1
|
Shiina T, Ohkubo T, McGehee K, Inamasu R, Arai T, Sasaki D, Sasaki YC, Mio K. Real-Time Observation of Polymer Fluctuations During Phase Transition Using Transmission Electron Microscope. Polymers (Basel) 2025; 17:292. [PMID: 39940500 PMCID: PMC11820666 DOI: 10.3390/polym17030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Measuring molecular dynamics improves understanding of the structure-function relationships of materials. In this study, we present a novel technique for observing material dynamics using transmission electron microscopy (TEM), in which the gold nanoparticles are employed as motion probes for tracing the polymer dynamics in real space. A thin layer of polymer materials was generated on the 2 μm diameter holes of Quantifoil grids, and gold nanoparticles were dispersed on the membrane surface. By tracking the movement of gold nanoparticles from a series of TEM images taken under continuous temperature control, we obtained mean squared displacement (MSD) curves. The dynamics of poly{2-(perfluorooctyl)ethyl acrylate} (PC8FA) and poly(stearyl acrylate) (PSA) were analyzed. In the temperature-dependent analysis of the MSD, sharp peaks were observed for both PC8FA and PSA at positions corresponding to their melting and crystallization temperatures. These results demonstrate the capability of TEM to provide valuable insights into the dynamics of polymer materials, highlighting its potential for widespread application in materials sciences.
Collapse
Affiliation(s)
- Takaaki Shiina
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (T.S.); (T.O.); (Y.C.S.)
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-Ku, Yokohama 230-0045, Japan
| | - Tatsunari Ohkubo
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (T.S.); (T.O.); (Y.C.S.)
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-Ku, Yokohama 230-0045, Japan
| | - Keegan McGehee
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (T.S.); (T.O.); (Y.C.S.)
| | - Rena Inamasu
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (T.A.)
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (T.A.)
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8 Kita-ku, Sapporo 060-0810, Japan
| | - Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (T.A.)
| | - Yuji C. Sasaki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (T.S.); (T.O.); (Y.C.S.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan (T.A.)
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan; (T.S.); (T.O.); (Y.C.S.)
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-Ku, Yokohama 230-0045, Japan
| |
Collapse
|
2
|
Gu Y, Sun Y, Wang X, Li H, Qiu J, Lu W. Application of photoacoustic computed tomography in biomedical imaging: A literature review. Bioeng Transl Med 2023; 8:e10419. [PMID: 36925681 PMCID: PMC10013779 DOI: 10.1002/btm2.10419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Photoacoustic computed tomography (PACT) is a hybrid imaging modality that combines optical excitation and acoustic detection techniques. It obtains high-resolution deep-tissue images based on the deep penetration of light, the anisotropy of light absorption in objects, and the photoacoustic effect. Hence, PACT shows great potential in biomedical sample imaging. Recently, due to its advantages of high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth, PACT has received increasing attention in preclinical and clinical practice. To date, there has been a proliferation of PACT systems designed for specific biomedical imaging applications, from small animals to human organs, from ex vivo to in vivo real-time imaging, and from simple structural imaging to functional and molecular imaging with external contrast agents. Therefore, it is of great importance to summarize the previous applications of PACT systems in biomedical imaging and clinical practice. In this review, we searched for studies related to PACT imaging of biomedical tissues and samples over the past two decades; divided the studies into two categories, PACT imaging of preclinical animals and PACT imaging of human organs and body parts; and discussed the significance of the studies. Finally, we pointed out the future directions of PACT in biomedical applications. With the development of exogenous contrast agents and advances of imaging technique, in the future, PACT will enable biomedical imaging from organs to whole bodies, from superficial vasculature to internal organs, from anatomy to functions, and will play an increasingly important role in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Yanru Gu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Yuanyuan Sun
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Xiao Wang
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Hongyu Li
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Jianfeng Qiu
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Weizhao Lu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
3
|
Loconte V, White KL. The use of soft X-ray tomography to explore mitochondrial structure and function. Mol Metab 2021; 57:101421. [PMID: 34942399 PMCID: PMC8829759 DOI: 10.1016/j.molmet.2021.101421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Mitochondria are cellular organelles responsible for energy production, and dysregulation of the mitochondrial network is associated with many disease states. To fully characterize the mitochondrial network's structure and function, a three-dimensional whole cell mapping technique is required. Scope of review This review highlights the use of soft X-ray tomography (SXT) as a relatively high-throughput approach to quantify mitochondrial structure and function under multiple cellular conditions. Major conclusions The use of SXT opens the door for mapping cellular rearrangements during critical processes such as insulin secretion, stem cell differentiation, or disease progression. SXT provides unique information such as biochemical compositions or molecular densities of organelles and allows for unbiased, label-free imaging of intact whole cells. Mapping mitochondria in the context of the near-native cellular environment will reveal more information regarding mitochondrial network functions within the cell. Soft X-ray tomography (SXT) generates 3D organelle maps of intact cells. 3D maps reveal the positions of mitochondria and their molecular densities. SXT can be used to quantify and compare organelle contacts between conditions. SXT is unbiased imaging that identifies the contents of subcellular neighborhoods. SXT provides an exciting path for exploring metabolic dysfunction.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, CA 94143; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Estimating the dynamic range of quantitative single-molecule localization microscopy. Biophys J 2021; 120:3901-3910. [PMID: 34437847 DOI: 10.1016/j.bpj.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, there have been significant advances in quantifying molecule copy number and protein stoichiometry with single-molecule localization microscopy (SMLM). However, as the density of fluorophores per diffraction-limited spot increases, distinguishing between detection events from different fluorophores becomes progressively more difficult, affecting the accuracy of such measurements. Although essential to the design of quantitative experiments, the dynamic range of SMLM counting techniques has not yet been studied in detail. Here, we provide a working definition of the dynamic range for quantitative SMLM in terms of the relative number of missed localizations or blinks and explore the photophysical and experimental parameters that affect it. We begin with a simple two-state model of blinking fluorophores, then extend the model to incorporate photobleaching and temporal binning by the detection camera. From these models, we first show that our estimates of the dynamic range agree with realistic simulations of the photoswitching. We find that the dynamic range scales inversely with the duty cycle when counting both blinks and localizations. Finally, we validate our theoretical approach on direct stochastic optical reconstruction microscopy (dSTORM) data sets of photoswitching Alexa Fluor 647 dyes. Our results should help guide researchers in designing and implementing SMLM-based molecular counting experiments.
Collapse
|