1
|
Rohden DI, Toscano G, Schanda P, Lichtenecker RJ. Synthesis of Selectively 13C/ 2H/ 15N- Labeled Arginine to Probe Protein Conformation and Interaction by NMR Spectroscopy. Chemistry 2025; 31:e202500408. [PMID: 40080421 PMCID: PMC12043044 DOI: 10.1002/chem.202500408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
The charged arginine side chain is unique in determining many innate properties of proteins, contributing to stability and interaction surfaces, and directing allosteric regulation and enzymatic catalysis. NMR experiments can be used to reveal these processes at the molecular level, but it often requires selective insertion of carbon-13, nitrogen-15, and deuterium at defined atomic positions. We introduce a method to endow arginine residues with defined isotope patterns, combining synthetic organic chemistry and cell-based protein overexpression. The resulting proteins feature NMR active spin systems with optimized relaxation pathways leading to simplified NMR spectra with a sensitive response to changes in the chemical environment of the nuclei observed.
Collapse
Affiliation(s)
- Darja I. Rohden
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Giorgia Toscano
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Paul Schanda
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Roman J. Lichtenecker
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- MAG‐LABKarl‐Farkas Gasse 22Vienna1030Austria
| |
Collapse
|
2
|
Rosati M, Barbieri L, Hlavac M, Kratzwald S, Lichtenecker RJ, Konrat R, Luchinat E, Banci L. Towards cost-effective side-chain isotope labelling of proteins expressed in human cells. JOURNAL OF BIOMOLECULAR NMR 2024; 78:237-247. [PMID: 39172315 PMCID: PMC11615012 DOI: 10.1007/s10858-024-00447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Side chain isotope labelling is a powerful tool to study protein structure and interactions by NMR spectroscopy. 1H,13C labelling of side-chain methyl groups in a deuterated background allows studying large molecules, while side-chain aromatic groups are highly sensitive to the interaction with ligands, drugs, and other proteins. In E. coli, side chain labelling is performed by substituting amino acids with isotope-labelled precursors. However, proteins that can only be produced in mammalian cells require expensive isotope-labelled amino acids. Here we provide a simple and cost-effective method to label side chains in mammalian cells, which exploits the reversible reaction catalyzed by endogenous transaminases to convert isotope-labelled α-ketoacid precursors. We show by in-cell and in-lysate NMR spectroscopy that replacing an amino acid in the medium with its cognate precursor is sufficient to achieve selective labelling without scrambling, and how this approach allows monitoring conformational changes such as those arising from ligand binding.
Collapse
Affiliation(s)
- Martina Rosati
- CERM ─ Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM ─ Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine ─ CIRMMP, Sesto Fiorentino, Italy
| | | | | | - Roman J Lichtenecker
- MAG-LAB GmbH, Vienna, Austria
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Robert Konrat
- MAG-LAB GmbH, Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Enrico Luchinat
- CERM ─ Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine ─ CIRMMP, Sesto Fiorentino, Italy.
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy.
| | - Lucia Banci
- CERM ─ Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine ─ CIRMMP, Sesto Fiorentino, Italy.
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Toscano G, Rosati M, Barbieri L, Maier K, Banci L, Luchinat E, Konrat R, Lichtenecker RJ. The synthesis of specifically isotope labelled fluorotryptophan and its use in mammalian cell-based protein expression for 19F-NMR applications. Chem Commun (Camb) 2024; 60:14188-14191. [PMID: 39512115 DOI: 10.1039/d4cc04789c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
19F nuclei serve as versatile sensors for detecting protein interactions and dynamics in biomolecular NMR spectroscopy. Although various methods have been developed to incorporate fluorine-containing aromatic residues into proteins using E. coli or cell-free expression techniques, similar approaches for protein production in mammalian cell lines remain limited. Here, we present a cost-effective synthetic route to obtain selectively deuterated, carbon-13 labeled fluorotryptophan and demonstrate its use in introducing 19F-13C spin pairs into carbonic anhydrase 2 and superoxide dismutase, following an expression protocol utilizing HEK cells.
Collapse
Affiliation(s)
- Giorgia Toscano
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Martina Rosati
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
| | - Katharina Maier
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
| | - Lucia Banci
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Enrico Luchinat
- CERM Magnetic Resonance Center, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine CIRMMP, Sesto Fiorentino, Italy
- Dipartimento di Chimica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, 1030-Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Roman J Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währinger Str. 38, 1090-Vienna, Austria.
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Mag-Lab, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| |
Collapse
|
4
|
Toscano G, Höfurthner T, Nagl B, Beier A, Mayer M, Geist L, McConnell DB, Weinstabl H, Konrat R, Lichtenecker RJ. 13 Cβ-Valine and 13 Cγ-Leucine Methine Labeling To Probe Protein Ligand Interaction. Chembiochem 2024; 25:e202300762. [PMID: 38294275 DOI: 10.1002/cbic.202300762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/01/2024]
Abstract
Precise information regarding the interaction between proteins and ligands at molecular resolution is crucial for effectively guiding the optimization process from initial hits to lead compounds in early stages of drug development. In this study, we introduce a novel aliphatic side chain isotope-labeling scheme to directly probe interactions between ligands and aliphatic sidechains using NMR techniques. To demonstrate the applicability of this method, we selected a set of Brd4-BD1 binders and analyzed 1 H chemical shift perturbation resulting from CH-π interaction of Hβ -Val and Hγ -Leu as CH donors with corresponding ligand aromatic moieties as π acceptors.
Collapse
Affiliation(s)
- Giorgia Toscano
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
- Vienna Doctoral School of Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Theresa Höfurthner
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Vienna Doctoral School of Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Benjamin Nagl
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| | - Andreas Beier
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer, Gasse 5-Wien, 11, 1121, Vienna
| | - Leonhard Geist
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer, Gasse 5-Wien, 11, 1121, Vienna
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer, Gasse 5-Wien, 11, 1121, Vienna
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer, Gasse 5-Wien, 11, 1121, Vienna
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Max Perutz Laboratories, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- MAG-LAB, Karl-Farkas Gasse 22, 1030, Vienna
| | - Roman J Lichtenecker
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
- MAG-LAB, Karl-Farkas Gasse 22, 1030, Vienna
| |
Collapse
|
5
|
Strakhova R, Smith MJ. Profiling Complex RAS-Effector Interactions Using NMR Spectroscopy. Methods Mol Biol 2024; 2797:195-209. [PMID: 38570461 DOI: 10.1007/978-1-0716-3822-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Knowledge of how effectors interact with RAS GTPases is key to understanding how these switch-like proteins function in cells. Effectors bind specifically to GTP-loaded RAS using RAS association (RA) or RAS binding domains (RBDs) that show wide-ranging affinities and thermodynamic characteristics. Both normal development and RAS-induced tumorigenesis depend on multiple distinct effector proteins that are frequently co-expressed and co-localized, suggesting an antagonistic nature to signaling whereby multiple proteins compete for a limited pool of activated GTPase. NMR spectroscopy offers a powerful approach to multiplex effectors and/or regulatory enzymes and quantifies their interaction with RAS, expanding our biophysical and systems-level understanding of RAS signaling in a more integrated and physiologically relevant setting. Here we describe a method to directly quantitate GTPase binding to competing effectors, using wild-type KRAS complex with ARAF and PLCε1 as a model. Unlabeled RBD/RA domains are added simultaneously to isotopically labeled RAS, and peak intensities at chemical shifts characteristic of individually bound domains provide quantitation. Similar competition-based assays can be run with small molecule interactors, GEF/GAP domains, or regulatory enzymes that drive posttranslational modifications. Such efforts bring in vitro interaction experiments in line with more complex cellular environments.
Collapse
Affiliation(s)
- Regina Strakhova
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Van Raad D, Huber T, Otting G. Improved spectral resolution of [ 13C, 1H]-HSQC spectra of aromatic amino acid residues in proteins produced by cell-free synthesis from inexpensive 13C-labelled precursors. JOURNAL OF BIOMOLECULAR NMR 2023; 77:183-190. [PMID: 37338652 PMCID: PMC10406723 DOI: 10.1007/s10858-023-00420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Cell-free protein synthesis using eCells allows production of amino acids from inexpensive 13C-labelled precursors. We show that the metabolic pathway converting pyruvate, glucose and erythrose into aromatic amino acids is maintained in eCells. Judicious choice of 13C-labelled starting material leads to proteins, where the sidechains of aromatic amino acids display [13C,1H]-HSQC cross-peaks free of one-bond 13C-13C couplings. Selective 13C-labelling of tyrosine and phenylalanine residues is achieved simply by using different compositions of the reaction buffers.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|