1
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
De la Rosa MVG, Patel D, McCann MR, Stringer KA, Rosania GR. Database screening as a strategy to identify endogenous candidate metabolites to probe and assess mitochondrial drug toxicity. Sci Rep 2023; 13:22013. [PMID: 38086883 PMCID: PMC10716408 DOI: 10.1038/s41598-023-49443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Adverse drug reactions (ADRs) are considered an inherent risk of medication use, and some ADRs have been associated with off-target drug interactions with mitochondria. Metabolites that reflect mitochondrial function may help identify patients at risk of mitochondrial toxicity. We employed a database strategy to identify candidate mitochondrial metabolites that could be clinically useful to identify individuals at increased risk of mitochondrial-related ADRs. This led to L-carnitine being identified as the candidate mitochondrial metabolite. L-carnitine, its acetylated metabolite, acetylcarnitine and other acylcarnitines are mitochondrial biomarkers used to detect inborn errors of metabolism. We hypothesized that changes in L-carnitine disposition, induced by a "challenge test" of intravenous L-carnitine, could identify mitochondrial-related ADRs by provoking variation in L-carnitine and/or acetylcarnitine blood levels. To test this hypothesis, we induced mitochondrial drug toxicity with clofazimine (CFZ) in a mouse model. Following CFZ treatment, mice received an L-carnitine "challenge test". CFZ-induced changes in weight were consistent with previous work and reflect CFZ-induced catabolism. L-carnitine induced differences in whole blood acetylcarnitine concentrations in a manner that was dependent on CFZ treatment. This supports the usefulness of a database strategy for the discovery of candidate metabolite biomarkers of drug toxicity and substantiates the potential of the L-carnitine "challenge test" as a "probe" to identify drug-related toxicological manifestations.
Collapse
Affiliation(s)
- Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Dipali Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Marc R McCann
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathleen A Stringer
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
3
|
Funke VLE, Sandmann S, Melcher V, Seggewiss J, Horvath J, Jäger N, Kool M, Jones DTW, Pfister SM, Milde T, Rutkowski S, Mynarek M, Varghese J, Sträter R, Rust S, Seelhöfer A, Reunert J, Fiedler B, Schüller U, Marquardt T, Kerl K. Mitochondrial DNA mutations in Medulloblastoma. Acta Neuropathol Commun 2023; 11:124. [PMID: 37501103 PMCID: PMC10373251 DOI: 10.1186/s40478-023-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023] Open
Abstract
To date, several studies on genomic events underlying medulloblastoma (MB) biology have expanded our understanding of this tumour entity and led to its division into four groups-WNT, SHH, group 3 (G3) and group 4 (G4). However, there is little information about the relevance of pathogenic mitochondrial DNA (mtDNA) mutations and their consequences across these. In this report, we describe the case of a female patient with MB and a mitochondriopathy, followed by a study of mtDNA variants in MB groups. After being diagnosed with G4 MB, the index patient was treated in line with the HIT 2000 protocol with no indications of relapse after five years. Long-term side effects of treatment were complemented by additional neurological symptoms and elevated lactate levels ten years later, resulting in suspected mitochondrial disease. This was confirmed by identifying a mutation in the MT-TS1 gene which appeared homoplasmic in patient tissue and heteroplasmic in the patient's mother. Motivated by this case, we explored mtDNA mutations across 444 patients from ICGC and HIT cohorts. While there was no statistically significant enrichment of mutations in one MB group, both cohorts encompassed a small group of patients harbouring potentially deleterious mtDNA variants. The case presented here highlights the possible similarities between sequelae caused by MB treatment and neurological symptoms of mitochondrial dysfunction, which may apply to patients across all MB groups. In the context of the current advances in characterising and interpreting mtDNA aberrations, recognising affected patients could enhance our future knowledge regarding the mutations' impact on carcinogenesis and cancer treatment.
Collapse
Affiliation(s)
- Viktoria L. E. Funke
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149 Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Jochen Seggewiss
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Natalie Jäger
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - David T. W. Jones
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149 Münster, Germany
| | - Ronald Sträter
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Stephan Rust
- Department of General Pediatrics, Metabolic Diseases, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Anja Seelhöfer
- Department of General Pediatrics, Metabolic Diseases, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Janine Reunert
- Department of General Pediatrics, Metabolic Diseases, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Barbara Fiedler
- Department of Neuropediatrics, University Children’s Hospital, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Research Institute Children’s Cancer Center, 20251 Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
4
|
Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int J Mol Sci 2022; 23:13653. [PMID: 36362438 PMCID: PMC9656474 DOI: 10.3390/ijms232113653] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.
Collapse
Affiliation(s)
- Alina M. Bețiu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lavinia Noveanu
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Iasmina M. Hâncu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ana Lascu
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
- Department of Internal Medicine 1, University Clinic Würzburg, 97078 Würzburg, Germany
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- Department of Functional Sciences—Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy from Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
5
|
Wolf U, Baust H, Neef R, Steinke T. Individual Pharmacotherapy Management (IPM)—IV: Optimized Usage of Approved Antimicrobials Addressing Under-Recognized Adverse Drug Reactions and Drug-Drug Interactions in Polypharmacy. Antibiotics (Basel) 2022; 11:antibiotics11101381. [PMID: 36290039 PMCID: PMC9599027 DOI: 10.3390/antibiotics11101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Antimicrobial therapy is often a life-saving medical intervention for inpatients and outpatients. Almost all medical disciplines are involved in this therapeutic procedure. Knowledge of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) is important to avoid drug-related harm. Within the broad spectrum of antibiotic and antifungal therapy, most typical ADRs are known to physicians. The aim of this study was to evaluate relevant pharmacological aspects with which we are not so familiar and to provide further practical guidance. Individual pharmacotherapy management (IPM) as a synopsis of internal medicine and clinical pharmacology based on the entirety of the digital patient information with reference to drug information, guidelines, and literature research has been continuously performed for over 8 years in interdisciplinary intensive care and trauma and transplant patients. Findings from over 52,000 detailed medication analyses highlight critical ADRs and DDIs, especially in these vulnerable patients with polypharmacy. We present the most relevant ADRs and DDIs in antibiotic and antifungal pharmacology, which are less frequently considered in relation to neurologic, hemostaseologic, hematologic, endocrinologic, and cardiac complexities. Constant awareness and preventive strategies help avoid life-threatening manifestations of these inherent risks and ensure patient and drug safety in antimicrobial therapy.
Collapse
Affiliation(s)
- Ursula Wolf
- Pharmacotherapy Management, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence:
| | - Henning Baust
- University Clinic for Anesthesiology and Operative Intensive Care Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Rüdiger Neef
- Department of Orthopedics, Trauma and Reconstructive Surgery, Division of Geriatric Traumatology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Thomas Steinke
- University Clinic for Anesthesiology and Operative Intensive Care Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Carl-von-Basedow-Klinikum Saalekreis, 06127 Merseburg, Germany
| |
Collapse
|
6
|
Nikolaidis I, Karakasi MV, Bakirtzis C, Skoura L, Pilalas D, Boziki MK, Tsachouridou O, Voultsos P, Nikolaidis P, Gargalianos-Kakoliris P, Daniilidis M, Grigoriadis N, Metallidis S, Taskos N. Epidemiology of HIV-associated peripheral neuropathy in people living with human immunodeficiency virus infection in Greece. Int J STD AIDS 2022; 33:978-986. [PMID: 35975977 DOI: 10.1177/09564624221119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Peripheral neuropathy is among the most common complications among people with HIV with prevalence rates varying widely among studies (10-58%). OBJECTIVE This study aims to assess the prevalence of HIV-associated peripheral neuropathy among HIV-positive people in Northern Greece monitored during the last 5-year period and investigate possible correlations with antiretroviral therapy, disease staging, and potential risk factors, as there is no prior epidemiological record in Greek patients. METHODS Four hundred twenty patients were divided into a group with peripheral neuropathy (n = 269), and those without (n = 151). Peripheral neuropathy was assessed with a validated Peripheral Neuropathy Screening tool. Statistical analyses were performed with SPSS, were two-tailed, and p-value was set at 0.05. RESULTS The incidence of peripheral neuropathy was estimated at 35.9%. Age was found to correlate with higher odds of developing HIV-peripheral neuropathy, rising by 4%/year. Females encountered 77% higher probability to develop peripheral neuropathy. Stage 3 of the disease associated with higher occurrence of peripheral neuropathy (96% as compared to stage-1 patients). Among patients with peripheral neuropathy, the duration of antiretroviral therapy was found to be longer than in those without. CONCLUSIONS Peripheral neuropathy remains one of the most common complications regardless of the antiretroviral-therapy type, indicating the involvement of other risk factors in its occurrence, such as the stage of the disease, age and gender. Therefore, the treating physician should screen patients as early and frequently as possible upon HIV-diagnosis to prevent the progression of this debilitating condition so that prolonged life-expectancy is accompanied by a good quality of life.
Collapse
Affiliation(s)
- Ioannis Nikolaidis
- Second Department of Neurology, AHEPA University General Hospital--Department of Neurosciences, Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Maria-Valeria Karakasi
- Third Department of Psychiatry, AHEPA University General Hospital-Department of Mental Health, Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Christos Bakirtzis
- Second Department of Neurology, AHEPA University General Hospital--Department of Neurosciences, Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Lemonia Skoura
- First Department of Internal Medicine, AHEPA University General Hospital--Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Dimitrios Pilalas
- First Department of Internal Medicine, AHEPA University General Hospital--Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Marina-Kleopatra Boziki
- Second Department of Neurology, AHEPA University General Hospital--Department of Neurosciences, Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Olga Tsachouridou
- First Department of Internal Medicine, AHEPA University General Hospital--Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Polychronis Voultsos
- Bioethics, Department of Forensic Medicine and Toxicology, Aristotle University--Faculty of Medicine, Thessaloniki, Greece
| | - Pavlos Nikolaidis
- First Department of Internal Medicine, AHEPA University General Hospital--Aristotle University--School of Medicine, Thessaloniki, Greece
| | | | - Michail Daniilidis
- First Department of Internal Medicine, AHEPA University General Hospital--Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, AHEPA University General Hospital--Department of Neurosciences, Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Symeon Metallidis
- First Department of Internal Medicine, AHEPA University General Hospital--Aristotle University--School of Medicine, Thessaloniki, Greece
| | - Nikolaos Taskos
- Second Department of Neurology, AHEPA University General Hospital--Department of Neurosciences, Aristotle University--School of Medicine, Thessaloniki, Greece
| |
Collapse
|
7
|
Motwani L, Asif N, Patel A, Vedantam D, Poman DS. Neuropathy in Human Immunodeficiency Virus: A Review of the Underlying Pathogenesis and Treatment. Cureus 2022; 14:e25905. [PMID: 35844323 PMCID: PMC9278792 DOI: 10.7759/cureus.25905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
This article explores the various causes of the human immunodeficiency virus (HIV), and its associated neuropathy, including the effects of HIV on the nervous system and the long-standing therapy that is often provided to patients with HIV. Several studies regarding the neurotoxic effects of combined antiretroviral therapy (cART) and HIV were reviewed and various hypotheses were discussed. Furthermore, we present the nature of HIV-sensory neuropathy (HIV-SN) among different demographic populations and their subsequent risk factors predisposing them to this condition. It was observed that the incidence of the disease increases in increased survival of the patients as well as in males. Finally, the current approach to HIV-SN and its overlapping features with other causes of peripheral neuropathy have been discussed which demonstrates that a clinical examination is the most important clue for a healthcare professional to suspect the disease. Our main aim was to study the current perspectives and guidelines for diagnosing and managing a patient with HIV-SN to reduce disease prevalence and bring about a more aware frame of mind when following up with an HIV patient.
Collapse
|
8
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
9
|
Pham VH, Nguyen VL, Jung HE, Cho YS, Shin JG. The frequency of the known mitochondrial variants associated with drug-induced toxicity in a Korean population. BMC Med Genomics 2022; 15:3. [PMID: 34980117 PMCID: PMC8722126 DOI: 10.1186/s12920-021-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Few studies have annotated the whole mitochondrial DNA (mtDNA) genome associated with drug responses in Asian populations. This study aimed to characterize mtDNA genetic profiles, especially the distribution and frequency of well-known genetic biomarkers associated with diseases and drug-induced toxicity in a Korean population. METHOD Whole mitochondrial genome was sequenced for 118 Korean subjects by using a next-generation sequencing approach. The bioinformatic pipeline was constructed for variant calling, haplogroup classification and annotation of mitochondrial mutation. RESULTS A total of 681 variants was identified among all subjects. The MT-TRNP gene and displacement loop showed the highest numbers of variants (113 and 74 variants, respectively). The m.16189T > C allele, which is known to reduce the mtDNA copy number in human cells was detected in 25.4% of subjects. The variants (m.2706A > G, m.3010A > G, and m.1095T > C), which are associated with drug-induced toxicity, were observed with the frequency of 99.15%, 30.51%, and 0.08%, respectively. The m.2150T > A, a genotype associated with highly disruptive effects on mitochondrial ribosomes, was identified in five subjects. The D and M groups were the most dominant groups with the frequency of 34.74% and 16.1%, respectively. CONCLUSIONS Our finding was consistent with Korean Genome Project and well reflected the unique profile of mitochondrial haplogroup distribution. It was the first study to annotate the whole mitochondrial genome with drug-induced toxicity to predict the ADRs event in clinical implementation for Korean subjects. This approach could be extended for further study for validation of the potential ethnic-specific mitochondrial genetic biomarkers in the Korean population.
Collapse
Affiliation(s)
- Vinh Hoa Pham
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea
| | - Van Lam Nguyen
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea
| | - Hye-Eun Jung
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea.,Department of Precision Medicine, SPMED Co., Ltd., Busan, 46508, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea.,Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, 633-165 Gaegum-Dong, Jin-Gu, Busan, Republic of Korea. .,Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea. .,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
10
|
Jones SW, Ball AL, Chadwick AE, Alfirevic A. The Role of Mitochondrial DNA Variation in Drug Response: A Systematic Review. Front Genet 2021; 12:698825. [PMID: 34484295 PMCID: PMC8416105 DOI: 10.3389/fgene.2021.698825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The triad of drug efficacy, toxicity and resistance underpins the risk-benefit balance of all therapeutics. The application of pharmacogenomics has the potential to improve the risk-benefit balance of a given therapeutic via the stratification of patient populations based on DNA variants. A growth in the understanding of the particulars of the mitochondrial genome, alongside the availability of techniques for its interrogation has resulted in a growing body of literature examining the impact of mitochondrial DNA (mtDNA) variation upon drug response. Objective: To critically evaluate and summarize the available literature, across a defined period, in a systematic fashion in order to map out the current landscape of the subject area and identify how the field may continue to advance. Methods: A systematic review of the literature published between January 2009 and December 2020 was conducted using the PubMed database with the following key inclusion criteria: reference to specific mtDNA polymorphisms or haplogroups, a core objective to examine associations between mtDNA variants and drug response, and research performed using human subjects or human in vitro models. Results: Review of the literature identified 24 articles reporting an investigation of the association between mtDNA variant(s) and drug efficacy, toxicity or resistance that met the key inclusion criteria. This included 10 articles examining mtDNA variations associated with antiretroviral therapy response, 4 articles examining mtDNA variants associated with anticancer agent response and 4 articles examining mtDNA variants associated with antimicrobial agent response. The remaining articles covered a wide breadth of medications and were therefore grouped together and referred to as "other." Conclusions: Investigation of the impact of mtDNA variation upon drug response has been sporadic to-date. Collective assessment of the associations identified in the articles was inconclusive due to heterogeneous methods and outcomes, limited racial/ethnic groups, lack of replication and inadequate statistical power. There remains a high degree of idiosyncrasy in drug response and this area has the potential to explain variation in drug response in a clinical setting, therefore further research is likely to be of clinical benefit.
Collapse
Affiliation(s)
- Samantha W. Jones
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Ball
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Amy E. Chadwick
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom
| | - Ana Alfirevic
- Department of Pharmacology and Therapeutics, Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Ball AL, Bloch KM, Rainbow L, Liu X, Kenny J, Lyon JJ, Gregory R, Alfirevic A, Chadwick AE. Assessment of the impact of mitochondrial genotype upon drug-induced mitochondrial dysfunction in platelets derived from healthy volunteers. Arch Toxicol 2021; 95:1335-1347. [PMID: 33585966 PMCID: PMC8032628 DOI: 10.1007/s00204-021-02988-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/21/2021] [Indexed: 12/02/2022]
Abstract
Mitochondrial DNA (mtDNA) is highly polymorphic and encodes 13 proteins which are critical to the production of ATP via oxidative phosphorylation. As mtDNA is maternally inherited and undergoes negligible recombination, acquired mutations have subdivided the human population into several discrete haplogroups. Mitochondrial haplogroup has been found to significantly alter mitochondrial function and impact susceptibility to adverse drug reactions. Despite these findings, there are currently limited models to assess the effect of mtDNA variation upon susceptibility to adverse drug reactions. Platelets offer a potential personalised model of this variation, as their anucleate nature offers a source of mtDNA without interference from the nuclear genome. This study, therefore, aimed to determine the effect of mtDNA variation upon mitochondrial function and drug-induced mitochondrial dysfunction in a platelet model. The mtDNA haplogroup of 383 healthy volunteers was determined using next-generation mtDNA sequencing (Illumina MiSeq). Subsequently, 30 of these volunteers from mitochondrial haplogroups H, J, T and U were recalled to donate fresh, whole blood from which platelets were isolated. Platelet mitochondrial function was tested at basal state and upon treatment with compounds associated with both mitochondrial dysfunction and adverse drug reactions, flutamide, 2-hydroxyflutamide and tolcapone (10–250 μM) using extracellular flux analysis. This study has demonstrated that freshly-isolated platelets are a practical, primary cell model, which is amenable to the study of drug-induced mitochondrial dysfunction. Specifically, platelets from donors of haplogroup J have been found to have increased susceptibility to the inhibition of complex I-driven respiration by 2-hydroxyflutamide. At a time when individual susceptibility to adverse drug reactions is not fully understood, this study provides evidence that inter-individual variation in mitochondrial genotype could be a factor in determining sensitivity to mitochondrial toxicants associated with costly adverse drug reactions.
Collapse
Affiliation(s)
- Amy L Ball
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Katarzyna M Bloch
- The Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Lucille Rainbow
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Xuan Liu
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - John Kenny
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Richard Gregory
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ana Alfirevic
- The Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Amy E Chadwick
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.
| |
Collapse
|