1
|
Castillo-Corujo A, Saaranen MJ, Ruddock LW. Cytoplasmic production of Fabs in chemically defined media in fed-batch fermentation. Protein Expr Purif 2024; 215:106404. [PMID: 37979630 DOI: 10.1016/j.pep.2023.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Fragment of antigen-binding region (Fab) of antibodies are important biomolecules, with a broad spectrum of functionality in the biomedical field. While full length antibodies are usually produced in mammalian cells, the smaller size, lack of N-glycosylation and less complex structure of Fabs make production in microbial cell factories feasible. Since Fabs contain disulfide bonds, such production is often done in the periplasm, but there the formation of the inter-molecular disulfide bond between light and heavy chains can be problematic. Here we studied the use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) to express two Fabs (Herceptin and Maa48) in the cytoplasm of E. coli in fed-batch fermentation using a generic chemically defined media. We were able to solubly express both Fabs with purified yields of 565 mg/L (Maa48) and 660 mg/L (Herceptin) from low density fermentation. Both proteins exhibited CD spectra consistent with natively folded protein and both were biologically active. To our knowledge this is the first demonstration of high-level production of biological active Fabs in the cytoplasm of E. coli in industrially relevant fermentation conditions.
Collapse
Affiliation(s)
| | - Mirva J Saaranen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Ferrer-Miralles N, Garcia-Fruitós E. Heterologous Expression of Difficult to Produce Proteins in Bacterial Systems. Int J Mol Sci 2024; 25:822. [PMID: 38255896 PMCID: PMC10815505 DOI: 10.3390/ijms25020822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Proteins play a crucial role in maintaining homeostasis, providing structure, and enabling various functions in biological systems [...].
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain;
- Department of Genetics and Microbiology, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Elena Garcia-Fruitós
- Ruminant Production Group, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| |
Collapse
|
3
|
Wu M, Li R, Qin J, Wang Z, Guo J, Lv F, Wang G, Huang Y. ERO1α promotes the proliferation and inhibits apoptosis of colorectal cancer cells by regulating the PI3K/AKT pathway. J Mol Histol 2023; 54:621-631. [PMID: 37776473 DOI: 10.1007/s10735-023-10149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/22/2023] [Indexed: 10/02/2023]
Abstract
Endoplasmic reticulum oxidoreductin 1α (ERO1α) is an oxidase that exists in the endoplasmic reticulum and plays an important role in regulating oxidized protein folding and tumor malignant progression. However, the specific role and mechanism of ERO1α in the progression of colorectal cancer (CRC) have not yet been fully elucidated. In this study, 280 specimens of CRC tissues and adjacent noncancerous tissues were collected to detect the expression of ERO1α and analyze the clinical significance. ERO1α was stably knocked-down in RKO and HT29 CRC cells to investigate its function and mechanism in vitro and in vivo. We found that ERO1α was remarkably upregulated in CRC tissues and high ERO1α expression is associated with N stage and poor prognosis of CRC patients. ERO1α knockdown in CRC cells significantly inhibited the proliferation and induced apoptosis while inactivating the PI3K/AKT pathway. Rescue assays revealed that AKT activator 740Y-P could reverse the effects on proliferation and apoptosis of ERO1α knockdown in CRC cells. In vivo tumorigenicity assay also confirmed that ERO1α knockdown suppressed tumor growth. Taken together, our findings demonstrated ERO1α promotes the proliferation and inhibits apoptosis of CRC cells by regulating the PI3K/AKT pathway. High expression of ERO1α is associated with poor prognosis in CRC patients, and ERO1α could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Min Wu
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
- Department of Medical Oncology II, The Third People's Hospital of Honghe Prefecture, Gejiu, Honghe, China
| | - Ruixue Li
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Jianyan Qin
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Ziyuan Wang
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Jiasen Guo
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Fenghong Lv
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Guoqin Wang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China.
| | - Youguang Huang
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China.
| |
Collapse
|
4
|
Production of neutralizing antibody fragment variants in the cytoplasm of E. coli for rapid screening: SARS-CoV-2 a case study. Sci Rep 2023; 13:4408. [PMID: 36927743 PMCID: PMC10019796 DOI: 10.1038/s41598-023-31369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Global health challenges such as the coronavirus pandemic warrant the urgent need for a system that allows efficient production of diagnostic and therapeutic interventions. Antibody treatments against SARS-CoV-2 were developed with an unprecedented pace and this enormous progress was achieved mainly through recombinant protein production technologies combined with expeditious screening approaches. A heterologous protein production system that allows efficient soluble production of therapeutic antibody candidates against rapidly evolving variants of deadly pathogens is an important step in preparedness towards future pandemic challenges. Here, we report cost and time-effective soluble production of SARS-CoV-2 receptor binding domain (RBD) variants as well as an array of neutralizing antibody fragments (Fabs) based on Casirivimab and Imdevimab using the CyDisCo system in the cytoplasm of E. coli. We also report variants of the two Fabs with higher binding affinity against SARS-CoV-2 RBD and suggest this cytoplasmic production of disulfide containing antigens and antibodies can be broadly applied towards addressing future global public health threats.
Collapse
|
5
|
Efficient Production of Fc Fusion Proteins in the Cytoplasm of Escherichia coli: Dissecting and Mitigating Redox Heterogeneity. Int J Mol Sci 2022; 23:ijms232314740. [PMID: 36499069 PMCID: PMC9737693 DOI: 10.3390/ijms232314740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cost-effective production of therapeutic proteins in microbial hosts is an indispensable tool towards accessible healthcare. Many of these heterologously expressed proteins, including all antibody formats, require disulfide bond formation to attain their native and functional state. A system for catalyzed disulfide bond formation (CyDisCo) has been developed allowing efficient production of recombinant proteins in the cytoplasm of one of the most used microbial expression systems, Escherichia coli. Here, we report high-yield production (up to 230 mg/L from 3 mL cultures) of in-demand therapeutics such as IgG1-based Fc fusion proteins in the E. coli cytoplasm. However, the production of this drug class using the CyDisCo system faces bottlenecks related to redox heterogeneity during oxidative folding. Our investigations identified and addressed one of the major causes of redox heterogeneity during CyDisCo-based production of Fc fusion proteins, i.e., disulfide bond formation in the IgG1 CH3 domain. Here, we communicate that mutating the cysteines in the CH3 domain of target Fc fusion proteins allows their production in a homogeneous redox state in the cytoplasm of E. coli without compromising on yields and thermal stability.
Collapse
|
6
|
McElwain L, Phair K, Kealey C, Brady D. Current trends in biopharmaceuticals production in Escherichia coli. Biotechnol Lett 2022; 44:917-931. [PMID: 35796852 DOI: 10.1007/s10529-022-03276-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
Since the manufacture of the first biotech product for a fledgling biopharmaceutical industry in 1982, Escherichia coli, has played an important role in the industrial production of recombinant proteins. It is now 40 years since the introduction of Humulin® for the treatment of diabetes. E. coli remains an important production host, its use as a cell factory is well established and it has become the most popular expression platform particularly for non-glycosylated therapeutic proteins. A number of significant inherent obstacles in the use of prokaryotic expression systems to produce biologics has always restricted production. These include codon usage, the absence of post-translational modifications and proteolytic processing at the cell envelope. In this review, we reflect on the contribution that this model organism has made in the production of new biotech products for human medicine. This will include new advancements in the E. coli expression system to meet the biotechnology industry requirements, such as novel engineered strains to glycosylate heterologous proteins, add disulphide bonds and express complex proteins. The biopharmaceutical market is growing rapidly, with two production systems competing for market dominance: mammalian cells and microorganisms. In the past 10 years, with increased growth of antibody-based therapies, mammalian hosts particularly CHO cells have dominated. However, with new antibody like scaffolds and mimetics emerging as future proteins of interest, E. coli has again the opportunity to be the selected as the production system of choice.
Collapse
Affiliation(s)
- L McElwain
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - K Phair
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - C Kealey
- Department of Pharmaceutical Sciences and Biotechnology, Technical University of the Shannon: Midlands Midwest, Athlone Campus, Dublin Road, Kilmacuagh, Athlone, N37 HD68, County Westmeath, Ireland
| | - D Brady
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland.
| |
Collapse
|
7
|
Vazulka S, Schiavinato M, Wagenknecht M, Cserjan-Puschmann M, Striedner G. Interaction of Periplasmic Fab Production and Intracellular Redox Balance in Escherichia coli Affects Product Yield. ACS Synth Biol 2022; 11:820-834. [PMID: 35041397 PMCID: PMC8859853 DOI: 10.1021/acssynbio.1c00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
8
|
So you want to express your protein in Escherichia coli? Essays Biochem 2021; 65:247-260. [PMID: 33955451 DOI: 10.1042/ebc20200170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Recombinant proteins have been extensively employed as therapeutics for the treatment of various critical and life-threatening diseases and as industrial enzymes in high-value industrial processes. Advances in genetic engineering and synthetic biology have broadened the horizon of heterologous protein production using multiple expression platforms. Selection of a suitable expression system depends on a variety of factors ranging from the physicochemical properties of the target protein to economic considerations. For more than 40 years, Escherichia coli has been an established organism of choice for protein production. This review aims to provide a stepwise approach for any researcher embarking on the journey of recombinant protein production in E. coli. We present an overview of the challenges associated with heterologous protein expression, fundamental considerations connected to the protein of interest (POI) and designing expression constructs, as well as insights into recently developed technologies that have contributed to this ever-growing field.
Collapse
|
9
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
10
|
Production of Extracellular Matrix Proteins in the Cytoplasm of E. coli: Making Giants in Tiny Factories. Int J Mol Sci 2020; 21:ijms21030688. [PMID: 31973001 PMCID: PMC7037224 DOI: 10.3390/ijms21030688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli is the most widely used protein production host in academia and a major host for industrial protein production. However, recombinant production of eukaryotic proteins in prokaryotes has challenges. One of these is post-translational modifications, including native disulfide bond formation. Proteins containing disulfide bonds have traditionally been made by targeting to the periplasm or by in vitro refolding of proteins made as inclusion bodies. More recently, systems for the production of disulfide-containing proteins in the cytoplasm have been introduced. However, it is unclear if these systems have the capacity for the production of disulfide-rich eukaryotic proteins. To address this question, we tested the capacity of one such system to produce domain constructs, containing up to 44 disulfide bonds, of the mammalian extracellular matrix proteins mucin 2, alpha tectorin, and perlecan. All were successfully produced with purified yields up to 6.5 mg/L. The proteins were further analyzed using a variety of biophysical techniques including circular dichroism spectrometry, thermal stability assay, and mass spectrometry. These analyses indicated that the purified proteins are most likely correctly folded to their native state. This greatly extends the use of E. coli for the production of eukaryotic proteins for structural and functional studies.
Collapse
|