1
|
Moindrot B, Imaizumi Y, Feil R. Differential 3D genome architecture and imprinted gene expression: cause or consequence? Biochem Soc Trans 2024; 52:973-986. [PMID: 38775198 PMCID: PMC11346452 DOI: 10.1042/bst20230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Imprinted genes provide an attractive paradigm to unravel links between transcription and genome architecture. The parental allele-specific expression of these essential genes - which are clustered in chromosomal domains - is mediated by parental methylation imprints at key regulatory DNA sequences. Recent chromatin conformation capture (3C)-based studies show differential organization of topologically associating domains between the parental chromosomes at imprinted domains, in embryonic stem and differentiated cells. At several imprinted domains, differentially methylated regions show allelic binding of the insulator protein CTCF, and linked focal retention of cohesin, at the non-methylated allele only. This generates differential patterns of chromatin looping between the parental chromosomes, already in the early embryo, and thereby facilitates the allelic gene expression. Recent research evokes also the opposite scenario, in which allelic transcription contributes to the differential genome organization, similarly as reported for imprinted X chromosome inactivation. This may occur through epigenetic effects on CTCF binding, through structural effects of RNA Polymerase II, or through imprinted long non-coding RNAs that have chromatin repressive functions. The emerging picture is that epigenetically-controlled differential genome architecture precedes and facilitates imprinted gene expression during development, and that at some domains, conversely, the mono-allelic gene expression also influences genome architecture.
Collapse
Affiliation(s)
- Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yui Imaizumi
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
2
|
Farhadova S, Ghousein A, Charon F, Surcis C, Gomez-Velazques M, Roidor C, Di Michele F, Borensztein M, De Sario A, Esnault C, Noordermeer D, Moindrot B, Feil R. The long non-coding RNA Meg3 mediates imprinted gene expression during stem cell differentiation. Nucleic Acids Res 2024; 52:6183-6200. [PMID: 38613389 PMCID: PMC11194098 DOI: 10.1093/nar/gkae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Collapse
Affiliation(s)
- Sabina Farhadova
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
- Genetic Resources Research Institute, Azerbaijan National Academy of Sciences (ANAS), AZ1106 Baku, Azerbaijan
| | - Amani Ghousein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - François Charon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
| | - Melisa Gomez-Velazques
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Clara Roidor
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Maud Borensztein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Albertina De Sario
- University of Montpellier, 34090 Montpellier, France
- PhyMedExp, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, 34295 Montpellier, France
| | - Cyril Esnault
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
3
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
4
|
Du J, Su Y, Gao J, Tai Y. The expression and function of long noncoding RNAs in hepatocellular carcinoma. CANCER INNOVATION 2023; 2:488-499. [PMID: 38125766 PMCID: PMC10730004 DOI: 10.1002/cai2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 12/23/2023]
Abstract
With the deepening of the genome project study, attention on noncoding RNAs is increasing. Long noncoding RNAs (lncRNAs) have become a new research hotspot. A growing number of studies have revealed that lncRNAs are involved in tumorigenesis and tumor suppressor pathways. Aberrant expressions of lncRNAs have been found in a variety of human tumors including hepatocellular carcinoma (HCC). In this review, we provide a brief introduction to lncRNA and highlight recent research on the functions and clinical significance of lncRNAs in HCC.
Collapse
Affiliation(s)
- Jingli Du
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Yue Su
- Senior Department of TuberculosisThe 8th Medical Center of PLA General HospitalBeijingChina
| | - Jianzhi Gao
- Department of OncologyZhuozhou Hospital, ZhuozhouHebeiChina
| | - Yanhong Tai
- Department of PathologyThe 5th Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
5
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
6
|
Braceros AK, Schertzer MD, Omer A, Trotman JB, Davis ES, Dowen JM, Phanstiel DH, Aiden EL, Calabrese JM. Proximity-dependent recruitment of Polycomb repressive complexes by the lncRNA Airn. Cell Rep 2023; 42:112803. [PMID: 37436897 PMCID: PMC10441531 DOI: 10.1016/j.celrep.2023.112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023] Open
Abstract
During mouse embryogenesis, expression of the long non-coding RNA (lncRNA) Airn leads to gene repression and recruitment of Polycomb repressive complexes (PRCs) to varying extents over a 15-Mb domain. The mechanisms remain unclear. Using high-resolution approaches, we show in mouse trophoblast stem cells that Airn expression induces long-range changes to chromatin architecture that coincide with PRC-directed modifications and center around CpG island promoters that contact the Airn locus even in the absence of Airn expression. Intensity of contact between the Airn lncRNA and chromatin correlated with underlying intensity of PRC recruitment and PRC-directed modifications. Deletion of CpG islands that contact the Airn locus altered long-distance repression and PRC activity in a manner that correlated with changes in chromatin architecture. Our data imply that the extent to which Airn expression recruits PRCs to chromatin is controlled by DNA regulatory elements that modulate proximity of the Airn lncRNA product to its target DNA.
Collapse
Affiliation(s)
- Aki K Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan D Schertzer
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Arina Omer
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jackson B Trotman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Douglas H Phanstiel
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Wang D, Xie D, Zhang J, Cai B, Yang B, Zhou L, Huang X. Comprehensive analysis of the coding and non-coding RNA transcriptome expression profiles of hippocampus tissue in tx-J animal model of Wilson's disease. Sci Rep 2023; 13:9252. [PMID: 37286730 DOI: 10.1038/s41598-023-36503-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder with a genetic basis. The predominant non-motor symptom of WD is cognitive dysfunction, although the specific genetic regulatory mechanism remains unclear. Tx-J mice, with an 82% sequence homology of the ATP7B gene to the human gene, are considered the most suitable model for WD. This study employs deep sequencing to investigate the differences in RNA transcript profiles, both coding and non-coding, as well as the functional characteristics of the regulatory network involved in WD cognitive impairment. The cognitive function of tx-J mice was evaluated using the Water Maze Test (WMT). Long non-coding RNA (lncRNA), circular RNA (circRNA), and messenger RNA (mRNA) profiles were analyzed in the hippocampal tissue of tx-J mice to identify differentially expressed RNAs (DE-RNAs). Subsequently, the DE-RNAs were used to construct protein-protein interaction (PPI) networks, as well as DE-circRNAs and lncRNAs-associated competing endogenous RNA (ceRNA) expression networks, and coding-noncoding co-expression (CNC) networks. To elucidate their biological functions and pathways, the PPI and ceRNA networks were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A total of 361 differentially expressed mRNAs (DE-mRNAs), comprising 193 up-regulated and 168 down-regulated mRNAs, 2627 differentially expressed long non-coding RNAs (DE-lncRNAs), consisting of 1270 up-regulated and 1357 down-regulated lncRNAs, and 99 differentially expressed circular RNAs (DE-circRNAs), consisting of 68 up-regulated and 31 down-regulated circRNAs, were observed in the tx-J mice group when compared to the control mice group. Gene Ontology (GO) and pathway analyses revealed that DE-mRNAs were enriched in cellular processes, calcium signaling pathways, and mRNA surveillance pathways. In contrast, the DE-circRNAs-associated competing endogenous RNA (ceRNA) network was enriched for covalent chromatin modification, histone modification, and axon guidance, whereas the DE-lncRNAs-associated ceRNA network was enriched for dendritic spine, regulation of cell morphogenesis involved in differentiation, and mRNA surveillance pathway. The study presented the expression profiles of lncRNA, circRNA, and mRNA in the hippocampal tissue of tx-J mice. Furthermore, the study constructed PPI, ceRNA, and CNC expression networks. The findings are significant in comprehending the function of regulatory genes in WD associated with cognitive impairment. These results also offer valuable information for the diagnosis and treatment of WD.
Collapse
Affiliation(s)
- Dan Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, People's Republic of China
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China.
| | - Juan Zhang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1 Qianjiang Road, Xinzhan District, Hefei, 230012, People's Republic of China
| | - Bo Yang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| | - Lei Zhou
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| | - Xiaofeng Huang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, No. 117 Meishan Road, Shushan District, Hefei, 230031, People's Republic of China
| |
Collapse
|
8
|
Zhu Y, Chen B, Pan H, Sun L, Yu T. PLIC11 drives lung cancer progression through regulating the YY1/PIWIL4 axis. Mol Carcinog 2023; 62:427-437. [PMID: 36537719 DOI: 10.1002/mc.23496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide. Nonsmall cell lung cancers (NSCLC), the most common histological type of lung cancer, are known to be less well characterized. Long noncoding RNAs are a new class of cancer regulators. Here, we aimed to investigate the effect of lncRNA PLIC11 in NSCLC progression. In our study, we found that PLIC11 was upregulated in lung cancer, particularly in metastatic lung cancer tissues. Overexpression of PLIC11 enhanced cell proliferation, migration, and metastasis in vitro and in vivo. Mechanically, PLIC11 could interact with YY1 and promote PIWIL4 expression by transcription activation. Therefore, PLIC11 upregulation is a potential indicator of aggressive lung cancer, Silencing of PLIC11 has great potential therapeutic strategy in NSCLC.
Collapse
Affiliation(s)
- Yuyao Zhu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Bing Chen
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Pan
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Sun
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Yu
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Donizetti A, Venditti M, Arcaniolo D, Aliperti V, Carrese AM, De Sio M, Minucci S, Caraglia M, Aniello F. The long non-coding RNA transcript, LOC100130460 (CAND1.11) gene, encodes a novel protein highly expressed in cancer cells and tumor human testis tissues. Cancer Biomark 2023; 38:343-353. [PMID: 37661873 DOI: 10.3233/cbm-230160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Testis-specific genes encoding for long non-coding RNA (lncRNA) have been detected in several cancers; many produce proteins with restricted or aberrant expression patterns in normal or cancer tissues. OBJECTIVE To characterize new lncRNA involved in normal and/or pathological differentiation of testicular cells. METHODS Using bioinformatics analysis, we found that lncRNA LOC100130460 (CAND1.11) is expressed in normal and tumor testis; its expression was assessed in several human cell lines by qRT-PCR. CAND1.11 protein, produced by a single nucleotide mutation, was studied by western blot and immunofluorescence analysis on normal, classic seminoma, and Leydig cell tumor testicular tissues. RESULTS CAND1.11 gene is primate-specific; its expression was low in SH-SY5Y cells and increased when differentiated with retinoic acid treatment. CAND1.11 expression in PC3 cells was higher than in PNT2 cells. CAND1.11 protein is present in the human testis and overexpressed in testicular cancer tissues. CONCLUSIONS This report is one of the few providing evidence that a lncRNA produces a protein expressed in normal human tissues and overexpressed in several testicular cancers, suggesting its involvement in regulating cell proliferation and differentiation. Although further studies are needed to validate the results, our data indicate that CAND1.11 could be a potential new prognostic biomarker to use in proliferation and cancer.
Collapse
Affiliation(s)
- Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Davide Arcaniolo
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Vincenza Aliperti
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Anna Maria Carrese
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Marco De Sio
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michele Caraglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| |
Collapse
|
10
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|