDC-1) is a transmembrane protein localized on the basolateral surface of epithelial cells, encompassing a core protein with heparin sulfate and chondroitin sulfate glycosaminoglycan side chains. SDC-1 is involved in a panoply of cellular mechanisms including cell-to-cell adhesion, extracellular matrix interactions, cell cycle modulation, and lipid clearance. Alterations in the expression and function of SDC-1 are implicated in numerous disease entities, making it an attractive diagnostic and therapeutic target. However, despite its broad involvement in several disease processes, the underlying mechanism contributing to its diverse functions, pathogenesis, and therapeutic uses remains underexplored. Therefore, this review examines the role of SDC-1 in health and disease, focusing on liver pathologies, inflammatory diseases, infectious diseases, and cancer, and sheds light on SDC-1-based therapeutic approaches. Moreover, it delves into the mechanisms through which SDC-1 contributes to these diseases, emphasizing cell-type specific mechanisms. By comprehensively summarizing the significance of SDC-1, its association with several diseases, and its underlying mechanisms of action, the findings of this review could inform future research directions toward the development of targeted therapies and early diagnosis for a multitude of disease entities.
Collapse
Affiliation(s)
- Lara Diab
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sahar Al Kattar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Naim Oueini
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University, Kaslik, Jounieh, Lebanon
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Antoine Chrabieh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
4
|
Li Z, Li ZY, Maimaiti Z, Yang F, Fu J, Hao LB, Chen JY, Xu C. Identification of immune infiltration and immune-related biomarkers of periprosthetic joint infection. Heliyon 2024; 10:e26062. [PMID: 38370241 PMCID: PMC10867348 DOI: 10.1016/j.heliyon.2024.e26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The immune response associated with periprosthetic joint infection (PJI) is an emerging but relatively unexplored topic. The aim of this study was to investigate immune cell infiltration in periprosthetic tissues and identify potential immune-related biomarkers. METHODS The GSE7103 dataset from the GEO database was selected as the data source. Differentially expressed genes (DEGs) and significant modular genes in weighted correlation network analysis (WGCNA) were identified. Functional enrichment analysis and transcription factor prediction were performed on the overlapping genes. Next, immune-related genes from the ImmPort database were matched. The protein-protein interaction (PPI) analysis was performed to identify hub genes. CIBERSORTx was used to evaluate the immune cell infiltration pattern. Spearman correlation analysis was used to evaluate the relationship between hub genes and immune cells. RESULTS A total of 667 DEGs were identified between PJI and control samples, and 1847 PJI-related module genes were obtained in WGCNA. Enrichment analysis revealed that the common genes were mainly enriched in immune and host defense-related terms. TFEC, SPI1, and TWIST2 were the top three transcription factors. Three hub genes, SDC1, MMP9, and IGF1, were identified in the immune-related PPI network. Higher levels of plasma cells, CD4+ memory resting T cells, follicular helper T cells, resting mast cells, and neutrophils were found in the PJI group, while levels of M0 macrophages were lower. Notably, the expression of all three hub genes correlated with the infiltration levels of seven types of immune cells. CONCLUSION The present study revealed immune infiltration signatures in the periprosthetic tissues of PJI patients. SDC1, MMP9, and IGF1 were potential immune-related biomarkers for PJI.
Collapse
Affiliation(s)
- Zhuo Li
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhi-Yuan Li
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zulipikaer Maimaiti
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fan Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jun Fu
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Li-Bo Hao
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ji-Ying Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Chi Xu
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Douin DJ, Fernandez-Bustamante A. Early Fibrinogen Replacement to Treat the Endotheliopathy of Trauma: Novel Resuscitation Strategies in Severe Trauma. Anesthesiology 2023; 139:675-683. [PMID: 37815472 PMCID: PMC10575674 DOI: 10.1097/aln.0000000000004711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The authors provide a comprehensive review of the endothelial glycocalyx, the components that may be targeted to improve clinical outcomes, and the next steps for evaluation in human subjects.
Collapse
Affiliation(s)
- David J Douin
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
6
|
Uribe-Restrepo P, Munoz-Zanzi C, Agudelo-Flórez P. Kidney Injury Biomarkers in Leptospirosis. Rev Soc Bras Med Trop 2023; 56:S0037-86822023000100200. [PMID: 36700601 PMCID: PMC9870286 DOI: 10.1590/0037-8682-0260-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/01/2022] [Indexed: 01/27/2023] Open
Abstract
Leptospirosis is a zoonotic infection with a global distribution, though it has a greater impact on marginalized rural agricultural and urban communities in developing countries. Kidney injury, which can lead to severe and lethal infections, is the most frequent complication associated with leptospirosis. Novel biomarkers are being studied as tools for assessing kidney injury in different pathological processes to improve early detection. This review aimed to gather information on the use of novel kidney biomarkers for human leptospirosis. A search of the literature was carried out in September 2021 using the parameters "((kidney) OR (renal) OR (chronic kidney disease) OR (acute kidney injury)) AND ((biomarker) OR (marker)) AND ((Leptospira) OR (leptospirosis))". The review identified 11 original studies that evaluated the performance of 15 kidney biomarkers related to leptospirosis. Assessment of the evidence for biomarker utility was limited because of the small number of studies and sample sizes. Although some biomarkers were associated with kidney disease, no specific biomarker appeared to be ready for clinical practice, and more research in this field is necessary.
Collapse
Affiliation(s)
| | - Claudia Munoz-Zanzi
- University of Minnesota, School of Public Health, Minneapolis, Minnesota, United States of America
| | | |
Collapse
|
7
|
Cerezo-Magaña M, Bång-Rudenstam A, Belting M. Proteoglycans: a common portal for SARS-CoV-2 and extracellular vesicle uptake. Am J Physiol Cell Physiol 2023; 324:C76-C84. [PMID: 36458979 PMCID: PMC9799137 DOI: 10.1152/ajpcell.00453.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
As structural components of the glycocalyx, heparan sulfate proteoglycans (HSPGs) are involved in multiple pathophysiological processes at the apex of cell signaling cascades, and as endocytosis receptors for particle structures, such as lipoproteins, extracellular vesicles, and enveloped viruses, including SARS-CoV-2. Given their diversity and complex biogenesis regulation, HSPGs remain understudied. Here we compile some of the latest studies focusing on HSPGs as internalizing receptors of extracellular vesicles ("endogenous virus") and SARS-CoV-2 lipid-enclosed particles and highlight similarities in their biophysical and structural characteristics. Specifically, the similarities in their biogenesis, size, and lipid composition may explain a common dependence on HSPGs for efficient cell-surface attachment and uptake. We further discuss the relative complexity of extracellular vesicle composition and the viral mechanisms that evolve towards increased infectivity that complicate therapeutic strategies addressing blockade of their uptake.
Collapse
Affiliation(s)
| | - Anna Bång-Rudenstam
- 1Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden
| | - Mattias Belting
- 1Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden,2Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden,3Department of Hematology, Oncology, and Radiophysics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
O'Leary TR, Critcher M, Stephenson TN, Yang X, Hassan AA, Bartfield NM, Hawkins R, Huang ML. Chemical editing of proteoglycan architecture. Nat Chem Biol 2022; 18:634-642. [PMID: 35551261 PMCID: PMC9205196 DOI: 10.1038/s41589-022-01023-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
Abstract
Proteoglycans are heterogeneous macromolecular glycoconjugates that orchestrate many important cellular processes. While much attention has focused on the poly-sulfated glycosaminoglycan chains that decorate proteoglycans, other important elements of their architecture, such as core proteins and membrane localization, have garnered less emphasis. Hence, comprehensive structure-function relationships that consider the replete proteoglycan architecture as glycoconjugates are limited. Here we present an extensive approach to study proteoglycan structure and biology by fabricating defined semisynthetic modular proteoglycans that can be tailored for cell surface display. The expression of proteoglycan core proteins with unnatural amino acids permits bioorthogonal click chemistry with functionalized glycosaminoglycans for methodical dissection of the parameters required for optimal binding and function of various proteoglycan-binding proteins. We demonstrate that these sophisticated materials can recapitulate the functions of native proteoglycan ectodomains in mouse embryonic stem cell differentiation and cancer cell spreading while permitting the analysis of the contributing architectural elements toward function.
Collapse
Affiliation(s)
- Timothy R O'Leary
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Meg Critcher
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | | | - Xueyi Yang
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Abdullah A Hassan
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Noah M Bartfield
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Richard Hawkins
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA.
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA.
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
9
|
Hilgers K, Ibrahim SA, Kiesel L, Greve B, Espinoza-Sánchez NA, Götte M. Differential Impact of Membrane-Bound and Soluble Forms of the Prognostic Marker Syndecan-1 on the Invasiveness, Migration, Apoptosis, and Proliferation of Cervical Cancer Cells. Front Oncol 2022; 12:803899. [PMID: 35155241 PMCID: PMC8828476 DOI: 10.3389/fonc.2022.803899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Cervical cancer ranks fourth among the most commonly diagnosed malignant tumors in women worldwide. Previously published evidence suggested a possible connection between the expression of the membrane-bound heparan sulfate proteoglycan syndecan-1 (Sdc-1) and the development of cervical carcinoma. Sdc-1 serves as a matrix receptor and coreceptor for receptor tyrosine kinases and additional signaling pathways. It influences cell proliferation, adhesion, and migration and is seen as a modulator of the tumor microenvironment. Following proteolytic cleavage of its extracellular domain in a process called shedding, Sdc-1 can act as a paracrine effector. The loss of Sdc-1 expression is associated with low differentiation of cervical carcinoma and with an increased rate of lymph node metastases. Here, we analyzed the clinical impact of Sdc-1 expression by analysis of public gene expression datasets and studied the effect of an overexpression of Sdc-1 and its membrane-bound and soluble forms on the malignant properties of the human cervical carcinoma cell line HeLa through functional analysis. For this purpose, the HeLa cells were stably transfected with the control plasmid pcDNA3.1 and three different Sdc-1-DNA constructs,encoding wild-type, permanently membrane-bound, and constitutively soluble Sdc-1. In clinical specimens, Sdc-1 mRNA was more highly expressed in local tumor tissues than in normal and metastatic cervical cancer tissues. Moreover, high Sdc-1 expression correlated with a poor prognosis in Kaplan-Meier survival analysis, suggesting the important role of Sdc-1 in the progression of this type of cancer. In vitro, we found that the soluble, as well as the permanently membrane-bound forms of Sdc-1 modulated the proliferation and the cell cycle, while membrane-bound Sdc1 regulated HeLa cell apoptosis. The overexpression of Sdc-1 and its soluble form increased invasiveness. In vitro scratch/wound healing assay, showed reduced Sdc-1-dependent cell motility which was linked to the Rho-GTPase signaling pathway. In conclusion, in cervical cancer Sdc-1 modulates pathogenetically relevant processes, which depend on the membrane-association of Sdc-1.
Collapse
Affiliation(s)
- Katharina Hilgers
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
10
|
Malheiro LFG, Gaio R, Silva MVD, Martins S, Sampaio S, Quelhas-Santos J, Cerqueira A, Sarmento A, Santos L. Reactive hyperemia correlates with the presence of sepsis and glycocalyx degradation in the intensive care unit: a prospective cohort study. Rev Bras Ter Intensiva 2021; 32:363-373. [PMID: 33053025 PMCID: PMC7595718 DOI: 10.5935/0103-507x.20200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate whether reactive hyperemia measured by peripheral arterial tonometry correlates with markers of endothelial dysfunction and may be used to identify sepsis in critical illness. Methods A prospective study was performed using a cohort of critically ill patients. Endothelial dysfunction was assessed on admission by quantifying reactive hyperemia-peripheral arterial tonometry and plasma levels of endothelin-1, soluble E-selectin, endocan and syndecan-1. Septic patients were compared to patients without evidence of infection. Results Fifty-eight septic patients were compared to 28 controls. The natural logarithm of reactive hyperemia-peripheral arterial tonometry was negatively correlated with cardiovascular comorbidities, disease severity and plasma levels of soluble E-selectin (p = 0.024) and syndecan-1 (p < 0.001). The natural logarithm of reactive hyperemia-peripheral arterial tonometry was lower in septic patients than in controls (0.53 ± 0.48 versus 0.69 ± 0.42, respectively). When adjusted for age, the multivariable model predicted that each 0.1-unit decrease in natural logarithm of reactive hyperemia-peripheral arterial tonometry increased the odds for infection by 14.6%. m. Conclusion Reactive hyperemia-peripheral arterial tonometry is closely related to soluble E-selectin and syndecan-1, suggesting an association between endothelial activation, glycocalyx degradation and vascular reactivity. Reactive hyperemia-peripheral arterial tonometry appears to be compromised in critically ill patients, especially those with sepsis.
Collapse
Affiliation(s)
- Luís Filipe Gomes Malheiro
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Rita Gaio
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto - Porto, Portugal
| | - Manuel Vaz da Silva
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Sandra Martins
- Departamento de Patologia Clínica, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Susana Sampaio
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Janete Quelhas-Santos
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Ana Cerqueira
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Lurdes Santos
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| |
Collapse
|
11
|
Abstract
Clinical data has supported the early use of plasma in high ratios of plasma to red cells to patients in hemorrhagic shock. The benefit from plasma seems to extend beyond its hemostatic effects to include protection to the post-shock dysfunctional endothelium. Resuscitation of the endothelium by plasma and one of its major constituents, fibrinogen, involves cell surface stabilization of syndecan-1, a transmembrane proteoglycan and the protein backbone of the endothelial glycocalyx. The pathogenic role of miRNA-19b to the endothelium is explored along with the PAK-1-mediated intracellular pathway that may link syndecan-1 to cytoskeletal protection. Additionally, clinical studies using fibrinogen and cyroprecipitate to aid in hemostasis of the bleeding patient are reviewed and new data to suggest a role for plasma and its byproducts to treat the dysfunctional endothelium associated with nonbleeding diseases is presented.
Collapse
|
12
|
Maszota-Zieleniak M, Marcisz M, Kogut MM, Siebenmorgen T, Zacharias M, Samsonov SA. Evaluation of replica exchange with repulsive scaling approach for docking glycosaminoglycans. J Comput Chem 2021; 42:1040-1053. [PMID: 33768554 DOI: 10.1002/jcc.26496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Glycosaminoglycans (GAGs), long linear periodic anionic polysaccharides, are key molecules in the extracellular matrix (ECM). Therefore, deciphering their role in the biologically relevant context is important for fundamental understanding of the processes ongoing in ECM and for establishing new strategies in the regenerative medicine. Although GAGs represent a number of computational challenges, molecular docking is a powerful tool for analysis of their interactions. Despite the recent development of GAG-specific docking approaches, there is plenty of room for improvement. Here, replica exchange molecular dynamics with repulsive scaling (REMD-RS) recently proved to be a successful approach for protein-protein complexes, was applied to dock GAGs. In this method, effective pairwise radii are increased in different Hamiltonian replicas. REMD-RS is shown to be an attractive alternative to classical docking approaches for GAGs. This work contributes to setting up of GAG-specific computational protocols and provides new insights into the nature of these biological systems.
Collapse
Affiliation(s)
| | | | | | - Till Siebenmorgen
- Physics Department, Technical University of Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
13
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
14
|
Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020; 25:molecules25184215. [PMID: 32937952 PMCID: PMC7570499 DOI: 10.3390/molecules25184215] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are “gagosylated” and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.
Collapse
|
15
|
Xu Y, Mei J, Diao L, Li Y, Ding L. Chronic endometritis and reproductive failure: Role of syndecan-1. Am J Reprod Immunol 2020; 84:e13255. [PMID: 32329146 DOI: 10.1111/aji.13255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic endometritis (CE) is an unusual inflammatory condition characterized by endometrial plasmacyte infiltration. It has a high prevalence in women with reproductive failure. Because of its characteristic localization patterns and molecular functions, syndecan-1 has been identified as a biomarker of plasmacyte, and syndecan-1 immunohistochemistry (IHC) becomes the most dependable diagnostic method for CE. In this review, we discuss the association between CE and reproductive failure, the clinicopathological characterization of CE, the function and expression of syndecan-1, the progress of syndecan-1 IHC in the diagnosis of CE, and the prediction of reproductive outcome.
Collapse
Affiliation(s)
- Yanhong Xu
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lijun Ding
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Center for Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
16
|
Cerezo-Magaña M, Bång-Rudenstam A, Belting M. The pleiotropic role of proteoglycans in extracellular vesicle mediated communication in the tumor microenvironment. Semin Cancer Biol 2019; 62:99-107. [PMID: 31276785 DOI: 10.1016/j.semcancer.2019.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
Abstract
Compartmental exchange between cells through extracellular vesicles (EVs), including exosomes and microvesicles, has emerged as a central mechanism that coordinates the complex communication between malignant and stromal cells during tumor initiation and evolution. Some of the most critical processes of EV-mediated communication, including EV biogenesis and EV uptake, can be mediated by heparan sulfate proteoglycans (HSPGs) that reside on the surface of producer and recipient cells as well as on EVs. With interestingly similar, HSPG-dependent, pathways as the ones exploited by some viruses, EVs may, in an evolutionary perspective, be viewed as endogenous counterparts of viral particles. Cancer cell-derived EVs exert their protumorigenic effects by direct interactions of biologically active surface molecules, by transfer of proteins and nucleic acids into recipient cells or by transfer of metabolites that can be utilized as an energy source by the recipient cell. Here, we discuss the pleiotropic role of the HSPG family in these different contexts of EV communication with a specific focus on tumor development. We propose EV-associated PGs as dynamic reservoirs and chaperones of signaling molecules with potential implications in ligand exchange between EVs and tumor target cells. The protumorigenic consequences of EV mediated communication through HSPG should motivate the development of therapeutic approaches targeting EV-HSPG interactions as a novel strategy in cancer treatment.
Collapse
Affiliation(s)
- M Cerezo-Magaña
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - A Bång-Rudenstam
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - M Belting
- Department of Clinical Sciences, Lund, Section of Oncology and Pathology, Lund University, Lund, Sweden; Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Hočevar K, Potempa J, Turk B. Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis. Biol Chem 2019; 399:1353-1361. [PMID: 29927743 DOI: 10.1515/hsz-2018-0215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022]
Abstract
Gingipains are extracellular cysteine proteases of the oral pathogen Porphyromonas gingivalis and are its most potent virulence factors. They can degrade a great variety of host proteins, thereby helping the bacterium to evade the host immune response, deregulate signaling pathways, trigger anoikis and, finally, cause tissue destruction. Host cell-surface proteins targeted by gingipains are the main focus of this review and span three groups of substrates: immune-regulatory proteins, signaling pathways regulators and adhesion molecules. The analysis of published data revealed that gingipains predominantly inactivate their substrates by cleaving them at one or more sites, or through complete degradation. Sometimes, gingipains were even found to initially shed their membrane substrates, but this was mostly just the first step in the degradation of cell-surface proteins.
Collapse
Affiliation(s)
- Katarina Hočevar
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Gondelaud F, Ricard‐Blum S. Structures and interactions of syndecans. FEBS J 2019; 286:2994-3007. [DOI: 10.1111/febs.14828] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Frank Gondelaud
- ICBMS UMR 5246 CNRS – University Lyon 1 Univ Lyon Villeurbanne France
| | | |
Collapse
|