1
|
Sánchez-García S, Castrillo A, Boscá L, Prieto P. Potential Beneficial Role of Nitric Oxide in SARS-CoV-2 Infection: Beyond Spike-Binding Inhibition. Antioxidants (Basel) 2024; 13:1301. [PMID: 39594443 PMCID: PMC11591382 DOI: 10.3390/antiox13111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
SARS-CoV-2, the causative virus for the COVID-19 disease, uses its spike glycoprotein to bind to human ACE2 as a first step for viral entry into the cell. For this reason, great efforts have been made to find mechanisms that disrupt this interaction, avoiding the infection. Nitric oxide (NO) is a soluble endogenous gas with known antiviral and immunomodulatory properties. In this study, we aimed to test whether NO could inhibit the binding of the viral spike to ACE2 in human cells and its effects on ACE2 enzymatic activity. Our results show that ACE2 activity was decreased by the NO donors DETA-NONOate and GSNO and by the NO byproduct peroxynitrite. Furthermore, we found that DETA-NONOate could break the spike-ACE2 interaction using the spike from two different variants (Alpha and Gamma) and in two different human cell types. Moreover, the same result was obtained when using NO-producing murine macrophages, while no significant changes were observed in ACE2 expression or distribution within the cell. These results support that it is worth considering NO as a therapeutic agent for COVID-19, as previous reports have suggested.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Patricia Prieto
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|
2
|
Derkachev IA, Popov SV, Maslov LN, Mukhomedzyanov AV, Naryzhnaya NV, Gorbunov AS, Kan A, Krylatov AV, Podoksenov YK, Stepanov IV, Gusakova SV, Fu F, Pei JM. Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart-The signaling mechanism. Fundam Clin Pharmacol 2024; 38:489-501. [PMID: 38311344 DOI: 10.1111/fcp.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Ivan A Derkachev
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | | | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Artur Kan
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Yuri K Podoksenov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Ivan V Stepanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
4
|
Dos Anjos AA, de Paiva IT, Simões Lima GL, da Silva Filha R, Fróes BPE, Brant Pinheiro SV, Silva ACSE. Nephrotic Syndrome and Renin-angiotensin System: Pathophysiological Role and Therapeutic Potential. Curr Mol Pharmacol 2023; 16:465-474. [PMID: 35713131 DOI: 10.2174/1874467215666220616152312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
Idiopathic Nephrotic Syndrome (INS) is the most frequent etiology of glomerulopathy in pediatric patients and one of the most common causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in this population. In this review, we aimed to summarize evidence on the pathophysiological role and therapeutic potential of the Renin-Angiotensin System (RAS) molecules for the control of proteinuria and for delaying the onset of CKD in patients with INS. This is a narrative review in which the databases PubMed, Web of Science, and Sci- ELO were searched for articles about INS and RAS. We selected articles that evaluated the pathophysiological role of RAS and the effects of the alternative RAS axis as a potential therapy for INS. Several studies using rodent models of nephropathies showed that the treatment with activators of the Angiotensin-Converting Enzyme 2 (ACE2) and with Mas receptor agonists reduces proteinuria and improves kidney tissue damage. Another recent paper showed that the reduction of urinary ACE2 levels in children with INS correlates with proteinuria and higher concentrations of inflammatory cytokines, although data with pediatric patients are still limited. The molecules of the alternative RAS axis comprise a wide spectrum, not yet fully explored, of potential pharmacological targets for kidney diseases. The effects of ACE2 activators and receptor Mas agonists show promising results that can be useful for nephropathies including INS.
Collapse
Affiliation(s)
- Alessandra Aguiar Dos Anjos
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Isadora Tucci de Paiva
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Giovanna Letícia Simões Lima
- Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Roberta da Silva Filha
- Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Brunna Pinto E Fróes
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Veloso Brant Pinheiro
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cristina Simões E Silva
- Departamento de Pediatria, Faculdade de Medicina, Unidade de Nefrologia Pediátrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Sun R, Chang R, Yu T, Wang D, Jiang L. U-Net Modelling-Based Imaging MAP Score for Tl Stage Nephrectomy: An Exploratory Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1084853. [PMID: 35035806 PMCID: PMC8754594 DOI: 10.1155/2022/1084853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
We evaluate the stability of the clinical application of the MAP scoring system based on anatomical features of renal tumour images, explore the relevance of this scoring system to the choice of surgical procedure for patients with limited renal tumours, and investigate the effectiveness of automated segmentation and reconstruction 3D models of renal tumour images based on U-net for interpretative cognitive navigation during laparoscopy Tl stage radical renal tumour cancer surgery. A total of 5 000 kidney tumour images containing manual annotations were applied to the training set, and a stable and efficient full CNN algorithm model oriented to clinical needs was constructed to regionalism and multistructure and to finely automate segmentation of kidney tumour images, output modelling information in STL format, and apply a tablet computer to intraoperatively display the Tl stage kidney tumour model for cognitive navigation. Based on a training sample of MR images from 201 patients with stage Tl renal tumour cancer, an adaptation of the classical U-net allows individual segmentation of important structures such as renal tumours and 3D visualisation to visualise the structural relationships and the extent of tumour invasion at key surgical sites. The preoperative CT and clinical data of 225 patients with limited renal tumours treated surgically at our hospital from August 2011 to August 2012 were retrospectively analysed by three imaging physicians using the MAP scoring system for the total score and the variables R (maximum diameter), E (exogenous/endogenous), N (distance from the renal sinus), A (ventral/dorsal), L (relationship along the longitudinal axis of the kidney), and h (whether in contact with the renal hilum). The score for each variable (contact with the renal hilum) was statistically compared with each other for the three observers. Patients were divided into three groups according to the total score-low, medium, and high-and according to the surgical procedure-radical and partial resection. The correlation between the total score and the score of each variable and the choice of surgical procedure was analysed. The agreement rate of the total score and the score of each variable for all three observers was over 90% (P ≤ 0.001). The map scoring system based on the anatomical features of renal tumour imaging was well stabilized, and the scores were significantly correlated with the surgical approach.
Collapse
Affiliation(s)
- Ruixue Sun
- Imaging Department Hengshui People's Hospital, Hengshui 053000, China
| | - Ruiting Chang
- Imaging Department Hengshui People's Hospital, Hengshui 053000, China
| | - Tianshu Yu
- Imaging Department Hengshui People's Hospital, Hengshui 053000, China
| | - Dongxin Wang
- Imaging Department Hengshui People's Hospital, Hengshui 053000, China
| | - Lijie Jiang
- Imaging Department Hengshui People's Hospital, Hengshui 053000, China
| |
Collapse
|
6
|
Pucci F, Annoni F, dos Santos RAS, Taccone FS, Rooman M. Quantifying Renin-Angiotensin-System Alterations in COVID-19. Cells 2021; 10:2755. [PMID: 34685735 PMCID: PMC8535134 DOI: 10.3390/cells10102755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in a wide series of physiological processes, among which inflammation and blood pressure regulation. One of its key components, the angiotensin-converting enzyme 2, has been identified as the entry point of the SARS-CoV-2 virus into the host cells, and therefore a lot of research has been devoted to study RAS dysregulation in COVID-19. Here we discuss the alterations of the regulatory RAS axes due to SARS-CoV-2 infection on the basis of a series of recent clinical investigations and experimental analyzes quantifying, e.g., the levels and activity of RAS components. We performed a comprehensive meta-analysis of these data in view of disentangling the links between the impaired RAS functioning and the pathophysiological characteristics of COVID-19. We also review the effects of several RAS-targeting drugs and how they could potentially help restore the normal RAS functionality and minimize the COVID-19 severity. Finally, we discuss the conflicting evidence found in the literature and the open questions on RAS dysregulation in SARS-CoV-2 infection whose resolution would improve our understanding of COVID-19.
Collapse
Affiliation(s)
- Fabrizio Pucci
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | - Marianne Rooman
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Kai H, Kai M, Niiyama H, Okina N, Sasaki M, Maeda T, Katoh A. Overexpression of angiotensin-converting enzyme 2 by renin-angiotensin system inhibitors. Truth or myth? A systematic review of animal studies. Hypertens Res 2021; 44:955-968. [PMID: 33750913 PMCID: PMC7943405 DOI: 10.1038/s41440-021-00641-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) protects against organ damage in hypertension and cardiovascular diseases by counter regulating the renin-angiotensin system (RAS). ACE2 is also the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on the claim that RAS inhibitors (RASIs) cause ACE2 overexpression in some animal experiments, concerns have arisen that RASIs may aggravate SARS-CoV-2 infection and coronavirus disease-2019 severity in RASI-treated patients. To achieve a comprehensive review, a systematic search of MEDLINE/PubMed was conducted regarding the effects of RASIs on tissue ACE2 mRNA/protein expression in healthy animals and animal models of human diseases. We identified 88 eligible articles involving 168 experiments in the heart, kidneys, lungs, and other organs. Three of 38 experiments involving healthy animals showed ACE2 expression greater than twice that of the control (overexpression). Among 102 disease models (130 experiments), baseline ACE2 was overexpressed in 16 models (18 experiments) and less than half the control level (repression) in 28 models (40 experiments). In 72 experiments, RASIs did not change ACE2 levels from the baseline levels of disease models. RASIs caused ACE2 overexpression compared to control levels in seven experiments, some of which were unsupported by other experiments under similar conditions. In 36 experiments, RASIs reversed or prevented disease-induced ACE2 repression, yielding no or marginal changes. Therefore, ACE2 overexpression appears to be a rare rather than common consequence of RASI treatment in healthy animals and disease models. Future studies should clarify the pathophysiological significance of RASI-induced reversal or prevention of ACE2 repression in disease models.
Collapse
Affiliation(s)
- Hisashi Kai
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan.
| | - Mamiko Kai
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hiroshi Niiyama
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Norihito Okina
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Motoki Sasaki
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Takanobu Maeda
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Atsushi Katoh
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| |
Collapse
|
8
|
Zanza C, Tassi MF, Romenskaya T, Piccolella F, Abenavoli L, Franceschi F, Piccioni A, Ojetti V, Saviano A, Canonico B, Montanari M, Zamai L, Artico M, Robba C, Racca F, Longhitano Y. Lock, Stock and Barrel: Role of Renin-Angiotensin-Aldosterone System in Coronavirus Disease 2019. Cells 2021; 10:1752. [PMID: 34359922 PMCID: PMC8306543 DOI: 10.3390/cells10071752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Since the end of 2019, the medical-scientific community has been facing a terrible pandemic caused by a new airborne viral agent known as SARS-CoV2. Already in the early stages of the pandemic, following the discovery that the virus uses the ACE2 cell receptor as a molecular target to infect the cells of our body, it was hypothesized that the renin-angiotensin-aldosterone system was involved in the pathogenesis of the disease. Since then, numerous studies have been published on the subject, but the exact role of the renin-angiotensin-aldosterone system in the pathogenesis of COVID-19 is still a matter of debate. RAAS represents an important protagonist in the pathogenesis of COVID-19, providing the virus with the receptor of entry into host cells and determining its organotropism. Furthermore, following infection, the virus is able to cause an increase in plasma ACE2 activity, compromising the normal function of the RAAS. This dysfunction could contribute to the establishment of the thrombo-inflammatory state characteristic of severe forms of COVID-19. Drugs targeting RAAS represent promising therapeutic options for COVID-19 sufferers.
Collapse
Affiliation(s)
- Christian Zanza
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| | - Michele Fidel Tassi
- Department of Emergency Medicine, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Tatsiana Romenskaya
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Francesco Franceschi
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Andrea Piccioni
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Angela Saviano
- Department of Emergency Medicine, Foundation of Policlinico Agostino Gemelli-IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (F.F.); (A.P.); (V.O.); (A.S.)
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (B.C.); (M.M.); (L.Z.)
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi L’Aquila, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy;
| | - Fabrizio Racca
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care, AON SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (T.R.); (F.P.); (F.R.); (Y.L.)
- Foundation Ospedale Alba-Bra and Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, 12051 Verduno, Italy
| |
Collapse
|
9
|
Marquez A, Wysocki J, Pandit J, Batlle D. An update on ACE2 amplification and its therapeutic potential. Acta Physiol (Oxf) 2021; 231:e13513. [PMID: 32469114 PMCID: PMC7267104 DOI: 10.1111/apha.13513] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
The renin angiotensin system (RAS) plays an important role in the pathogenesis of variety of diseases. Targeting the formation and action of angiotensin II (Ang II), the main RAS peptide, has been the key therapeutic target for last three decades. ACE‐related carboxypeptidase (ACE2), a monocarboxypeptidase that had been discovered 20 years ago, is one of the catalytically most potent enzymes known to degrade Ang II to Ang‐(1‐7), a peptide that is increasingly accepted to have organ‐protective properties that oppose and counterbalance those of Ang II. In addition to its role as a RAS enzyme ACE2 is the main receptor for SARS‐CoV‐2. In this review, we discuss various strategies that have been used to achieve amplification of ACE2 activity including the potential therapeutic potential of soluble recombinant ACE2 protein and novel shorter ACE2 variants.
Collapse
Affiliation(s)
- Alonso Marquez
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| | - Jan Wysocki
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| | - Jay Pandit
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| | - Daniel Batlle
- Feinberg Medical SchoolNorthwestern University Chicago IL USA
- Department of Medicine Division of Nephrology and Hypertension Chicago IL USA
| |
Collapse
|
10
|
Zamai L. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells 2020; 9:E1704. [PMID: 32708755 PMCID: PMC7408073 DOI: 10.3390/cells9071704] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The article describes the rationale for inhibition of the renin-angiotensin system (RAS) pathways as specific targets in patients infected by SARS-CoV-2 in order to prevent positive feedback-loop mechanisms. Based purely on experimental studies in which RAS pathway inhibitors were administered in vivo to humans/rodents, a reasonable hypothesis of using inhibitors that block both ACE and ACE2 zinc metalloproteases and their downstream pathways in COVID-19 patients will be proposed. In particular, metal (zinc) chelators and renin inhibitors may work alone or in combination to inhibit the positive feedback loops (initially triggered by SARS-CoV-2 and subsequently sustained by hypoxia independently on viral trigger) as both arms of renin-angiotensin system are upregulated, leading to critical, advanced and untreatable stages of the disease.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy; ; Tel.: +39-0722-304319
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
| |
Collapse
|
11
|
Impact of diminazene aceturate on renin-angiotensin system, infectious myocarditis and skeletal myositis in mice: An in vitro and in vivo study. Life Sci 2020; 257:118067. [PMID: 32652140 DOI: 10.1016/j.lfs.2020.118067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022]
Abstract
Although renin-angiotensin system (RAS) imbalance is manifested in cardiomyopathies with different etiologies, the impact of RAS effectors on Chagas cardiomyopathy and skeletal myositis is poorly understood. Given that diminazene aceturate (DMZ) shares trypanocidal, angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) stimulatory effects, we investigated the impact of DMZ on cardiomyocytes infection in vitro, renin-angiotensin system, Chagas cardiomyopathy and skeletal myositis in vivo. Cardiomyocytes and T. cruzi were used to evaluate DMZ toxicity in vitro. The impact of 20-days DMZ treatment (1 mg/kg) was also investigated in uninfected and T. cruzi-infected mice as follows: control uninfected and untreated, uninfected treated with DMZ, infected untreated and infected treated with DMZ. DMZ had low toxicity on cardiomyocytes, induced dose-dependent antiparasitic activity on T. cruzi trypomastigotes, and reduced parasite load but not infection rates in cardiomyocytes. DMZ increased ACE2 activity and angiotensin-(1-7) plasma levels but exerted no interference on angiotensin-converting enzyme (ACE) activity, ACE, ACE2 and angiotensin II levels in uninfected and infected mice. DMZ treatment also reduced IFN-γ and IL-2 circulating levels but was ineffective in attenuating parasitemia, MCP-1, IL-10, anti-T. cruzi IgG, nitrite/nitrate and malondialdehyde production, myocarditis and skeletal myositis compared to infected untreated animals. As the antiparasitic effect of DMZ in vitro did not manifest in vivo, this drug exhibited limited relevance to the treatment of Chagas disease. Although DMZ is effective in upregulating angiotensin-(1-7) levels, this molecule does not act as a potent modulator of T. cruzi infection, which can establish heart and skeletal muscle parasitism, lipid oxidation and inflammatory damage, even in the presence of high concentrations of this RAS effector.
Collapse
|
12
|
Safari T, Shahraki MR, Miri S, Mirakzehi Bakhshani N, Niazi AA, Komeili GR, Bagheri H. The effect of angiotensin 1-7 and losartan on renal ischemic/reperfusion injury in male rats. Res Pharm Sci 2019; 14:441-447. [PMID: 31798661 PMCID: PMC6827188 DOI: 10.4103/1735-5362.268205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ischemia/reperfusion (I/R) is a major cause of acute kidney injury. Several studies have shown that renin angiotensin (Ang) system and activation of Ang II type 1 receptor (AT1) are involved in various forms of kidney diseases. Likewise, Ang 1-7 as a physiologic antagonist of AT1 and losartan could possibly protect the kidney against I/R damage. Therefore, we investigated renal injury by administering the drugs before and after I/R. Fifty-four male Wistar rats were randomly assigned to five groups as follows. 1, Sham operated; 2, saline group (as a control group); 3, losartan group; 4, Ang 1-7group; and 5, Ang 1-7 + losartan simultaneously. It should be noted that groups 2-5 consisted of two separate I/R-induced subgroups both receiving medication where the first groups received the treatment 15 min before induction of I/R while the medications were given to the second groups immediately after induction of I/R. Twenty four h after I/R, blood samples were collected, and then levels of serum urea nitrogen (BUN), creatinine (Cr), nitrite, malondialdehyde (MDA), lactate dehydrogenase (LDH) and total antioxidant capacity (TAC) were measured. Likewise, nitrite, MDA and TAC were measured in the homogenized kidney tissues. After the induction of I/R, the BUN, Cr, LDH, and kidney tissue damage score increased. Administration of Ang 1-7 alone or simultaneously with losartan decreased the levels of aforementioned factors. Also, kidney MDA and nitrate levels significantly increased after I/R induction (P < 0.05). According to the results of this study, it can be claimed that the effect of losartan in the presence of Mas receptor is statistically significant and kidney damage dramatically decreases.
Collapse
Affiliation(s)
- Tahereh Safari
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Mohamad Reza Shahraki
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Saideh Miri
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Nasime Mirakzehi Bakhshani
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Abbass Ali Niazi
- School of Medicine, Department of Pathology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Gholam Reza Komeili
- School of Medicine, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, I.R. Iran
| | - Hossain Bagheri
- School of Medicine, Department of Medical English, Zahedan University of Medical Sciences, I.R. Iran
| |
Collapse
|
13
|
Kostyunin AE, Ovcharenko EA, Barbarash OL. [The renin-angiotensin-aldosterone system as a potential target for therapy in patients with calcific aortic stenosis: a literature review]. ACTA ACUST UNITED AC 2019; 59:4-17. [PMID: 31884936 DOI: 10.18087/cardio.n328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
Calcific aortic valve stenosis (CAVS) is a serious socio-economic problem in developed countries because this disease is the most common indication for aortic valve replacement. Currently, there are no methods for non-invasive treatment of CAVS. Nevertheless, it is assumed that effective drug therapy for CAVS can be developed on the basis of modulators of the renin-angiotensin-aldosterone system (RAAS), which is involved in the pathogenesis of this disease. The purpose of this paper is to compile and analyze current information on the role of RAAS in the CAVS pathophysiology. Recent data on the effectiveness of RAAS inhibition are reviewed.
Collapse
Affiliation(s)
- A E Kostyunin
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - E A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - O L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases
| |
Collapse
|
14
|
Romero A, San Hipólito‐Luengo Á, Villalobos LA, Vallejo S, Valencia I, Michalska P, Pajuelo‐Lozano N, Sánchez‐Pérez I, León R, Bartha JL, Sanz MJ, Erusalimsky JD, Sánchez‐Ferrer CF, Romacho T, Peiró C. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 2019; 18:e12913. [PMID: 30773786 PMCID: PMC6516147 DOI: 10.1111/acel.12913] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.
Collapse
Affiliation(s)
- Alejandra Romero
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | | | - Laura A. Villalobos
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Susana Vallejo
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| | - Inés Valencia
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Patrycja Michalska
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
| | - Natalia Pajuelo‐Lozano
- Department of BiochemistryFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones BiomédicasUAM-CSIC Madrid Spain
| | - Isabel Sánchez‐Pérez
- Department of BiochemistryFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones BiomédicasUAM-CSIC Madrid Spain
- CIBER for Rare Diseases Valencia Spain
| | - Rafael León
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Servicio de Farmacología ClínicaInstituto de Investigación SanitariaHospital Universitario de la Princesa Madrid Spain
| | - José Luis Bartha
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
- Department of Obstetrics and GynecologyFaculty of MedicineUniversidad Autónoma de Madrid Madrid Spain
| | - María Jesús Sanz
- Department of PharmacologyUniversidad de Valencia Valencia Spain
- Institute of Health Research INCLIVAUniversity Clinic Hospital of Valencia Valencia Spain
| | | | - Carlos F. Sánchez‐Ferrer
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| | - Tania Romacho
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
| | - Concepción Peiró
- Department of Pharmacology Faculty of Medicine Universidad Autónoma de Madrid Madrid Spain
- Instituto de Investigaciones Sanitarias IdiPAZ Madrid Spain
| |
Collapse
|
15
|
Chen Y, Zhao W, Liu C, Meng W, Zhao T, Bhattacharya SK, Sun Y. Molecular and Cellular Effect of Angiotensin 1-7 on Hypertensive Kidney Disease. Am J Hypertens 2019; 32:460-467. [PMID: 30715105 DOI: 10.1093/ajh/hpz009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/25/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Studies implicate that angiotensin 1-7 (Ang1-7) imparts protective effects in the kidney. However, its relevance in hypertensive kidney disease is not fully understood. The purpose of this study was to explore the role of Ang1-7 on renal damage/remodeling during hypertension and its potential underlying molecular-cellular mechanisms. METHODS Hypertension was induced in adult Sprague-Dawley rats by infusion of aldosterone (ALDO; 0.75 μg/hour) for 4 weeks with or without co-treatment of Ang1-7 (1 mg/kg/day). Untreated rats served as controls. Systolic blood pressure was monitored by tail-cuff technique. Renal fibrosis was evaluated by picrosirius red staining and renal collagen volume fraction was quantitated using imaging analyzing system. The expression of profibrotic factors [transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-D (PDGF-D), fibroblast growth factor-1 (FGF-1), vascular endothelial growth factor-D (VEGF-D), and tissue inhibitors of metalloproteinases (TIMPs)] and free radical producing enzymes (inducible nitric oxide synthase and nicotinamide adenine dinucleotide phosphate [NADPH] oxidase) in the kidney were examined by reverse transcription-polymerase chain reaction and western blot. Renal oxidative stress was assessed by malondialdehyde (MDA) measurement. RESULTS Chronic ALDO infusion caused hypertension and hypertensive renal disease represented as glomerular damage/sclerosis. Ang1-7 co-treatment did not affect blood pressure in ALDO-treated rats, but significantly attenuated the glomerular damage/fibrosis. ALDO treatment significantly elevated renal expression of profibrogenic factors, including TGF-β1, TIMP-1/TIMP-2, FGF-1, PDGF-D, and VEGF-D, whereas Ang1-7 co-treatment significantly reduced renal TGF-β1, TIMP-1/TIMP-2, and FGF-1, but not PDGF-D and VEGF-D. Furthermore, ALDO infusion elevated NADPH oxidase (gp91phox) and MDA in the kidney, which was attenuated by Ang1-7 co-treatment. CONCLUSIONS Ang1-7 plays a protective role in the hypertensive kidney disease independent of blood pressure. The beneficial effects of Ang1-7 are likely mediated via suppressing TGF-β/FGF-1 pathways and oxidative stress.
Collapse
Affiliation(s)
- Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chang Liu
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Weixin Meng
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
16
|
Zhou J, He F, Sun B, Liu R, Gao Y, Ren H, Shu Y, Chen X, Liu Z, Zhou H, Deng S, Xu H, Li J, Xu L, Zhang W. Polytropic Influence of TRIB3 rs2295490 Genetic Polymorphism on Response to Antihypertensive Agents in Patients With Essential Hypertension. Front Pharmacol 2019; 10:236. [PMID: 30971918 PMCID: PMC6445854 DOI: 10.3389/fphar.2019.00236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Tribbles homolog 3 (TRIB3) mediating signaling pathways are closely related to blood pressure regulation. Our previous findings suggested a greater benefit on vascular outcomes in patients carrying TRIB3 (251, A > G, rs2295490) G allele with good glucose and blood pressure control. And TRIB3 (rs2295490) AG/GG genotypes were found to reduce primary vascular events in type 2 diabetic patients who received intensive glucose treatment as compared to those receiving standard glucose treatment. However, the effect of TRIB3 genetic variation on antihypertensives was not clear in essential hypertension patients. A total of 368 patients treated with conventional dosage of antihypertensives (6 groups, grouped by atenolol/bisoprolol, celiprolol, doxazosin, azelnidipine/nitrendipine, imidapril, and candesartan/irbesartan) were enrolled in our study. Genetic variations were successfully identified by sanger sequencing. A linear mixed model analysis was performed to evaluate blood pressures among TRIB3 (251, A > G) genotypes and adjusted for baseline age, gender, body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol and other biochemical factors appropriately. Our data suggested that TRIB3 (251, A > G) AA genotype carriers showed better antihypertensive effect than the AG/GG genotype carriers [P = 0.014 for DBP and P = 0.042 for mean arterial pressure (MAP)], with a maximal reduction of DBP by 4.2 mmHg and MAP by 3.56 mmHg after azelnidipine or nitrendipine treatment at the 4th week. Similar tendency of DBP-change and MAP-change was found for imidapril (ACEI) treatment, in which marginally significances were achieved (P = 0.073 and 0.075, respectively). Against that, we found that TRIB3 (251, A > G) AG/GG genotype carriers benefited from antihypertensive therapy of ARBs with a larger DBP-change during the period of observation (P = 0.036). Additionally, stratified analysis revealed an obvious difference of the maximal blood pressure change (13 mmHg for the MAP between male and female patients with AA genotype who took ARBs). Although no significant difference in antihypertensive effect between TRIB3 (251, A > G) genotypes in patients treated with α, β-ADRs was observed, we found significant difference in age-, sex-dependent manner related to α, β-ADRs. In conclusion, our data supported that TRIB3 (251, A > G) genetic polymorphism may serve as a useful biomarker in the treatment of hypertension.
Collapse
Affiliation(s)
- Jiecan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Pharmacy Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fazhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Heng Xu
- Department of Laboratory Medicine, Precision Medicine Center, and Precision Medicine Key Laboratory of Sichuan Province, Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Linyong Xu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Abstract
Classic and nonclassic renin-angiotensin systems (RAS) are 2 sides of an ubiquitous endocrine/paracrine cascade regulating blood pressure and homeostasis. Angiotensin II and angiotensin-converting enzyme (ACE) levels are associated with severity of disease in the critically ill, and are central to the physiology and the pathogenesis of circulatory shock. Angiotensin (1-7) and ACE2 act as an endogenous counterregulatory arm to the angiotensin II/ACE axis. The tissue-based RAS has paracrine effects dissociated from those of the circulating RAS. Exogenous angiotensin II or ACE2 may improve the outcome of septic shock and acute respiratory distress syndrome, respectively.
Collapse
Affiliation(s)
- Laurent Bitker
- Department of Intensive Care, ICU Research Office, Austin Hospital, 145 Studley Road, Heidelberg, Victoria 3084, Australia.
| | - Louise M Burrell
- Department of Medicine, University of Melbourne, Austin Health, Austin Hospital, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
18
|
Patel SK, Velkoska E, Gayed D, Ramchand J, Lesmana J, Burrell LM. Left ventricular hypertrophy in experimental chronic kidney disease is associated with reduced expression of cardiac Kruppel-like factor 15. BMC Nephrol 2018; 19:159. [PMID: 29970016 PMCID: PMC6029153 DOI: 10.1186/s12882-018-0955-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background Left ventricular hypertrophy (LVH) increases the risk of death in chronic kidney disease (CKD). The transcription factor Kruppel-like factor 15 (KLF15) is expressed in the heart and regulates cardiac remodelling through inhibition of hypertrophy and fibrosis. It is unknown if KLF15 expression is changed in CKD induced LVH, or whether expression is modulated by blood pressure reduction using angiotensin converting enzyme (ACE) inhibition. Methods CKD was induced in Sprague–Dawley rats by subtotal nephrectomy (STNx), and rats received vehicle (n = 10) or ACE inhibition (ramipril, 1 mg/kg/day, n = 10) for 4 weeks. Control, sham-operated rats (n = 9) received vehicle. Cardiac structure and function and expression of KLF15 were assessed. Results STNx caused impaired kidney function (P < 0.001), hypertension (P < 0.01), LVH (P < 0.001) and fibrosis (P < 0.05). LVH was associated with increased gene expression of hypertrophic markers, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP, P < 0.01) and connective tissue growth factor (CTGF) (P < 0.05). Cardiac KLF15 mRNA and protein expression were reduced (P < 0.05) in STNx and levels of the transcription regulator, GATA binding protein 4 were increased (P < 0.05). Ramipril reduced blood pressure (P < 0.001), LVH (P < 0.001) and fibrosis (P < 0.05), and increased cardiac KLF15 gene (P < 0.05) and protein levels (P < 0.01). This was associated with reduced ANP, BNP and CTGF mRNA (all P < 0.05). Conclusion This is the first evidence that loss of cardiac KLF15 in CKD induced LVH is associated with unchecked trophic and fibrotic signalling, and that ACE inhibition ameliorates loss of cardiac KLF15.
Collapse
Affiliation(s)
- Sheila K Patel
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| | - Elena Velkoska
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Daniel Gayed
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Jay Ramchand
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Jessica Lesmana
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, The University of Melbourne, Level 7 Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
19
|
Kuczeriszka M, Kompanowska-Jezierska E, Sadowski J, Prieto MC, Navar LG. Modulating Role of Ang1-7 in Control of Blood Pressure and Renal Function in AngII-infused Hypertensive Rats. Am J Hypertens 2018; 31:504-511. [PMID: 29329358 DOI: 10.1093/ajh/hpy006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Indirect evidence suggests that angiotensin 1-7 (Ang1-7) may counterbalance prohypertensive actions of angiotensin II (AngII), via activation of vascular and/or renal tubular receptors to cause vasodilation and natriuresis/diuresis. We examined if Ang1-7 would attenuate the development of hypertension, renal vasoconstriction, and decreased natriuresis in AngII-infused rats and evaluated the mechanisms involved. METHODS AngII, alone or with Ang1-7, was infused to conscious Sprague-Dawley rats for 13 days and systolic blood pressure (SBP) and renal excretion were repeatedly determined. In anesthetized rats, acute actions of Ang1-7 and effects of blockade of angiotensin AT1 or Mas receptors (candesartan or A-779) were studied. RESULTS Chronic AngII infusion increased SBP from 143 ± 4 to 195 ± 6 mm Hg. With Ang1-7 co-infused, SBP increased from 133 ± 5 to 161 ± 5 mm Hg (increase reduced, P < 0.002); concurrent increases in urine flow (V) and sodium excretion (UNaV) were greater. In anesthetized normotensive or AngII-induced hypertensive rats, Ang1-7 infusion transiently increased mean arterial pressure (MABP), transiently decreased renal blood flow (RBF), and caused increases in UNaV and V. In normotensive rats, candesartan prevented the Ang1-7-induced increases in MABP and UNaV and the decrease in RBF. In anesthetized normotensive, rats intravenous A-779 increased MABP (114 ± 5 to 120 ± 5 mm Hg, P < 0.03) and urine flow. Surprisingly, these changes were not observed with A-779 applied during background Ang1-7 infusion. CONCLUSIONS The results suggest that in AngII-dependent hypertension, Ang1-7 deficit contributes to sodium and fluid retention and thereby to BP elevation; a correction by Ang1-7 infusion seems mediated by AT1 and not Mas receptors.
Collapse
Affiliation(s)
- Marta Kuczeriszka
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pol
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pol
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pol
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - L Gabriel Navar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 775] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
21
|
Burrell LM, Gayed D, Griggs K, Patel SK, Velkoska E. Adverse cardiac effects of exogenous angiotensin 1-7 in rats with subtotal nephrectomy are prevented by ACE inhibition. PLoS One 2017; 12:e0171975. [PMID: 28192475 PMCID: PMC5305254 DOI: 10.1371/journal.pone.0171975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/30/2017] [Indexed: 11/18/2022] Open
Abstract
We previously reported that exogenous angiotensin (Ang) 1–7 has adverse cardiac effects in experimental kidney failure due to its action to increase cardiac angiotensin converting enzyme (ACE) activity. This study investigated if the addition of an ACE inhibitor (ACEi) to Ang 1–7 infusion would unmask any beneficial effects of Ang 1–7 on the heart in experimental kidney failure. Male Sprague–Dawley rats underwent subtotal nephrectomy (STNx) and were treated with vehicle, the ACEi ramipril (oral 1mg/kg/day), Ang 1–7 (subcutaneous 24 μg/kg/h) or dual therapy (all groups, n = 12). A control group (n = 10) of sham-operated rats were also studied. STNx led to hypertension, renal impairment, cardiac hypertrophy and fibrosis, and increased both left ventricular ACE2 activity and ACE binding. STNx was not associated with changes in plasma levels of ACE, ACE2 or angiotensin peptides. Ramipril reduced blood pressure, improved cardiac hypertrophy and fibrosis and inhibited cardiac ACE. Ang 1–7 infusion increased blood pressure, cardiac interstitial fibrosis and cardiac ACE binding compared to untreated STNx rats. Although in STNx rats, the addition of ACEi to Ang 1–7 prevented any deleterious cardiac effects of Ang 1–7, a limitation of the study is that the large increase in plasma Ang 1–7 with ramipril may have masked any effect of infused Ang 1–7.
Collapse
Affiliation(s)
- Louise M. Burrell
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Daniel Gayed
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Karen Griggs
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Sheila K. Patel
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Elena Velkoska
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
- * E-mail:
| |
Collapse
|
22
|
Velkoska E, Patel SK, Griggs K, Burrell LM. Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease. PLoS One 2016; 11:e0161760. [PMID: 27571511 PMCID: PMC5003360 DOI: 10.1371/journal.pone.0161760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022] Open
Abstract
Angiotensin converting enzyme (ACE) 2 is a negative regulator of the renin angiotensin system (RAS) through its role to degrade angiotensin II. In rats with subtotal nephrectomy (STNx), adverse cardiac remodelling occurs despite elevated cardiac ACE2 activity. We hypothesised that diminazene aceturate (DIZE), which has been described as having an off-target effect to activate ACE2, would have beneficial cardiac effects in STNx rats. STNx led to hypertension, diastolic dysfunction, left ventricular hypertrophy, cardiac fibrosis, and increased cardiac ACE, ACE2, Ang II and Ang 1-7 levels. Cardiac gene expression of ADAM17 was also increased. In STNx, two-weeks of subcutaneous DIZE (15mg/kg/d) had no effect on blood pressure but improved diastolic dysfunction and cardiac fibrosis, reduced ADAM17 mRNA and shifted the cardiac RAS balance to a cardioprotective profile with reduced ACE and Ang II. There was no change in cardiac ACE2 activity or in cardiac Ang 1-7 levels with DIZE. In conclusion, our results suggest that DIZE exerts a protective effect on the heart under the pathological condition of kidney injury. This effect was not due to improved kidney function, a fall in blood pressure or a reduction in LVH but was associated with a reduction in cardiac ACE and cardiac Ang II levels. As in vitro studies showed no direct effect of DIZE on ACE2 or ACE activity, the precise mechanism of action of DIZE remains to be determined.
Collapse
Affiliation(s)
- Elena Velkoska
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Sheila K. Patel
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Karen Griggs
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Louise M. Burrell
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
23
|
Simões E Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107:154-162. [PMID: 26995300 DOI: 10.1016/j.phrs.2016.03.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The Renin Angiotensin System (RAS) is a pivotal physiological regulator of heart and kidney homeostasis, but also plays an important role in the pathophysiology of heart and kidney diseases. Recently, new components of the RAS have been discovered, including angiotensin converting enzyme 2 (ACE2), Angiotensin(Ang)-(1-7), Mas receptor, Ang-(1-9) and Alamandine. These new components of RAS are formed by the hydrolysis of Ang I and Ang II and, in general, counteract the effects of Ang II. In experimental models of heart and renal diseases, Ang-(1-7), Ang-(1-9) and Alamandine produced vasodilation, inhibition of cell growth, anti-thrombotic, anti-inflammatory and anti-fibrotic effects. Recent pharmacological strategies have been proposed to potentiate the effects or to enhance the formation of Ang-(1-7) and Ang-(1-9), including ACE2 activators, Ang-(1-7) in hydroxypropyl β-cyclodextrin, cyclized form of Ang-(1-7) and nonpeptide synthetic Mas receptor agonists. Here, we review the role and effects of ACE2, ACE2 activators, Ang-(1-7) and synthetic Mas receptor agonists in the control of inflammation and fibrosis in cardiovascular and renal diseases and as counter-regulators of the ACE-Ang II-AT1 axis. We briefly comment on the therapeutic potential of the novel members of RAS, Ang-(1-9) and alamandine, and the interactions between classical RAS inhibitors and new players in heart and kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Unidade de Nefrologia Pediátrica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil.
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Brazil
| |
Collapse
|
24
|
Kim CS, Kim IJ, Bae EH, Ma SK, Lee J, Kim SW. Angiotensin-(1-7) Attenuates Kidney Injury Due to Obstructive Nephropathy in Rats. PLoS One 2015; 10:e0142664. [PMID: 26556707 PMCID: PMC4640496 DOI: 10.1371/journal.pone.0142664] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023] Open
Abstract
Background Angiotensin-(1–7) [Ang-(1–7)] counteracts many actions of the renin-angiotensin-aldosterone system. Despite its renoprotective effects, extensive controversy exists regarding the role of Ang-(1–7) in obstructive nephropathy, which is characterized by renal tubulointerstitial fibrosis and apoptosis. Methods To examine the effects of Ang-(1–7) in unilateral ureteral obstruction (UUO), male Sprague-Dawley rats were divided into three groups: control, UUO, and Ang-(1–7)-treated UUO rats. Ang-(1–7) was continuously infused (24 μg/[kg·h]) using osmotic pumps. We also treated NRK-52E cells in vitro with Ang II (1 μM) in the presence or absence of Ang-(1–7) (1 μM), Mas receptor antagonist A779 (1 μM), and Mas receptor siRNA (50 nM) to examine the effects of Ang-(1–7) treatment on Ang II-stimulated renal injury via Mas receptor. Results Angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R) protein expression was higher in UUO kidneys than in controls. Ang-(1–7) treatment also decreased proapoptotic protein expression in UUO kidneys. Ang-(1–7) also significantly ameliorated TUNEL positive cells in UUO kidneys. Additionally, Ang-(1–7) reduced profibrotic protein expression and decreased the increased tumor growth factor (TGF)-β1/Smad signaling present in UUO kidneys. In NRK-52E cells, Ang II induced the expression of TGF-β1/Smad signaling effectors and proapoptotic and fibrotic proteins, as well as cell cycle arrest, which were attenuated by Ang-(1–7) pretreatment. However, treatment with A779 and Mas receptor siRNA enhanced Ang II-induced apoptosis and fibrosis. Moreover, Ang II increased tumor necrosis factor-α converting enzyme (TACE) and decreased angiotensin-converting enzyme 2 (ACE2) expression in NRK-52E cells, while pretreatment with Ang-(1–7) or A779 significantly inhibited or enhanced these effects, respectively. Conclusion Ang-(1–7) prevents obstructive nephropathy by suppressing renal apoptosis and fibrosis, possibly by regulating TGF-β1/Smad signaling and cell cycle arrest via suppression of AT1R expression. In addition, Ang-(1–7) increased and decreased ACE2 and TACE expression, respectively, which could potentially mediate a positive feedback mechanism via the Mas receptor.
Collapse
Affiliation(s)
- Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - In Jin Kim
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
25
|
Rana I, Velkoska E, Patel SK, Burrell LM, Charchar FJ. MicroRNAs mediate the cardioprotective effect of angiotensin-converting enzyme inhibition in acute kidney injury. Am J Physiol Renal Physiol 2015; 309:F943-54. [PMID: 26400542 DOI: 10.1152/ajprenal.00183.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease, including cardiac hypertrophy, is common in patients with kidney disease and can be partially attenuated using blockers of the renin-angiotensin system (RAS). It is unknown whether cardiac microRNAs contribute to the pathogenesis of cardiac hypertrophy or to the protective effect of RAS blockade in kidney disease. Using a subtotal nephrectomy rat model of kidney injury, we investigated changes in cardiac microRNAs that are known to have direct target genes involved in the regulation of apoptosis, fibrosis, and hypertrophy. The effect of treatment with the angiotensin-converting enzyme (ACE) inhibitor ramipril on cardiac microRNAs was also investigated. Kidney injury led to a significant increase in cardiac microRNA-212 and microRNA-132 expression. Ramipril reduced cardiac hypertrophy, attenuated the increase in microRNA-212 and microRNA-132, and significantly increased microRNA-133 and microRNA-1 expression. There was altered expression of caspase-9, B cell lymphoma-2, transforming growth factor-β, fibronectin 1, collagen type 1A1, and forkhead box protein O3, which are all known to be involved in the regulation of apoptosis, fibrosis, and hypertrophy in cardiac cells while being targets for the above microRNAs. ACE inhibitor treatment increased expression of microRNA-133 and microRNA-1. The inhibitory action of ACE inhibitor treatment on increased cardiac NADPH oxidase isoform 1 expression after subtotal nephrectomy surgery suggests that inhibition of oxidative stress is also one of mechanism of ACE inhibitor-mediated cardioprotection. These finding suggests the involvement of microRNAs in the cardioprotective action of ACE inhibition in acute renal injury, which is mediated through an inhibitory action on profibrotic and proapoptotic target genes and stimulatory action on antihypertrophic and antiapoptotic target genes.
Collapse
Affiliation(s)
- Indrajeetsinh Rana
- School of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia; and
| | - Elena Velkoska
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sheila K Patel
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fadi J Charchar
- School of Science and Technology, Federation University Australia, Ballarat, Victoria, Australia; and
| |
Collapse
|
26
|
Zhang Q, Sun L, Jin L. Association Between Angiotensin-Converting Enzyme 2 and Coronary Artery Calcification in Patients on Maintenance Hemodialysis Therapy. Ther Apher Dial 2015; 19:466-70. [PMID: 26112236 DOI: 10.1111/1744-9987.12298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Qiankun Zhang
- Department of Nephrology; Lishui Center Hospital; Lishui Zhejiang China
| | - Lina Sun
- Department of Nephrology; Lishui Center Hospital; Lishui Zhejiang China
| | - Lie Jin
- Department of Nephrology; Lishui Center Hospital; Lishui Zhejiang China
| |
Collapse
|
27
|
He F, Luo J, Zhang Z, Luo Z, Fan L, He Y, Wen J, Zhu D, Gao J, Wang Y, Qian Y, Zhou H, Chen X, Zhang W. The RGS2 (-391, C>G) genetic variation correlates to antihypertensive drug responses in Chinese patients with essential hypertension. PLoS One 2015; 10:e0121483. [PMID: 25849301 PMCID: PMC4388730 DOI: 10.1371/journal.pone.0121483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/01/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Regulators of G-protein signaling protein 2 (RGS2) play an irreplaceable role in the control of normal blood pressure (BP). One RGS2 (-391, C>G) genetic variation markedly changes its mRNA expression levels. This study explored the relationship between this genetic variation and the responses to antihypertensive drugs in Chinese patients with essential hypertension. METHODS Genetic variations of RGS2 were successfully identified in 367 specimens using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays. All patients were treated with conventional doses of antihypertensives after a 2-week run-in period and followed-up according to our protocol. A general linear model multivariate analysis of variance (ANOVA) was used for the data analysis. RESULTS A significant difference in the mean systolic BP change was observed between RGS2 (-391, C>G) CC/CG (n = 82) and GG (n = 38) genotype carriers (-13.6 vs. -19.9 mmHg, P = 0.043) who were treated with candesartan, irbesartan or imidapril at the end of 6 weeks. In addition, the patients' BP responses to α,β-adrenergic receptor blockers exhibited an age-specific association with the RGS2 (-391, C>G) genetic variation at the end of 4 weeks. CONCLUSION The RGS2 (-391, C>G) genetic polymorphism may serve as a biomarker to predict a patient's response to antihypertensive drug therapy, but future studies need to confirm this.
Collapse
Affiliation(s)
- Fazhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Zhitao Zhang
- Second uropoiesis surgical department in Han Dan Central Hospital, Handan, P.R.C
| | - Zhiying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Lan Fan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Dingilang Zhu
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R.C
| | - Jinping Gao
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R.C
| | - Yan Wang
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R.C
| | - Yuesheng Qian
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R.C
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R.C
- Institute of Clinical Pharmacology, Central South University, Changsha, P.R.C
- Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R.C
| |
Collapse
|
28
|
Short-term treatment with diminazene aceturate ameliorates the reduction in kidney ACE2 activity in rats with subtotal nephrectomy. PLoS One 2015; 10:e0118758. [PMID: 25786223 PMCID: PMC4364975 DOI: 10.1371/journal.pone.0118758] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/06/2015] [Indexed: 01/28/2023] Open
Abstract
Angiotensin converting enzyme (ACE) 2 is an important modulator of the renin angiotensin system (RAS) through its role to degrade angiotensin (Ang) II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE), which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx). Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day) for 2 weeks. STNx led to hypertension (P<0.01), kidney hypertrophy (P<0.001) and impaired kidney function (P<0.001) compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01), with reduced cortical and medullary ACE2 activity (P<0.05), and increased urinary ACE2 excretion (P<0.05) compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001), and negatively with creatinine clearance (P=0.04). In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01), increased cortical ACE2 mRNA (P<0.05) and increased cortical and medullary ACE2 activity (P<0.05). The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.
Collapse
|
29
|
Zimmerman DL, Zimpelmann J, Xiao F, Gutsol A, Touyz R, Burns KD. The effect of angiotensin-(1-7) in mouse unilateral ureteral obstruction. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:729-40. [PMID: 25625676 DOI: 10.1016/j.ajpath.2014.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Angiotensin-(1-7) is a ligand for the Mas receptor and may protect against tissue injury associated with renin-angiotensin system activation. We determined the effects of endogenous or exogenous angiotensin-(1-7) in mice with unilateral ureteral obstruction (UUO). Mice with UUO were treated with or without the angiotensin-(1-7) antagonist A779 or with 6, 24, or 62 μg/kg per hour exogenous angiotensin-(1-7). After 10 days, kidneys were harvested for histology, immunoblots, and measurement of NADPH oxidase. Compared with controls, A779 treatment significantly increased fibronectin, transforming growth factor-β, and α-smooth muscle actin expression in obstructed kidneys and enhanced tubulointerstitial injury, apoptosis, and NADPH oxidase. Unexpectedly, administration of angiotensin-(1-7) to mice with UUO caused injury in obstructed kidneys compared with controls and increased macrophage infiltration. In obstructed kidneys from mice with gene deletion of Mas (Mas(-/-)), apoptosis and macrophage infiltration were increased compared with wild-type mice. Angiotensin-(1-7) (but not A779) further increased apoptosis and macrophage influx in obstructed kidneys from Mas(-/-) mice, compared with untreated Mas(-/-) mice. These data indicate that endogenous angiotensin-(1-7) protects against kidney injury in UUO. In mice with or without the Mas receptor, however, delivery of exogenous angiotensin-(1-7) worsens kidney damage. The results suggest dose-dependent effects of angiotensin-(1-7) in the kidney in UUO, with endogenous angiotensin-(1-7) promoting repair pathways via interaction with Mas and higher amounts exacerbating injury.
Collapse
Affiliation(s)
- Danielle L Zimmerman
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph Zimpelmann
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Fengxia Xiao
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Rhian Touyz
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
30
|
Bertoncello N, Moreira RP, Arita DY, Aragão DS, Watanabe IKM, Dantas PS, Santos R, Mattar-Rosa R, Yokota R, Cunha TS, Casarini DE. Diabetic Nephropathy Induced by Increased Ace Gene Dosage Is Associated with High Renal Levels of Angiotensin (1-7) and Bradykinin. J Diabetes Res 2015; 2015:674047. [PMID: 26442284 PMCID: PMC4579315 DOI: 10.1155/2015/674047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/09/2014] [Indexed: 01/15/2023] Open
Abstract
Population studies have shown an association between diabetic nephropathy (DN) and insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene (ACE in humans, Ace in mice). The aim was to evaluate the modulation of Ace copies number and diabetes mellitus (DM) on renal RAS and correlate it with indicators of kidney function. Increased number of copies of the Ace gene, associated with DM, induces renal dysfunction. The susceptibility to the development of DN in 3 copies of animals is associated with an imbalance in activity of RAS enzymes leading to increased synthesis of Ang II and Ang-(1-7). Increased concentration of renal Ang-(1-7) appears to potentiate the deleterious effects triggered by Ang II on kidney structure and function. Results also show increased bradykinin concentration in 3 copies diabetic group. Taken together, results indicate that the deleterious effects described in 3 copies diabetic group are, at least in part, due to a combination of factors not usually described in the literature. Thus, the data presented here show up innovative and contribute to understanding the complex mechanisms involved in the development of DN, in order to optimize the treatment of patients with this complication.
Collapse
Affiliation(s)
- Nádia Bertoncello
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Danielle Yuri Arita
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Danielle S. Aragão
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Ingrid Kazue Mizuno Watanabe
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Patricia S. Dantas
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Ralmony Santos
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Rodolfo Mattar-Rosa
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Rodrigo Yokota
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Department, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, Rua Botucatu 740, Vila Clementino, 04023-900 São Paulo, SP, Brazil
- *Dulce Elena Casarini:
| |
Collapse
|
31
|
Velez JCQ, Janech MG, Hicks MP, Morinelli TA, Rodgers J, Self SE, Arthur JM, Fitzgibbon WR. Lack of renoprotective effect of chronic intravenous angiotensin-(1-7) or angiotensin-(2-10) in a rat model of focal segmental glomerulosclerosis. PLoS One 2014; 9:e110083. [PMID: 25337950 PMCID: PMC4206519 DOI: 10.1371/journal.pone.0110083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Unopposed angiotensin (Ang) II-mediated cellular effects may lead to progressive glomerulosclerosis. While Ang-II can be locally generated in the kidneys, we previously showed that glomerular podocytes primarily convert Ang-I, the precursor of Ang-II, to Ang-(1-7) and Ang-(2-10), peptides that have been independently implicated in biological actions opposing those of Ang-II. Therefore, we hypothesized that Ang-(1-7) and Ang-(2-10) could be renoprotective in the fawn-hooded hypertensive rat, a model of focal segmental glomerulosclerosis. We evaluated the ability of 8-12 week-long intravenous administration of either Ang-(1-7) or Ang-(2-10) (100-400 ng/kg/min) to reduce glomerular injury in uni-nephrectomized fawn-hooded hypertensive rats, early or late in the disease. Vehicle-treated rats developed hypertension and lesions of focal segmental glomerulosclerosis. No reduction in glomerular damage was observed, as measured by either 24-hour urinary protein excretion or histological examination of glomerulosclerosis, upon Ang-(1-7) or Ang-(2-10) administration, regardless of peptide dose or disease stage. On the contrary, when given at 400 ng/kg/min, both peptides induced a further increase in systolic blood pressure. Content of Ang peptides was measured by parallel reaction monitoring in kidneys harvested at sacrifice. Exogenous administration of Ang-(1-7) and Ang-(2-10) did not lead to a significant increase in their corresponding intrarenal levels. However, the relative abundance of Ang-(1-7) with respect to Ang-II was increased in kidney homogenates of Ang-(1-7)-treated rats. We conclude that chronic intravenous administration of Ang-(1-7) or Ang-(2-10) does not ameliorate glomerular damage in a rat model of focal segmental glomerulosclerosis and may induce a further rise in blood pressure, potentially aggravating glomerular injury.
Collapse
Affiliation(s)
- Juan Carlos Q. Velez
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| | - Michael G. Janech
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Megan P. Hicks
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thomas A. Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jessalyn Rodgers
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sally E. Self
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John M. Arthur
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Wayne R. Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
32
|
Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2014; 169:477-92. [PMID: 23488800 DOI: 10.1111/bph.12159] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
Recent advances have improved our understanding of the renin-angiotensin system (RAS). These have included the recognition that angiotensin (Ang)-(1-7) is a biologically active product of the RAS cascade. The identification of the ACE homologue ACE2, which forms Ang-(1-7) from Ang II, and the GPCR Mas as an Ang-(1-7) receptor have provided the necessary biochemical and molecular background and tools to study the biological significance of Ang-(1-7). Most available evidence supports a counter-regulatory role for Ang-(1-7) by opposing many actions of Ang II on AT₁ receptors, especially vasoconstriction and proliferation. Many studies have now shown that Ang-(1-7) by acting via Mas receptor exerts inhibitory effects on inflammation and on vascular and cellular growth mechanisms. Ang-(1-7) has also been shown to reduce key signalling pathways and molecules thought to be relevant for fibrogenesis. Here, we review recent findings related to the function of the ACE2/Ang-(1-7)/Mas axis and focus on the role of this axis in modifying processes associated with acute and chronic inflammation, including leukocyte influx, fibrogenesis and proliferation of certain cell types. More attention will be given to the involvement of the ACE2/Ang-(1-7)/Mas axis in the context of renal disease because of the known relevance of the RAS for the function of this organ and for the regulation of kidney inflammation and fibrosis. Taken together, this knowledge may help in paving the way for the development of novel treatments for chronic inflammatory and renal diseases.
Collapse
Affiliation(s)
- A C Simões e Silva
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
33
|
Shenoy V, Kwon KC, Rathinasabapathy A, Lin S, Jin G, Song C, Shil P, Nair A, Qi Y, Li Q, Francis J, Katovich MJ, Daniell H, Raizada MK. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 2014; 64:1248-59. [PMID: 25225206 DOI: 10.1161/hypertensionaha.114.03871] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin-angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics.
Collapse
Affiliation(s)
- Vinayak Shenoy
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Kwang-Chul Kwon
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Anandharajan Rathinasabapathy
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Shina Lin
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Guiying Jin
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Chunjuan Song
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Pollob Shil
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Anand Nair
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Yanfei Qi
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Qiuhong Li
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Joseph Francis
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Michael J Katovich
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.)
| | - Henry Daniell
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.).
| | - Mohan K Raizada
- Departments of Pharmacodynamics (V.S., A.R., M.J.K.), Physiology and Functional Genomics (C.S., Y.Q., M.K.R.), and Ophthalmology (P.S., Q.L.), University of Florida, Gainesville; Departments of Biochemistry and Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia (K.-C.K., S.L., G.J., H.D.); and Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge (A.N., J.F.).
| |
Collapse
|
34
|
Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal 2014; 26:2147-60. [PMID: 25007996 DOI: 10.1016/j.cellsig.2014.06.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022]
Abstract
Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia.
| | - Gowraganahalli Jagadeesh
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
35
|
Patel SK, Velkoska E, Freeman M, Wai B, Lancefield TF, Burrell LM. From gene to protein-experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Front Physiol 2014; 5:227. [PMID: 25009501 PMCID: PMC4067757 DOI: 10.3389/fphys.2014.00227] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a major risk factor for stroke, coronary events, heart and renal failure, and the renin-angiotensin system (RAS) plays a major role in its pathogenesis. Within the RAS, angiotensin converting enzyme (ACE) converts angiotensin (Ang) I into the vasoconstrictor Ang II. An “alternate” arm of the RAS now exists in which ACE2 counterbalances the effects of the classic RAS through degradation of Ang II, and generation of the vasodilator Ang 1-7. ACE2 is highly expressed in the heart, blood vessels, and kidney. The catalytically active ectodomain of ACE2 undergoes shedding, resulting in ACE2 in the circulation. The ACE2 gene maps to a quantitative trait locus on the X chromosome in three strains of genetically hypertensive rats, suggesting that ACE2 may be a candidate gene for hypertension. It is hypothesized that disruption of tissue ACE/ACE2 balance results in changes in blood pressure, with increased ACE2 expression protecting against increased blood pressure, and ACE2 deficiency contributing to hypertension. Experimental hypertension studies have measured ACE2 in either the heart or kidney and/or plasma, and have reported that deletion or inhibition of ACE2 leads to hypertension, whilst enhancing ACE2 protects against the development of hypertension, hence increasing ACE2 may be a therapeutic option for the management of high blood pressure in man. There have been relatively few studies of ACE2, either at the gene or the circulating level in patients with hypertension. Plasma ACE2 activity is low in healthy subjects, but elevated in patients with cardiovascular risk factors or cardiovascular disease. Genetic studies have investigated ACE2 gene polymorphisms with either hypertension or blood pressure, and have produced largely inconsistent findings. This review discusses the evidence regarding ACE2 in experimental hypertension models and the association between circulating ACE2 activity and ACE2 polymorphisms with blood pressure and arterial hypertension in man.
Collapse
Affiliation(s)
- Sheila K Patel
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Elena Velkoska
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Melanie Freeman
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Bryan Wai
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia ; Department of Cardiology, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Terase F Lancefield
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia ; Department of Cardiology, Austin Health, University of Melbourne Heidelberg, VIC, Australia ; Department of Cardiology, The Northern Hospital, University of Melbourne Epping, VIC, Australia
| |
Collapse
|
36
|
The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle. Clin Sci (Lond) 2014; 127:251-64. [PMID: 24588264 DOI: 10.1042/cs20130585] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AngII (angiotensin II) induces pathological conditions such as fibrosis in skeletal muscle. In this process, AngII increases ROS (reactive oxygen species) and induces a biphasic phosphorylation of p38 MAPK (mitogen-activated protein kinase). In addition, AngII stimulates the expression and production of TGF (transforming growth factor)-β1 via a mechanism dependent on ROS production mediated by NADPH oxidase (NOX) and p38 MAPK activation. In the present study, we investigated whether Ang-(1-7) [angiotensin-(1-7)], through the Mas-1 receptor, can counteract the signalling induced by AngII in mouse skeletal muscle and cause a decrease in the expression and further activity of TGF-β1 in skeletal muscle cells. Our results show that Ang-(1-7) decreased the expression of TGF-β1 induced by AngII in a dose-dependent manner. In addition, we observed that Ang-(1-7) prevented the increase in TGF-β1 expression induced by AngII, ROS production dependent on NOX and the early phase of p38 MAPK phosphorylation. Interestingly, Ang-(1-7) also prevented the late phase of p38 MAPK phosphorylation, Smad-2 phosphorylation and Smad-4 nuclear translocation, an increase in transcriptional activity, as determined using the p3TP-lux reporter, and fibronectin levels, all of which are dependent on the TGF-β1 levels induced by AngII. We also demonstrated that Ang-(1-7) prevented the increase in TGF-β1, fibronectin and collagen content in the diaphragm of mice infused with AngII. All of these effects were reversed by the administration of A779, indicating the participation of Mas-1. In conclusion, our findings support the hypothesis that Ang-(1-7) decreases the expression and further biological activity of TGF-β1 induced by AngII in vitro and in vivo.
Collapse
|
37
|
Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K, Zhang C. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol 2014; 11:413-26. [PMID: 24776703 PMCID: PMC7097196 DOI: 10.1038/nrcardio.2014.59] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme (ACE) 2 and its product angiotensin 1–7 are thought to have effects that counteract the adverse actions of other, better-known renin–angiotensin system (RAS) components Numerous experimental studies have suggested that ACE2 and angiotensin 1–7 have notable protective effects in the heart and blood vessels ACE2-mediated catabolism of angiotensin II is likely to have a major role in cardiovascular protection, whereas the functional importance and signalling mechanisms of angiotensin-1–7-induced actions remain unclear New pharmacological interventions targeting ACE2 are expected to be useful in clinical treatment of cardiovascular disease, especially those associated with overactivation of the conventional RAS More studies, especially randomized controlled clinical trials, are needed to clearly delineate the benefits of therapies targeting angiotensin 1–7 actions
Angiotensin-converting enzyme 2, and its product angiotensin 1–7, are thought to have counteracting effects against the adverse actions of the better-known members of the renin–angiotensin system and might, therefore, be useful therapeutic targets in patients with cardiovascular disease. Professor Jiang and colleagues review the evidence for the potential roles of these proteins in various cardiovascular conditions, including hypertension, atherosclerosis, myocardial remodelling, heart failure, ischaemic stroke, and diabetes. The renin–angiotensin system (RAS) has pivotal roles in the regulation of normal physiology and the pathogenesis of cardiovascular disease. Angiotensin-converting enzyme (ACE) 2, and its product angiotensin 1–7, are thought to have counteracting effects against the adverse actions of other, better known and understood, members of the RAS. The physiological and pathological importance of ACE2 and angiotensin 1–7 in the cardiovascular system are not completely understood, but numerous experimental studies have indicated that these components have protective effects in the heart and blood vessels. Here, we provide an overview on the basic properties of ACE2 and angiotensin 1–7 and a summary of the evidence from experimental and clinical studies of various pathological conditions, such as hypertension, atherosclerosis, myocardial remodelling, heart failure, ischaemic stroke, and diabetes mellitus. ACE2-mediated catabolism of angiotensin II is likely to have a major role in cardiovascular protection, whereas the relevant functions and signalling mechanisms of actions induced by angiotensin 1–7 have not been conclusively determined. The ACE2–angiotensin 1–7 pathway, however, might provide a useful therapeutic target for the treatment of cardiovascular disease, especially in patients with overactive RAS.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Jianmin Yang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Yongtao Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Mei Dong
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Shuangxi Wang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Fang Fang Liu
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Kai Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| |
Collapse
|
38
|
Affiliation(s)
- Robson Augusto Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31270-910, Brazil.
| |
Collapse
|
39
|
Ng HY, Yisireyili M, Saito S, Lee CT, Adelibieke Y, Nishijima F, Niwa T. Indoxyl sulfate downregulates expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. PLoS One 2014; 9:e91517. [PMID: 24614509 PMCID: PMC3948887 DOI: 10.1371/journal.pone.0091517] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/10/2014] [Indexed: 01/09/2023] Open
Abstract
Renin-angiotensin system (RAS) plays a pivotal role in chronic kidney disease (CKD). Angiotensin converting enzyme-related carboxypeptidase 2 (ACE2)/angiotensin (Ang)-(1–7)/Mas receptor axis counteracts the deleterious actions of Ang II. ACE2 exerts its actions by cleaving Ang II into Ang-(1–7) which activates Mas receptor. This study aimed to determine if the expression of Mas receptor is altered in the kidneys of CKD rats, and if indoxyl sulfate (IS), a uremic toxin, affects the expression of Mas receptor in rat kidneys and cultured human proximal tubular cells (HK-2 cells). The expression of Mas receptor was examined in the kidneys of CKD and AST-120-treated CKD rats using immunohistochemistry. Further, the effects of IS on Mas receptor expression in the kidneys of normotensive and hypertensive rats were examined. The effects of IS on the expression of Mas receptor and phosphorylation of endothelial nitric oxide synthase (eNOS) in HK-2 cells were examined using immunoblotting. CKD rats showed reduced renal expression of Mas receptor, while AST-120 restored its expression. Administration of IS downregulated Mas receptor expression in the kidneys of normotensive and hypertensive rats. IS downregulated Mas receptor expression in HK-2 cells in a time- and dose-dependent manner. Knockdown of organic anion transporter 3 (OAT3), aryl hydrocarbon receptor (AhR), and signal transducer and activator of transcription 3 (Stat3) inhibited IS-induced downregulation of Mas receptor and phosphorylated eNOS. N-acetylcysteine, an antioxidant, also inhibited IS-induced downregulation of Mas receptor and phosphorylated eNOS. Ang-(1–7) attenuated IS-induced transforming growth factor-β1 (TGF-β1) expression. Conclusion Mas receptor expression is reduced in the kidneys of CKD rats. IS downregulates renal expression of Mas receptor via OAT3/AhR/Stat3 pathway in proximal tubular cells. IS-induced downregulation of Mas receptor might be involved in upregulation of TGF-β1 in proximal tubular cells.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Angiotensins/pharmacology
- Animals
- Down-Regulation/drug effects
- Humans
- Immunohistochemistry
- Indican/administration & dosage
- Indican/pharmacology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Models, Biological
- Nitric Oxide Synthase Type III/metabolism
- Organic Anion Transporters, Sodium-Independent/metabolism
- Phosphorylation/drug effects
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- RNA, Small Interfering/metabolism
- Rats, Inbred Dahl
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Renal Insufficiency, Chronic/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Maimaiti Yisireyili
- Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Saito
- Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yelixiati Adelibieke
- Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Toshimitsu Niwa
- Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
40
|
Varagic J, Ahmad S, Nagata S, Ferrario CM. ACE2: angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep 2014; 16:420. [PMID: 24510672 PMCID: PMC4286874 DOI: 10.1007/s11906-014-0420-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our current recognition of the renin-angiotensin system is more convoluted than originally thought due to the discovery of multiple novel enzymes, peptides, and receptors inherent in this interactive biochemical cascade. Over the last decade, angiotensin-converting enzyme 2 (ACE2) has emerged as a key player in the pathophysiology of hypertension and cardiovascular and renal disease due to its pivotal role in metabolizing vasoconstrictive/hypertrophic/proliferative angiotensin II into favorable angiotensin-(1-7). This review addresses the considerable advancement in research on the role of tissue ACE2 in the development and progression of hypertension and cardiac and renal injury. We summarize the results from recent clinical and experimental studies suggesting that serum or urine soluble ACE2 may serve as a novel biomarker or independent risk factor relevant for diagnosis and prognosis of cardiorenal disease. We also review recent proceedings on novel therapeutic approaches to enhance ACE2/angiotensin-(1-7) axis.
Collapse
Affiliation(s)
- Jasmina Varagic
- Hypertension & Vascular Research Center, Division of Surgical Sciences, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA,
| | | | | | | |
Collapse
|
41
|
Bi J, Contag SA, Carey LC, Tang L, Valego NK, Chappell MC, Rose JC. Antenatal betamethasone exposure alters renal responses to angiotensin-(1-7) in uninephrectomized adult male sheep. J Renin Angiotensin Aldosterone Syst 2013; 14:290-8. [PMID: 23161144 PMCID: PMC4020597 DOI: 10.1177/1470320312465217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Antenatal corticosteroid exposure reduces renal function and alters the intrarenal renin-angiotensin system to favor angiotensin activation of angiotensin type 1 receptor (AT1R) mediated responses in ovine offspring. This study aimed to assess whether antenatal steroid exposure would affect renal responses to the direct intrarenal infusion of angiotensin-(1-7) in rams and the angiotensin receptors involved in mediating responses to the peptide. Adult, uninephrectomized rams exposed to either betamethasone or vehicle before birth received intrarenal angiotensin-(1-7) infusions (1 ng/kg/min) alone or in combination with antagonists to angiotensin receptors for 3 h. Basal sodium excretion (UNa) was significantly lower and mean arterial pressure was significantly higher in betamethasone- compared to the vehicle-treated sheep. Angiotensin-(1-7) decreased UNa more in betamethasone- than in vehicle-treated sheep. Candesartan reversed the response to angiotensin-(1-7) but D-Ala(7)-angiotensin-(1-7) did not. Angiotensin-(1-7) infusion decreased effective renal plasma flow in both groups to a similar extent and the response was reversed by candesartan, but was not blocked by D-Ala(7)-angiotensin-(1-7). Glomerular filtration rate increased significantly in both groups after 3 h infusion of angiotensin-(1-7) plus candesartan. These results suggest that antenatal exposure to a clinically relevant dose of betamethasone impairs renal function in rams. Moreover, angiotensin-(1-7) appears capable of activating the AT1R in uninephrectomized rams.
Collapse
Affiliation(s)
- Jianli Bi
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
- The Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
| | - Stephen A. Contag
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
| | - Luke C. Carey
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
- The Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
| | - Lijun Tang
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
- The Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
| | - Nancy K. Valego
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
- The Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
| | - Mark C. Chappell
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
| | - James C. Rose
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
- The Center of Research for Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157
| |
Collapse
|
42
|
Abstract
SIGNIFICANCE The renin-angiotensin system (RAS) plays an important role in the normal control of cardiovascular and renal function in the healthy state and is a contributing factor in the development and progression of various types of cardiovascular diseases (CVD), including hypertension, diabetes, and heart failure. RECENT ADVANCES Evidence suggests that a balance between activation of the ACE/Ang II/AT1 receptor axis and the ACE2/Ang-(1-7)/Mas receptor axis is important for the function of the heart, kidney, and autonomic nervous system control of the circulation in the normal healthy state. An imbalance in these opposing pathways toward the ACE/Ang II/AT1 receptor axis is associated with CVD. The key component of this imbalance with respect to neural control of the circulation is the negative interaction between oxidative and NO• mechanisms, which leads to enhanced sympathetic tone and activation in disease conditions such as hypertension and heart failure. CRITICAL ISSUES The key mechanisms that disrupt normal regulation of Ang II and Ang-(1-7) signaling and promote pathogenesis of CVD at all organ levels remain poorly understood. The reciprocal relation between ACE and ACE2 expression and function suggests they are controlled interdependently at pre- and post-translational levels. Insights from neural studies suggest that an interaction between oxidative and nitrosative pathways may be key. FUTURE DIRECTIONS The role of redox mechanisms in the control of expression and activity of RAS enzymes and Ang receptors may provide important insight into the function of local tissue RAS in health and disease.
Collapse
Affiliation(s)
- Kaushik P Patel
- 1 Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | | |
Collapse
|
43
|
Li P, Sun HJ, Cui BP, Zhou YB, Han Y. Response to Angiotensin-(1–7) and Kidney Disease: Friend or Foe. Hypertension 2013. [DOI: 10.1161/hypertensionaha.113.01782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peng Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bai-Ping Cui
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Affiliation(s)
- Elena Velkoska
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Sheila K. Patel
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Louise M. Burrell
- Department of Medicine, The University of Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Patel SK, Velkoska E, Burrell LM. Emerging markers in cardiovascular disease: Where does angiotensin-converting enzyme 2 fit in? Clin Exp Pharmacol Physiol 2013; 40:551-9. [DOI: 10.1111/1440-1681.12069] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/13/2013] [Accepted: 02/19/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Sheila K Patel
- Department of Medicine; University of Melbourne; Austin Health; Melbourne Victoria Australia
| | - Elena Velkoska
- Department of Medicine; University of Melbourne; Austin Health; Melbourne Victoria Australia
| | - Louise M Burrell
- Department of Medicine; University of Melbourne; Austin Health; Melbourne Victoria Australia
| |
Collapse
|
46
|
Silveira KD, Barroso LC, Vieira AT, Cisalpino D, Lima CX, Bader M, Arantes RME, dos Santos RAS, Simões-e-Silva AC, Teixeira MM. Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy. PLoS One 2013; 8:e66082. [PMID: 23762470 PMCID: PMC3676359 DOI: 10.1371/journal.pone.0066082] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
Angiotensin-(1–7) [Ang-(1–7)] is a biologically active heptapeptide that may counterbalance the physiological actions of angiotensin II (Ang II) within the renin-angiotensin system (RAS). Here, we evaluated whether activation of the Mas receptor with the oral agonist, AVE 0991, would have renoprotective effects in a model of adriamycin (ADR)-induced nephropathy. We also evaluated whether the Mas receptor contributed for the protective effects of treatment with AT1 receptor blockers. ADR (10 mg/kg) induced significant renal injury and dysfunction that was maximal at day 14 after injection. Treatment with the Mas receptor agonist AVE 0991 improved renal function parameters, reduced urinary protein loss and attenuated histological changes. Renoprotection was associated with reduction in urinary levels of TGF-β. Similar renoprotection was observed after treatment with the AT1 receptor antagonist, Losartan. AT1 and Mas receptor mRNA levels dropped after ADR administration and treatment with losartan reestablished the expression of Mas receptor and increased the expression of ACE2. ADR-induced nephropathy was similar in wild type (Mas+/+) and Mas knockout (Mas−/−) mice, suggesting there was no endogenous role for Mas receptor activation. However, treatment with Losartan was able to reduce renal injury only in Mas+/+, but not in Mas−/− mice. Therefore, these findings suggest that exogenous activation of the Mas receptor protects from ADR-induced nephropathy and contributes to the beneficial effects of AT1 receptor blockade. Medications which target specifically the ACE2/Ang-(1–7)/Mas axis may offer new therapeutic opportunities to treat human nephropathies.
Collapse
Affiliation(s)
- Kátia Daniela Silveira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia Corrêa Barroso
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angélica Thomáz Vieira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Cisalpino
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiano Xavier Lima
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Pediatria da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicin, Berlin Buch, Germany
| | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Cristina Simões-e-Silva
- Departamento de Pediatria da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (ACSS); (MMT)
| | - Mauro Martins Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Pediatria da Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (ACSS); (MMT)
| |
Collapse
|
47
|
Roberts MA, Velkoska E, Ierino FL, Burrell LM. Angiotensin-converting enzyme 2 activity in patients with chronic kidney disease. Nephrol Dial Transplant 2013; 28:2287-94. [PMID: 23535224 PMCID: PMC7537611 DOI: 10.1093/ndt/gft038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2) is a novel regulator of the renin–angiotensin system that counteracts the adverse effects of angiotensin II. In heart failure patients, elevated plasma ACE2 activity predicted adverse events and greater myocardial dysfunction. We aimed to describe plasma ACE2 activity and its clinical associations in patients with kidney disease. Methods Patients recruited from a single centre comprised of chronic kidney disease Stage III/IV (CKD), haemodialysis patients and kidney transplant recipients (KTRs). Plasma ACE2 enzyme activity was measured using a fluorescent substrate assay in plasma, collected at baseline and stored at −80°C. Linear regression was performed in both males and females separately to determine the covariates associated with log-transformed ACE2. Results The median (interquartile range) plasma ACE2 activity in pmol/mL/min was 15.9 (8.4–26.1) in CKD (n = 59), 9.2 (3.9–18.2) in haemodialysis (n = 100) and 13.1 (5.7–21.9) in KTR (n = 80; P < 0.01). In male haemodialysis patients, ACE2 activity was 12.1 (6.8–19.6) compared with 4.4 (2.5–10.3) in females (P < 0.01). Log-transformed ACE2 plasma activity was associated with post-haemodialysis systolic blood pressure in females [β-coefficient 0.04, 95% confidence interval (95% CI) 0.01–0.06, P = 0.006]. In males, log-transformed ACE2 plasma activity was associated with B-type natriuretic peptide (β-coefficient 0.39, 95% CI 0.19–0.60, P < 0.001). Plasma ACE2 activity was not associated with mortality. Conclusions Plasma ACE2 activity is reduced in haemodialysis patients compared with CKD patients, and in female haemodialysis patients compared with male. The different associations of plasma ACE2 activity between male and female haemodialysis patients indicate that the role of ACE2 in cardiovascular disease may differ by gender.
Collapse
Affiliation(s)
- Matthew A. Roberts
- Department of Nephrology, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Correspondence and offprint requests to: Matthew A. Roberts; E-mail:
| | - Elena Velkoska
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Francesco L. Ierino
- Department of Nephrology, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Louise M. Burrell
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Cardiology, Austin Health, Melbourne, Australia
| |
Collapse
|
48
|
Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol 2013; 216:R1-R17. [PMID: 23092879 DOI: 10.1530/joe-12-0341] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). Ang-(1-7) appears to play a central role in the RAS because it exerts a vast array of actions, many of them opposite to those attributed to the main effector peptide of the RAS, Ang II. The discovery of the Ang-converting enzyme (ACE) homolog ACE2 brought to light an important metabolic pathway responsible for Ang-(1-7) synthesis. This enzyme can form Ang-(1-7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation by ACE. In addition, it is now well established that the G protein-coupled receptor Mas is a functional binding site for Ang-(1-7). Thus, the axis formed by ACE2/Ang-(1-7)/Mas appears to represent an endogenous counterregulatory pathway within the RAS, the actions of which are in opposition to the vasoconstrictor/proliferative arm of the RAS consisting of ACE, Ang II, and AT(1) receptor. In this brief review, we will discuss recent findings related to the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and renal systems, as well as in metabolism. In addition, we will highlight the potential interactions of Ang-(1-7) and Mas with AT(1) and AT(2) receptors.
Collapse
Affiliation(s)
- Robson A S Santos
- Departments of Physiology and Biophysics Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
49
|
Combination renin-angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: implications for future therapeutic directions. Clin Sci (Lond) 2012; 123:649-58. [PMID: 22715807 DOI: 10.1042/cs20120162] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The RAS (renin-angiotensin system) is activated after MI (myocardial infarction), and RAS blockade with ACEis [ACE (angiotensin-converting enzyme) inhibitors] or ARBs (angiotensin receptor blockers) slows but does not completely prevent progression to heart failure. Cardiac ACE is increased after MI and leads to the formation of the vasoconstrictor AngII (angiotensin II). The enzyme ACE2 is also activated after MI and degrades AngII to generate the vasodilator Ang-(1-7) [angiotensin-(1-7)]. Overexpression of ACE2 offers cardioprotective effects in experimental MI, but there is conflicting evidence as to whether the benefits of ACEis and ARBs are mediated through increasing ACE2 after MI. In the present study, we assessed the effect of an ACEi and ARB, alone and in combination, on cardiac ACE2 in a rat MI model. MI rats received vehicle, ACEi (ramipril; 1 mg/kg of body weight), ARB (valsartan; 10 mg/kg of body weight) or combination (ramipril at 1 mg/kg of body weight and valsartan at 10 mg/kg of body weight) orally for 28 days. Sham-operated rats were also studied and received vehicle alone. MI increased LV (left ventricular) mass (P<0.0001), impaired cardiac contractility (P<0.05) and activated cardiac ACE2 with increased gene (P<0.05) and protein expression (viable myocardium, P<0.05; border zone, P<0.001; infarct, P<0.05). Ramipril and valsartan improved remodelling (P<0.05), with no additional effect of dual therapy. Although ramipril inhibited ACE, and valsartan blocked the angiotensin receptor, neither treatment alone nor in combination augmented cardiac ACE2 expression. These results suggest that the cardioprotective effects of ramipril and valsartan are not mediated through up-regulation of cardiac ACE2. Strategies that do augment ACE2 after MI may be a useful addition to standard RAS blockade after MI.
Collapse
|
50
|
The renin-angiotensin-aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol 2012; 27:1835-45. [PMID: 21947887 DOI: 10.1007/s00467-011-2002-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 12/16/2022]
Abstract
Over the past two decades, considerable advances have been made in our understanding of the renin-angiotensin-aldosterone system (RAAS) and its roles in various disease states. In this review, we will discuss the current state of knowledge of the many components of the RAAS, including new data on prorenin and its receptors, and important angiotensin fragments. The roles of these components of the RAAS in the pathogenesis of primary hypertension and the progression of chronic kidney disease (CKD) will also be highlighted. Given the new understanding of the many components and roles of the RAAS, it may be possible to develop improved therapies for hypertension and CKD.
Collapse
|