1
|
Lee YE, Jeong ES, Kim YM, Gong SP. Investigation of scaffold manufacturing conditions for 3-dimensional culture of myogenic cell line derived from black sea bream ( Acanthopagrus schlegelii). Cytotechnology 2025; 77:18. [PMID: 39676766 PMCID: PMC11635079 DOI: 10.1007/s10616-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024] Open
Abstract
Culturing fish myogenic cells in vitro holds significant potential to revolutionize aquaculture practices and support sustainable food production. However, advancement in in vitro culture technologies for skeletal muscle-derived myogenic cells have predominantly focused on mammals, with limited studies on fish. Scaffold-based three-dimensional (3D) culture systems for fish myogenic cells remain underexplored, highlighting a critical research gap compared to mammalian systems. This study evaluated the effects of scaffold composition and manufacturing methods on cellular growth in the 3D culture of black sea bream (Acanthopagrus schlegelii) myogenic cells. Scaffolds were manufactured using three natural polymers: black sea bream-derived extracellular matrix (ECM), sodium alginate, and gelatin. Two scaffold types were tested: "cell-laden scaffolds" prepared by mixing cells into the pre-scaffold solution followed by gelation, and "cell-seeding scaffolds" produced by freezing, gelation, and lyophilization before cell inoculation. Scaffold characteristics, including pore size, porosity, swelling ratio, and degradation rate, were assessed. Cell-seeding scaffolds exhibited relatively larger pore size, higher porosity, and higher degradation rate, while cell-laden scaffolds had higher swelling ratios. When black sea bream myogenic cells were cultured in these scaffolds, cell-seeding scaffolds supported cellular growth, particularly when composed of 3% sodium alginate and 4% gelatin with any concentration of ECM. In contrast, cell-laden scaffolds did not support cellular growth regardless of their composition. These findings provide fundamental insights for optimizing scaffold properties to develop more optimized conditions for 3D culture of fish muscle lineage cells.
Collapse
Affiliation(s)
- Ye-Eun Lee
- Department of Fisheries Biology, Pukyong National University, Busan, 48513 Korea
| | - Eun Soo Jeong
- Department of Fisheries Biology, Pukyong National University, Busan, 48513 Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
| | - Seung Pyo Gong
- Department of Fisheries Biology, Pukyong National University, Busan, 48513 Korea
- Major in Aquaculture and Applied Life Science, Division of Fisheries Life Science, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513 Korea
| |
Collapse
|
2
|
Li L, Li H, Diao Z, Zhou H, Bai Y, Yang L. Development of a tannic acid- and silicate ion-functionalized PVA-starch composite hydrogel for in situ skeletal muscle repairing. J Mater Chem B 2024; 12:3917-3926. [PMID: 38536012 DOI: 10.1039/d3tb03006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.
Collapse
Affiliation(s)
- Longkang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huipeng Li
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhentian Diao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Yanjie Bai
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- Department of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
3
|
Mikšiūnas R, Labeit S, Bironaitė D. The Effect of Heat Shock on Myogenic Differentiation of Human Skeletal-Muscle-Derived Mesenchymal Stem/Stromal Cells. Cells 2022; 11:3209. [PMID: 36291076 PMCID: PMC9600296 DOI: 10.3390/cells11203209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/18/2023] Open
Abstract
Muscle injuries, degenerative diseases and other lesions negatively affect functioning of human skeletomuscular system and thus quality of life. Therefore, the investigation of molecular mechanisms, stimulating myogenic differentiation of primary skeletal-muscle-derived mesenchymal stem/stromal cells (SM-MSCs), is actual and needed. The aim of the present study was to investigate the myogenic differentiation of CD56 (neural cell adhesion molecule, NCAM)-positive and -negative SM-MSCs and their response to the non-cytotoxic heat stimulus. The SM-MSCs were isolated from the post operation muscle tissue, sorted by flow cytometer according to the CD56 biomarker and morphology, surface profile, proliferation and myogenic differentiation has been investigated. Data show that CD56(+) cells were smaller in size, better proliferated and had significantly higher levels of CD146 (MCAM) and CD318 (CDCP1) compared with the CD56(-) cells. At control level, CD56(+) cells significantly more expressed myogenic differentiation markers MYOD1 and myogenin (MYOG) and better differentiated to the myogenic direction. The non-cytotoxic heat stimulus significantly stronger stimulated expression of myogenic markers in CD56(+) than in CD56(-) cells that correlated with the multinucleated cell formation. Data show that regenerative properties of CD56(+) SM-MSCs can be stimulated by an extracellular stimulus and be used as a promising skeletal muscle regenerating tool in vivo.
Collapse
Affiliation(s)
- Rokas Mikšiūnas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08460 Vilnius, Lithuania
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Daiva Bironaitė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08460 Vilnius, Lithuania
| |
Collapse
|
4
|
Farr AC, Hogan KJ, Mikos AG. Nanomaterial Additives for Fabrication of Stimuli-Responsive Skeletal Muscle Tissue Engineering Constructs. Adv Healthc Mater 2020; 9:e2000730. [PMID: 32691983 DOI: 10.1002/adhm.202000730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss necessitates novel tissue engineering strategies for skeletal muscle repair, which have traditionally involved cells and extracellular matrix-mimicking scaffolds and have thus far been unable to successfully restore physiologically relevant function. However, the incorporation of various nanomaterial additives with unique physicochemical properties into scaffolds has recently been explored as a means of fabricating constructs that are responsive to electrical, magnetic, and photothermal stimulation. Herein, several classes of nanomaterials that are used to mediate external stimulation to tissue engineered skeletal muscle are reviewed and the impact of these stimuli-responsive biomaterials on cell growth and differentiation and in vivo muscle repair is discussed. The degradation kinetics and biocompatibilities of these nanomaterial additives are also briefly examined and their potential for incorporation into clinically translatable skeletal muscle tissue engineering strategies is considered. Overall, these nanomaterial additives have proven efficacious and incorporation in tissue engineering scaffolds has resulted in enhanced functional skeletal muscle regeneration.
Collapse
Affiliation(s)
- Amy Corbin Farr
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
| | - Katie J Hogan
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Antonios G Mikos
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Mohanty G, Jena SR, Nayak J, Kar S, Samanta L. Proteomic Signatures in Spermatozoa Reveal the Role of Paternal Factors in Recurrent Pregnancy Loss. World J Mens Health 2019; 38:103-114. [PMID: 31385471 PMCID: PMC6920069 DOI: 10.5534/wjmh.190034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose To identify the paternal factors responsible for aberrant embryo development leading to loss of foetus in recurrent pregnancy loss (RPL) through proteomic analysis of ejaculated spermatozoa. Materials and Methods This prospective study consisted of male partners of RPL patients (n=16) experienced with two or more consecutive unexplained miscarriages and with no female factor abnormality as revealed by gynaecologic investigation including karyotyping and age matched fertile healthy volunteers (n=20). All samples were collected during 2013 to 2015 after getting institutional ethical approval and written consent from the participants. Seminal ejaculates were collected by masturbation after 2 to 3 days of sexual abstinence and analyzed according to World Health Organization 5th criteria 2010. Two-dimensional difference gel electrophoresis followed by mass spectrophotometric analysis was used to identify differentially expressed proteins (DEPs). Western blotting was used for validation of the key proteins. Results The data identified 36 protein spots to be differentially expressed by more than 2-fold change with p<0.05 considered as significant. Matrix-assisted laser desorption/ionization time of flight/mass spectrometry identified GPx4, JIP4, ZN248 to be overexpressed while HSPA2, GSTM5, TF3C1, CC74A was underexpressed in RPL group. Western blot analysis confirmed the differential expression of key redox associated proteins GPx4 and HSPA2 in the RPL group. Functional analysis revealed the involvement of key biological processes that includes spermatogenesis, response to oxidative stress, protein folding and metabolic process. Conclusions The present study provides a snapshot of the altered protein expression levels consistent with the potential involvement of the sperm chromatin landscape in early embryonic development.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Redox Biology Laboratory, Department of Zoology, Center of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, India
| | - Soumya Ranjan Jena
- Redox Biology Laboratory, Department of Zoology, Center of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, India
| | - Jasmine Nayak
- Redox Biology Laboratory, Department of Zoology, Center of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, India
| | - Sujata Kar
- Department of Obstetrics and Gynaecology, Kar Clinic and Hospital Private Limited, Bhubaneswar, India
| | - Luna Samanta
- Redox Biology Laboratory, Department of Zoology, Center of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, India.
| |
Collapse
|
6
|
Li L, Li CM, Wu J, Huang S, Wang GL. Heat shock protein 32/heme oxygenase-1 protects mouse Sertoli cells from hyperthermia-induced apoptosis by CO activation of sGC signalling pathways. Cell Biol Int 2013; 38:64-71. [PMID: 24038883 DOI: 10.1002/cbin.10177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/11/2013] [Indexed: 01/12/2023]
Abstract
Heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) may be a key enzyme for the protection of cells against stress. Its anti-apoptotic effect has been attributed to its product, carbon monoxide (CO), in many types of cells. However, whether its anti-apoptotic mechanism plays a role in Sertoli cells (SCs) is not yet clear. We hypothesise that Hsp32/HO-1 and CO generated from it provide survival advantages in SCs by preventing apoptosis under heat exposure. After treatment of cultured SCs with hyperthermia and/or Hsp32/HO-1 activater hemin, apoptosis was measured valuated by annexin V-FITC and caspase-3 activation. We have also analysed the Hsp32/HO-1-derived CO content of cultured media and cyclic guanosine monophosphate (cGMP) production by enzyme-linked immunosorbent assay (ELISA). Hyperthermia induced SCs apoptosis, while preincubation with hemin suppressed SC hyperthermia-induced apoptosis. Hyperthermia and/or hemin increase Hsp32/HO-1 gene expression and the production of CO, which, in turn, stimulates the generation of cGMP. The results suggest that Hsp32/HO-1 is a protective factor in heat-stressed SCs, and that CO generated from Hsp32/HO-1 is involved in the anti-apoptotic pathway.
Collapse
Affiliation(s)
- Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | | | | | | | | |
Collapse
|
7
|
Fang X, Jiang Y, Feng L, Chen H, Zhen C, Ding M, Wang X. Blockade of PI3K/AKT pathway enhances sensitivity of Raji cells to chemotherapy through down-regulation of HSP70. Cancer Cell Int 2013; 13:48. [PMID: 23706027 PMCID: PMC3680239 DOI: 10.1186/1475-2867-13-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/10/2013] [Indexed: 01/08/2023] Open
Abstract
Up-regulation of heat shock protein 70 (HSP70) could be elicited primarily by heat in former studies, and this was proved to be associated with cancer progression. Burkitt's lymphoma is one of highly aggressive B-cell non-Hodgkin’s lymphoma and is one of the fastest growing human tumors. To investigate the effect of HSP70 expression on the sensitivity of human Burkitt lymphoma cells (Raji cells) to chemotherapy and its role in the involvement of PI3K/AKT pathway, we evaluated the effects of LY294002, a PI3K inhibitor, on the expression of HSP70 and cell sensitivity to adriamycin (ADM) or cisplatin (DDP). In present study, expressions of HSP70, AKT and phosphorylated AKT (p-AKT) in Raji cells were measured by Western-Blot. Apoptosis index of Raji cells was examined by flow cytometry. Cytotoxicities of adriamycin (ADM) and cisplatin (DDP) were determined by WST-8 assay. We found that hyperthermia (42 degrees for 1 hour) up-regulated the expression of HSP70 expression and blockade of PI3K/AKT pathway down-regulated HSP70 expression in Raji cells. Compared to cells treated with ADM or DDP alone, hyperthermia protected cells from chemotherapy while LY294002 enhanced sensitivity of Raji cells to chemotherapy. Our results suggested down-regulation of HSP70 expression by blockade of PI3K/AKT pathway maybe responsible for the increased sensitivity of Raji cells to chemotherapy. Targeting PI3K/AKT pathway or inhibiting HSP70 expression may be beneficial for chemotherapy treatment of Burkitt lymphoma patients.
Collapse
Affiliation(s)
- Xiaosheng Fang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, P,R, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Huang Z, Liu Y, Zhu J, Wu H, Guo J. Involvement of the dual-specificity phosphatase M3/6 in c-Jun N-terminal kinase inactivation following cerebral ischemia in the rat hippocampus. Int J Neurosci 2013; 123:802-9. [DOI: 10.3109/00207454.2013.803477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|