1
|
Palisse A, Cheung T, Blokhuis A, Cogswell T, Martins BS, Riemens R, Schellekens R, Battocchio G, Jansen C, Cottee MA, Ornell K, Sacchetto C, Leon L, van Hoek-Emmelot M, Bostock M, Brauer BL, Beaumont K, Lucas SCC, Ahmed S, Blackwell JH, Börjesson U, Gohlke A, Gramatikov IMT, Hargreaves D, van Hoeven V, Kantae V, Kupcova L, Milbradt AG, Seneviratne U, Su N, Vales J, Wang H, White MJ, Kinzel O. Structure-Based Discovery of a Series of Covalent, Orally Bioavailable, and Selective BFL1 Inhibitors. J Med Chem 2024; 67:22055-22079. [PMID: 39641779 DOI: 10.1021/acs.jmedchem.4c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BFL1, a member of the antiapoptotic BCL2 family, has been relatively understudied compared to its counterparts despite evidence of its overexpression in various hematological malignancies. Across two articles, we describe the development of BFL1 in vivo tools. The first article describes the hit identification from a covalent fragment library and the subsequent evolution from the hit to compound 6.22 This work reports the structure-based optimization of compound 6 into a series of BFL1 inhibitors selective over the other BCL2 family members, with low nanomolar cellular activity when combined with AZD5991, exemplified by compound 20. Compound 20 demonstrated a cell death phenotype in SUDHL1 and OCILY10 cell lines and in the in vivo study, BFL1 stabilization and cleaved caspase 3 activation were observed in a dose-dependent manner. In addition, the enzymatic turnover studies with the BFL1 protein showed that compound 20 stabilized the protein, extending the half-life to 10.8 h.
Collapse
Affiliation(s)
- Adeline Palisse
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Tony Cheung
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Aileen Blokhuis
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Thomas Cogswell
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Bruna S Martins
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Riemens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Schellekens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Giovanni Battocchio
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Chimed Jansen
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Matthew A Cottee
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Kimberly Ornell
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Claudia Sacchetto
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Leonardo Leon
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Maaike van Hoek-Emmelot
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Mark Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Brooke Leann Brauer
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Samiyah Ahmed
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Vera van Hoeven
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Vasudev Kantae
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lea Kupcova
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Uthpala Seneviratne
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - John Vales
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Haiyun Wang
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Michael J White
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Olaf Kinzel
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| |
Collapse
|
2
|
Shenoy TN, Abdul Salam AA. Therapeutic potential of dietary bioactive compounds against anti-apoptotic Bcl-2 proteins in breast cancer. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39257284 DOI: 10.1080/10408398.2024.2398636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Breast cancer remains a leading cause of cancer-related mortality among women worldwide. One of its defining features is resistance to apoptosis, driven by aberrant expression of apoptosis-related proteins, notably the overexpression of anti-apoptotic Bcl-2 proteins. These proteins enable breast cancer cells to evade apoptosis and develop resistance to chemotherapy, underscoring their critical role as therapeutic targets. Diet plays a significant role in breast cancer risk, potentially escalating or inhibiting cancer development. Recognizing the limitations of current treatments, extensive research is focused on exploring bioactive compounds derived from natural sources such as plants, fruits, vegetables, and spices. These compounds are valued for their ability to exert potent anticancer effects with minimal toxicity and side effects. While literature extensively covers the effects of various dietary compounds in inducing apoptosis in cancer cells, comprehensive information specifically on how dietary bioactive compounds modulate anti-apoptotic Bcl-2 protein expression in breast cancer is limited. This review aims to provide a comprehensive understanding of the interaction between Bcl-2 proteins and caspases in the regulation of apoptosis, as well as the impact of dietary bioactive compounds on the modulation of anti-apoptotic Bcl-2 in breast cancer. It further explores how these interactions influence breast cancer progression and treatment outcomes.
Collapse
Affiliation(s)
- Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Pieper NM, Schnell J, Bruecher D, Knapp S, Vogler M. Inhibition of bromodomain and extra-terminal proteins targets constitutively active NFκB and STAT signaling in lymphoma and influences the expression of the antiapoptotic proteins BCL2A1 and c-MYC. Cell Commun Signal 2024; 22:415. [PMID: 39192247 DOI: 10.1186/s12964-024-01782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.
Collapse
Affiliation(s)
- Nadja M Pieper
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Julia Schnell
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Daniela Bruecher
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Germany and Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue- Str. 9, Biozentrum, 60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, a Partnership between 10 DKFZ and University Hospital Frankfurt, Frankfurt, Germany
| | - Meike Vogler
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany.
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, a Partnership between 10 DKFZ and University Hospital Frankfurt, Frankfurt, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
4
|
Lou J, Zhou Q, Lyu X, Cen X, Liu C, Yan Z, Li Y, Tang H, Liu Q, Ding J, Lu Y, Huang H, Xie H, Zhao Y. Discovery of a Covalent Inhibitor That Overcame Resistance to Venetoclax in AML Cells Overexpressing BFL-1. J Med Chem 2024; 67:10795-10830. [PMID: 38913996 DOI: 10.1021/acs.jmedchem.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Clinical and biological studies have shown that overexpression of BFL-1 is one contributing factor to venetoclax resistance. The resistance might be overcome by a potent BFL-1 inhibitor, but such an inhibitor is rare. In this study, we show that 56, featuring an acrylamide moiety, inhibited the BFL-1/BID interaction with a Ki value of 105 nM. More interestingly, 56 formed an irreversible conjugation adduct at the C55 residue of BFL-1. 56 was a selective BFL-1 inhibitor, and its MCL-1 binding affinity was 10-fold weaker, while it did not bind BCL-2 and BCL-xL. Mechanistic studies showed that 56 overcame venetoclax resistance in isogenic AML cell lines MOLM-13-OE and MV4-11-OE, which both overexpressed BFL-1. More importantly, 56 and venetoclax combination promoted stronger apoptosis induction than either single agent. Collectively, our data show that 56 overcame resistance to venetoclax in AML cells overexpressing BFL-1. These attributes make 56 a promising candidate for future optimization.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/chemistry
- Sulfonamides/chemical synthesis
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/chemistry
- Drug Resistance, Neoplasm/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Line, Tumor
- Minor Histocompatibility Antigens/metabolism
- Apoptosis/drug effects
- Drug Discovery
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jianfeng Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qianqian Zhou
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Xinyi Cen
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Yan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Haotian Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Qiupei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Jian Ding
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ye Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - He Huang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Xie
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
5
|
Lucas SCC, Milbradt AG, Blackwell JH, Bonomo S, Brierley A, Cassar DJ, Freeman J, Hadfield TE, Morrill LA, Riemens R, Sarda S, Schiesser S, Wiktelius D, Ahmed S, Bostock MJ, Börjesson U, De Fusco C, Guerot C, Hargreaves D, Hewitt S, Lamb ML, Su N, Whatling R, Wheeler M, Kettle JG. Design of a Lead-Like Cysteine-Targeting Covalent Library and the Identification of Hits to Cys55 of Bfl-1. J Med Chem 2024; 67:11209-11225. [PMID: 38916990 DOI: 10.1021/acs.jmedchem.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Silvia Bonomo
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Andrew Brierley
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Doyle J Cassar
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jared Freeman
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolic Disorders (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Thomas E Hadfield
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lucas A Morrill
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Rick Riemens
- Medicinal Chemistry, Oncology R&D, Acerta B. V., a Part of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Sunil Sarda
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Stefan Schiesser
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Daniel Wiktelius
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Samiyah Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Claudia De Fusco
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Carine Guerot
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Sarah Hewitt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Michelle L Lamb
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Ryan Whatling
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthew Wheeler
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jason G Kettle
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
6
|
Lucas SCC, Blackwell JH, Börjesson U, Hargreaves D, Milbradt AG, Ahmed S, Bostock MJ, Guerot C, Gohlke A, Kinzel O, Lamb ML, Selmi N, Stubbs CJ, Su N, Su Q, Luo H, Xiong T, Zuo X, Bazzaz S, Bienstock C, Centrella PA, Denton KE, Gikunju D, Guié MA, Guilinger JP, Hupp C, Keefe AD, Satoh T, Zhang Y, Rivers EL. Identification and Evaluation of Reversible Covalent Binders to Cys55 of Bfl-1 from a DNA-Encoded Chemical Library Screen. ACS Med Chem Lett 2024; 15:791-797. [PMID: 38894895 PMCID: PMC11181504 DOI: 10.1021/acsmedchemlett.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.
Collapse
Affiliation(s)
- Simon C. C. Lucas
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - J. Henry Blackwell
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Ulf Börjesson
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - David Hargreaves
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Alexander G. Milbradt
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Samiyah Ahmed
- Discovery
Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Mark J. Bostock
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Carine Guerot
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Andrea Gohlke
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Olaf Kinzel
- Medicinal
Chemistry, Oncology, R&D, Acerta B.V.,
a member of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Michelle L. Lamb
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nidhal Selmi
- Compound
Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Christopher J. Stubbs
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Nancy Su
- Mechanistic
and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Qibin Su
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Haiou Luo
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Ting Xiong
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Xiaoqian Zuo
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Sana Bazzaz
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | | | | | - Kyle E. Denton
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Diana Gikunju
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | | | | | | | | | - Takashi Satoh
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Emma L. Rivers
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| |
Collapse
|
7
|
Adams CM, McBride A, Michener P, Shkundina I, Mitra R, An HH, Porcu P, Eischen CM. Identifying Targetable Vulnerabilities to Circumvent or Overcome Venetoclax Resistance in Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2024; 16:2130. [PMID: 38893249 PMCID: PMC11171410 DOI: 10.3390/cancers16112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Clinical trials with single-agent venetoclax/ABT-199 (anti-apoptotic BCL2 inhibitor) revealed that diffuse large B-cell lymphoma (DLBCL) is not solely dependent on BCL2 for survival. Gaining insight into pathways/proteins that increase venetoclax sensitivity or unique vulnerabilities in venetoclax-resistant DLBCL would provide new potential treatment avenues. Therefore, we generated acquired venetoclax-resistant DLBCL cells and evaluated these together with intrinsically venetoclax-resistant and -sensitive DLBCL lines. We identified resistance mechanisms, including alterations in BCL2 family members that differed between intrinsic and acquired venetoclax resistance and increased dependencies on specific pathways. Although combination treatments with BCL2 family member inhibitors may overcome venetoclax resistance, RNA-sequencing and drug/compound screens revealed that venetoclax-resistant DLBCL cells, including those with TP53 mutation, had a preferential dependency on oxidative phosphorylation. Mitochondrial electron transport chain complex I inhibition induced venetoclax-resistant, but not venetoclax-sensitive, DLBCL cell death. Inhibition of IDH2 (mitochondrial redox regulator) synergistically overcame venetoclax resistance. Additionally, both acquired and intrinsic venetoclax-resistant DLBCL cells were similarly sensitive to inhibitors of transcription, B-cell receptor signaling, and class I histone deacetylases. These approaches were also effective in DLBCL, follicular, and marginal zone lymphoma patient samples. Our results reveal there are multiple ways to circumvent or overcome the diverse venetoclax resistance mechanisms in DLBCL and other B-cell lymphomas and identify critical targetable pathways for future clinical investigations.
Collapse
Affiliation(s)
- Clare M. Adams
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Amanda McBride
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut St., Philadelphia, PA 19107, USA
| | - Peter Michener
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Irina Shkundina
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Ramkrishna Mitra
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Hyun Hwan An
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| | - Pierluigi Porcu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut St., Philadelphia, PA 19107, USA
| | - Christine M. Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Rakhi SA, Hara Y, Islam MS, Manome T, Alam S, Emon NU, Al-Mansur MA, Kuddus MR, Sarkar MR, Ishibashi M, Ahmed F. Isolation of bioactive phytochemicals from Crinum asiaticum L . along with their cytotoxic and TRAIL-resistance abrogating prospect assessment. Heliyon 2024; 10:e25049. [PMID: 38318065 PMCID: PMC10838800 DOI: 10.1016/j.heliyon.2024.e25049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Crinum asiaticum L. (Amaryllidaceae) is a perennial bulbous herb, locally utilized for possessing multifaceted pharmacological properties including anticancer, immune-stimulating, analgesic, antiviral, antimalarial, antibacterial and antifungal, in addition to its popularity as an aesthetic plant. Separation of MeOH extract of C. asiaticum leaves yielded three known compounds as cycloneolitsol (1), hippeastrine (2) and β-sitosterol (3). Among these, compounds 1 and 2 were subjected to the cytotoxic assay and found that they induced mild effect against HCT116, Huh7 and DU145 cell lines with the IC50 values from 73.76 to 132.53 μM. When tested for TRAIL-resistance abrogating activity, 1 (100 μM) along with TRAIL (100 ng/mL) showed moderate activity in AGS cells producing 25 % more inhibition than the agent alone. Whereas 2 (20 and 30 μM) in combination with TRAIL (100 ng/mL) exhibited strong activity in abrogating TRAIL-resistance and caused 34 % and 36 % more inhibition in AGS cells, respectively. The in-silico studies of compound 2 revealed high docking hits with the TRAIL-associated anti-apoptotic proteins which give a justification for the regulatory interactions to induce such abrogating activity. It is still recommended to conduct further investigations to understand their exact molecular mechanism.
Collapse
Affiliation(s)
- Sharmin Ahmed Rakhi
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yasumasa Hara
- Department of Natural Products Chemistry, Chiba University, Chiba, 260-8675, Japan
| | - Md. Saiful Islam
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Teruhisa Manome
- Department of Natural Products Chemistry, Chiba University, Chiba, 260-8675, Japan
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- Drugs and Toxins Research Division, BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, 6206, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | | | - Md. Ruhul Kuddus
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Raihan Sarkar
- Department of Pharmaceutical Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masami Ishibashi
- Department of Natural Products Chemistry, Chiba University, Chiba, 260-8675, Japan
| | - Firoj Ahmed
- Department of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
9
|
King LE, Hohorst L, García-Sáez AJ. Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci 2023; 136:jcs260790. [PMID: 37994778 DOI: 10.1242/jcs.260790] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
The proteins of the BCL-2 family are known as key regulators of apoptosis, with interactions between family members determining permeabilisation of the mitochondrial outer membrane (MOM) and subsequent cell death. However, the exact mechanism through which they form the apoptotic pore responsible for MOM permeabilisation (MOMP), the structure and specific components of this pore, and what roles BCL-2 proteins play outside of directly regulating MOMP are incompletely understood. Owing to the link between apoptosis dysregulation and disease, the BCL-2 proteins are important targets for drug development. With the development and clinical use of drugs targeting BCL-2 proteins showing success in multiple haematological malignancies, enhancing the efficacy of these drugs, or indeed developing novel drugs targeting BCL-2 proteins is of great interest to treat cancer patients who have developed resistance or who suffer other disease types. Here, we review our current understanding of the molecular mechanism of MOMP, with a particular focus on recently discovered roles of BCL-2 proteins in apoptosis and beyond, and discuss what implications these functions might have in both healthy tissues and disease.
Collapse
Affiliation(s)
- Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Lisa Hohorst
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| |
Collapse
|
10
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
11
|
Gupta SRR, Mittal P, Kundu B, Singh A, Singh IK. Silibinin: an inhibitor for a high-expressed BCL-2A1/BFL1 protein, linked with poor prognosis in breast cancer. J Biomol Struct Dyn 2023; 42:12122-12132. [PMID: 37837418 DOI: 10.1080/07391102.2023.2268176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shradheya R R Gupta
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
| | - Bishwajit Kundu
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi (South Campus), New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
- Institute of Eminence, Delhi School of Public Health, University of Delhi, Delhi, India
| |
Collapse
|