1
|
Dong Z, Liu S, Deng Q, Li G, Tang Y, Wu X, Wan D, Yin Y. Role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity in a piglet model. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2086-2098. [PMID: 37530911 DOI: 10.1007/s11427-022-2409-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Iron is an essential trace element for both the host and resident microbes in the gut. In this study, iron was administered orally and parenterally to anemic piglets to investigate the role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity. We found that oral iron administration easily increased the abundance of Proteobacteria and Escherichia-Shigella, and decreased the abundance of Lactobacillus in the ileum. Furthermore, similar bacterial changes, namely an increase in Proteobacteria, Escherichia-Shigella, and Fusobacterium and a reduction in the Christensenellaceae_R-7_group, were observed in the colon of both iron-supplemented groups. Spearman's correlation analysis indicated that the changed Fusobacterium, Fusobacteria and Proteobacteria in the colon were positively correlated with hemoglobin, colon and spleen iron levels. Nevertheless, it was found that activated mTOR1 signaling, improved villous height and crypt depth in the ileum, enhanced immune communication, and increased protein expression of IL-22 and IL-10 in the colon of both iron-supplemented groups. In conclusion, the benefits of improved host iron outweigh the risks of altered gut microbiota for intestinal mucosal growth and immune regulation in treating iron deficiency anemia.
Collapse
Affiliation(s)
- Zhenglin Dong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Shuan Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingqing Deng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Guanya Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
2
|
Jung IR, Choi SE, Jung JG, Lee SA, Han SJ, Kim HJ, Kim DJ, Lee KW, Kang Y. Involvement of iron depletion in palmitate-induced lipotoxicity of beta cells. Mol Cell Endocrinol 2015; 407:74-84. [PMID: 25779532 DOI: 10.1016/j.mce.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/28/2015] [Accepted: 03/10/2015] [Indexed: 12/28/2022]
Abstract
High levels of plasma free fatty acid are thought to contribute to the loss of pancreatic beta-cells in type 2 diabetes. In particular, saturated fatty acid such as palmitate or stearate can induce apoptosis in cultured beta cells (lipotoxicity). Endoplasmic reticulum stress is a critical mediator of free fatty acid-induced lipotoxicity. Recently, disorders in mitochondrial respiratory metabolism have been linked to lipotoxicity. Since iron is a critical component of respiratory metabolism, this study is initiated to determine whether abnormal iron metabolism is involved in palmitate-induced beta cell death. Immunoblotting analysis showed that treatment of INS-1 beta cells with palmitate reduced the level of transferrin receptor 1 (TfR1), but increased the level of heavy chain ferritin (FTH). In addition, palmitate reduced intracellular labile iron pool. Whereas iron depletion through treatment with iron-chelators deferoxamine or deferasirox augmented palmitate-induced cell death, iron supplementation with ferric chloride, ferrous sulfate, or holo-transferrin significantly protected cells against palmitate-induced death. Furthermore, overexpression of TfR1 reduced palmitate-induced cell death, whereas knockdown of TfR1 augmented cell death. In particular, treatment with deferoxamine increased the level of endoplasmic reticulum (ER) stress markers phospho-PERK, phospho-eIF2α, CHOP and phospho-c-Jun N-terminal kinase. Treatment with chemical chaperone significantly protected cells against deferoxamine-induced apoptosis. Iron supplementation also protected cells against palmitate-induced primary islet death. These data suggest that iron depletion plays an important role in palmitate-induced beta cell death through inducing ER stress. Therefore, attempts to block iron depletion might be able to prevent beta cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Physiology, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea; Department of Biomedical Science, The Graduate School, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Jong-Gab Jung
- Department of Biomedical Science, The Graduate School, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea; Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Sang-A Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea; Department of Biomedical Science, The Graduate School, Ajou University School of Medicine, Suwon, Kyunggi-do 442-749, Republic of Korea.
| |
Collapse
|