1
|
Okiyoneda T, Borgo C, Bosello Travain V, Pedemonte N, Salvi M. Targeting ubiquitination machinery in cystic fibrosis: Where do we stand? Cell Mol Life Sci 2024; 81:271. [PMID: 38888668 PMCID: PMC11335196 DOI: 10.1007/s00018-024-05295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in CFTR gene expressing the anion selective channel CFTR located at the plasma membrane of different epithelial cells. The most commonly investigated variant causing CF is F508del. This mutation leads to structural defects in the CFTR protein, which are recognized by the endoplasmic reticulum (ER) quality control system. As a result, the protein is retained in the ER and degraded via the ubiquitin-proteasome pathway. Although blocking ubiquitination to stabilize the CFTR protein has long been considered a potential pharmacological approach in CF, progress in this area has been relatively slow. Currently, no compounds targeting this pathway have entered clinical trials for CF. On the other hand, the emergence of Orkambi initially, and notably the subsequent introduction of Trikafta/Kaftrio, have demonstrated the effectiveness of molecular chaperone-based therapies for patients carrying the F508del variant and even showed efficacy against other variants. These treatments directly target the CFTR variant protein without interfering with cell signaling pathways. This review discusses the limits and potential future of targeting protein ubiquitination in CF.
Collapse
Affiliation(s)
- Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, 669-1330, Japan.
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
- Department of Medicine, University of Padova, 35128, Padova, Italy
| | | | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
2
|
Hou Y, Huang C, Huang Z, Huang J, Zhu B. STUB1 exacerbates calcium oxalate-induced kidney injury by modulating reactive oxygen species-mediated cellular autophagy via regulating CFTR ubiquitination. Urolithiasis 2024; 52:55. [PMID: 38564006 DOI: 10.1007/s00240-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
The formation of calcium oxalate (CaOx) crystals in the kidneys leads to renal epithelial damage and the progression of crystalline nephropathy. This study investigated the role of STIP1 homology and U-box protein 1 (STUB1), an E3 ubiquitin ligase, and cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel, in CaOx-related renal damage and autophagy regulation. HK-2 cells were treated with various doses of CaOx monohydrate (COM) to simulate kidney injury in vitro. Cell viability, reactive oxygen species (ROS) production, and apoptosis were assessed. The regulation of CFTR ubiquitination by STUB1 was confirmed by immunoprecipitation. An in vivo model was established by injecting mice with glyoxylate. COM treatment dose-dependently decreased cell viability, increased TNF-α and ROS production, and induced apoptotic cell death in HK-2 cells. COM-treated cells also showed decreased CFTR protein expression. CFTR overexpression improved cell viability and reduced ROS production in COM-stimulated HK-2 cells. Bioinformatics analysis predicted CFTR's ubiquitination binding site for STUB1. Further analysis confirmed the role of STUB1 as a ubiquitin ligase in CFTR degradation. Knockdown of STUB1 upregulated CFTR expression, while STUB1 overexpression had the opposite effect. Knockdown of CFTR reversed the impact of STUB1 deficiency on autophagy. The in vivo experiments showed that CFTR overexpression attenuated kidney tissue damage and CaOx deposition in mice. STUB1-mediated CFTR ubiquitination plays a crucial role in mitigating calcium oxalate-related renal damage by regulating autophagy. Targeting the STUB1/CFTR axis may hold therapeutic potential for treating kidney injury associated with calcium oxalate deposition.
Collapse
Affiliation(s)
- Yi Hou
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Changkun Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Zhichao Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Jun Huang
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China
| | - Bin Zhu
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Mid Road Furong District, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Taniguchi S, Ono Y, Doi Y, Taniguchi S, Matsuura Y, Iwasaki A, Hirata N, Fukuda R, Inoue K, Yamaguchi M, Tashiro A, Egami D, Aoki S, Kondoh Y, Honda K, Osada H, Kumeta H, Saio T, Okiyoneda T. Identification of α-Tocopherol succinate as an RFFL-substrate interaction inhibitor inducing peripheral CFTR stabilization and apoptosis. Biochem Pharmacol 2023; 215:115730. [PMID: 37543348 DOI: 10.1016/j.bcp.2023.115730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The E3 ubiquitin ligase RFFL is an apoptotic inhibitor highly expressed in cancers and its knockdown suppresses cancer cell growth and sensitizes to chemotherapy. RFFL also participates in peripheral protein quality control which removes the functional cell surface ΔF508-CFTR channel and reduces the efficacy of pharmaceutical therapy for cystic fibrosis (CF). Although RFFL inhibitors have therapeutic potential for both cancer and CF, they remain undiscovered. Here, a chemical array screening has identified α-tocopherol succinate (αTOS) as an RFFL ligand. NMR analysis revealed that αTOS directly binds to RFFL's substrate-binding region without affecting the E3 enzymatic activity. Consequently, αTOS inhibits the RFFL-substrate interaction, ΔF508-CFTR ubiquitination and elimination from the plasma membrane of epithelial cells, resulting in the increased functional CFTR channel. Among the α-tocopherol (αTOL) analogs we tested, only αTOS inhibited the RFFL-substrate interaction and increased the cell surface ΔF508-CFTR, depending on RFFL expression. Similarly, the unique proapoptotic effect of αTOS was dependent on RFFL expression. Thus, unlike other αTOL analogs, αTOS acts as an RFFL protein-protein interaction inhibitor which may explain its unique biological properties among αTOL analogs. Moreover, αTOS may act as a CFTR stabilizer, a novel class of drugs that extend cell surface ΔF508-CFTR lifetime.
Collapse
Affiliation(s)
- Sachiho Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuji Ono
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yukako Doi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuta Matsuura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ayuka Iwasaki
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Keitaro Inoue
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Miho Yamaguchi
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Anju Tashiro
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Daichi Egami
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Yasumitsu Kondoh
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan.
| |
Collapse
|
4
|
Iazzi M, Sadeghi S, Gupta GD. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome. Int J Mol Sci 2023; 24:11457. [PMID: 37511222 PMCID: PMC10380767 DOI: 10.3390/ijms241411457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this review article is to collate recent contributions of proteomic studies to cystic fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention on the CFTR interaction network at the cell surface, thus generating a CFTR 'surfaceome'. We review the main findings about CFTR interactions and highlight several functional categories amongst these that could lead to the discovery of potential biomarkers and drug targets for CF.
Collapse
Affiliation(s)
| | | | - Gagan D. Gupta
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|