1
|
Khallaf WAI, Taha AEAH, Ahmed AS, Hassan MIA, Abo-Youssef AM, Hemeida RAM. Sildenafil abrogates radiation-induced hepatotoxicity in animal model: The impact of NF-κB-p65, P53, Nrf2, and SIRT 1 pathway. Food Chem Toxicol 2025; 200:115373. [PMID: 40086583 DOI: 10.1016/j.fct.2025.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Ionizing radiation has both beneficial and harmful effects on human health, prompting researchers to find ways to protect organs from its adverse impacts. Sildenafil (SIL) has gained attention in protective medicine due to its antioxidant, anti-inflammatory, and anti-apoptotic properties. AIM This study aimed to investigate SIL's protective mechanisms against radiation-induced liver damage. METHOD Forty adult male Wistar rats were divided into: control group, SIL group (2.5 mg/kg,p.o), irradiation group (rats were exposed to single shot at a dose of 10 Gy to induce liver damage), and SIL + irradiation group. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated. Liver samples were used to evaluate oxidative stress indicators, reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide(NO), Hepatic antioxidant nuclear factor erythroid 2-related factor 2(Nrf2), and apoptoticp53 upregulated modulator of apoptosis(P53) gene expression were determined by Western blot analysis. Immunohistochemical analysis for hepatic nuclear factor-kappa B (NF-κB) and silent information regulator-1(SIRT1) were performed along with histopathological examination. RESULTS SIL effectively diminished inflammation by reducing p-NF-κB-p65 and increasing Nrf2 and SIRT 1 expression. Additionally, SIL restrained apoptosis by reducing P53 protein expressions. Moreover, SIL significantly improved radiation-induced histopathological changes. SIGNIFICANCE SIL preventing hepatotoxicity associated with radiation exposure.
Collapse
Affiliation(s)
- Waleed A I Khallaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Abd Elmoneim A H Taha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed S Ahmed
- Radiation Therapy and Nuclear Medicine Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mohamed I A Hassan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| |
Collapse
|
2
|
Huang Y, Huang S, Li Q, Zhang H, Xiao W, Chen Y. miR-338-3p Targets SIRT6 to Inhibit Liver Cancer Malignancy and Paclitaxel Resistance. Drug Dev Res 2025; 86:e70089. [PMID: 40258128 DOI: 10.1002/ddr.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
For patients with liver cancer, a widespread and lethal tumor on a global scale, chemotherapy and immunotherapy are often the top choices. Paclitaxel, a widely administered chemotherapy drug, faces the dual issues of poor tumor response rates and the rapid onset of chemoresistance. This study delves into the functions of SIRT6 and miR-338-3p in malignancy and paclitaxel resistance of liver cancer cells. Bioinformatics and qRT-PCR were engaged to predict and examine expression profiles of SIRT6 and miR-338-3p in liver cancer tissues and cell lines. A paclitaxel-resistant cell line (MHCC97-PTX) was established for dissecting cellular responses to drug treatment. CCK-8 and colony formation tests measured cell vitality and proliferation, respectively. Flow cytometry assessed apoptotic cell death, and the paclitaxel IC50 values were derived for each group. We utilized online tools to predict miR-338-3p as an upstream regulator of SIRT6, and a dual-luciferase reporter assay verified their direct interaction. SIRT6 is abundantly expressed in liver cancer tissues and cells. SIRT6 knockdown decreased cell vitality and proliferation while promoting apoptosis and paclitaxel sensitivity. miR-338-3p, an upstream regulator of SIRT6 in liver cancer cells, binds to SIRT6 and downregulates its expression, modulating cell malignancy and drug resistance. The duo of miR-338-3p and SIRT6 can drive the aggressiveness and chemoresistance of liver cancer, emerging as hopeful candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yiyuan Huang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Sunhui Huang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Quan Li
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Hongchang Zhang
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Xiao
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yunhui Chen
- Department of Hepatobiliary Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
3
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
5
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Jiang T, Qin T, Gao P, Tao Z, Wang X, Wu M, Gu J, Chu B, Zheng Z, Yi J, Xu T, Huang Y, Liu H, Zhao S, Ren Y, Chen J, Yin G. SIRT1 attenuates blood-spinal cord barrier disruption after spinal cord injury by deacetylating p66Shc. Redox Biol 2023; 60:102615. [PMID: 36716673 PMCID: PMC9900454 DOI: 10.1016/j.redox.2023.102615] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Disruption of the blood-spinal cord barrier (BSCB) leads to inflammatory cell infiltration and neural cell death, thus, contributing to poor functional recovery after spinal cord injury (SCI). Previous studies have suggested that Sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, is abundantly expressed in endothelial cells and promotes endothelial homeostasis. However, the role of SIRT1 in BSCB function after SCI remains poorly defined. Here, we report that SIRT1 is highly expressed in spinal cord endothelial cells, and its expression significantly decreases after SCI. Using endothelial cell-specific SIRT1 knockout mice, we observed that endothelial cell-specific knockout of SIRT1 aggravated BSCB disruption, thus, resulting in widespread inflammation, neural cell death and poor functional recovery after SCI. In contrast, activation of SIRT1 by the agonist SRT1720 had beneficial effects. In vitro, knockdown of SIRT1 exacerbated IL-1β-induced endothelial barrier disruption in bEnd.3 cells, whereas overexpression of SIRT1 was protective. Using RNA-seq and IP/MS analysis, we identified p66Shc, a redox protein, as the potential target of SIRT1. Further studies demonstrated that SIRT1 interacts with and deacetylates p66Shc, thereby attenuating oxidative stress and protecting endothelial barrier function. Overall, our results indicate that SIRT1 decreases endothelial ROS production and attenuates BSCB disruption by deacetylating p66Shc after SCI, and suggest that SIRT1 activation has potential as a therapeutic approach to promote functional recovery against BSCB disruption following SCI.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhiwen Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jun Gu
- Department of Orthopedics, Xishan People's Hospital, Wuxi, 214000, Jiangsu, China
| | - Bo Chu
- Department of Orthopedics, Xishan People's Hospital, Wuxi, 214000, Jiangsu, China
| | - Ziyang Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yongxin Ren
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
8
|
Wen S, Xu M, Zhang W, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Cadmium induces mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress in neuronal cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:743-753. [PMID: 36527706 DOI: 10.1002/tox.23724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Cadmium is a widespread environmental contaminant and its neurotoxicity has raised serious concerns. Mitochondrial dysfunction is a key event in Cd-induced nervous system disease; however, the exact molecular mechanism involved has not been fully elucidated. Increasing evidences have shown that Sirtuin 1 (SIRT1) is the key target protein impaired in Cd-induced mitochondrial dysfunction. In this study, the role of SIRT1 in Cd-induced mitochondrial dysfunction and cell death and the underlying mechanisms were evaluated in vitro using PC12 cells and primary rat cerebral cortical neurons. The results showed that Cd exposure caused cell death by inhibiting SIRT1 expression, thus inducing oxidative stress and mitochondrial dysfunction in vitro. However, inhibition of oxidative stress by the antioxidant puerarin alleviated Cd-induced mitochondrial dysfunction. Furthermore, activation of SIRT1 using the agonist Srt1720 significantly abolished Cd-induced oxidative stress and mitochondrial dysfunction and ultimately alleviated Cd-induced neuronal cell death. Collectively, our data indicate that Cd induced mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress, leading to the death of PC12 cells and primary rat cerebral cortical neurons. These findings suggest a novel mechanism for Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
9
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
10
|
Myostatin Knockout Affects Mitochondrial Function by Inhibiting the AMPK/SIRT1/PGC1α Pathway in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232213703. [PMID: 36430183 PMCID: PMC9694677 DOI: 10.3390/ijms232213703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Myostatin (Mstn) is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes. The deletion of the Mstn gene in mice leads to reduced mitochondrial functions. However, the underlying regulatory mechanisms remain unclear. In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection. Mstn-KO mice exhibited significantly larger skeletal muscles. Meanwhile, Mstn knockout regulated the organ weights of mice. Moreover, we found that Mstn knockout reduced the basal metabolic rate, muscle adenosine triphosphate (ATP) synthesis, activities of mitochondrial respiration chain complexes, tricarboxylic acid cycle (TCA) cycle, and thermogenesis. Mechanistically, expressions of silent information regulator 1 (SIRT1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were down-regulated, while peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) acetylation modification increased in the Mstn-KO mice. Skeletal muscle cells from Mstn-KO and WT were treated with AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR), and the AMPK inhibitor Compound C, respectively. Compared with the wild-type (WT) group, Compound C treatment further down-regulated the expression or activity of pAMPK, SIRT1, citrate synthase (CS), isocitrate dehydrogenase (ICDHm), and α-ketoglutarate acid dehydrogenase (α-KGDH) in Mstn-KO mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn knockout affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway. The present study reveals a new mechanism for Mstn knockout in regulating energy homeostasis.
Collapse
|
11
|
Activation of SIRT1 promotes membrane resealing via cortactin. Sci Rep 2022; 12:15328. [PMID: 36097021 PMCID: PMC9468153 DOI: 10.1038/s41598-022-19136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.
Collapse
|
12
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
13
|
Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, Jafari A, Mirzaei H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 2022; 59:5084-5102. [PMID: 35666404 DOI: 10.1007/s12035-022-02907-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyedvahid Seyedmoalemi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Li C, Jiang S, Wang H, Wang Y, Han Y, Jiang J. Berberine exerts protective effects on cardiac senescence by regulating the Klotho/SIRT1 signaling pathway. Biomed Pharmacother 2022; 151:113097. [PMID: 35609366 DOI: 10.1016/j.biopha.2022.113097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/15/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, exerts protective effects on various cardiac injuries, and also extends the lifespan of individuals. However, the cardioprotective effect of BBR on cardiac senescence remains unknown. This study investigated the effects of BBR on cardiac senescence and its underlying mechanism. Senescent H9c2 cells induced by doxorubicin (DOX) and naturally aged rats were used to evaluate the protective effects of BBR on cardiac senescence. The results showed that BBR protected H9c2 cells against DOX-induced senescence. Exogenous Klotho (KL) exerts similar effects to those of BBR. BBR significantly increased in protein expression of KL, while transfection with KL-specific siRNA (siKL) inhibited the protective effect of BBR against senescence. Both BBR and exogenous KL decreased the levels of reactive oxygen species, inhibited apoptosis, and alleviated mitochondrial dysfunction in these cells; and transfection with siKL attenuated these effects of BBR. In naturally aged rats, BBR indeed protected the animals from cardiac aging, at least partially, through lowering the levels of cardiac hypertrophy markers, and increased the expression of KL in cardiac tissue. Additionally, BBR markedly reversed downregulation of sirtuin1 (SIRTI) in the aged heart. In vitro experiments revealed that BBR and exogenous KL also increased the expression of SIRT1, whereas siKL limited this effect of BBR in senescent H9c2 cell. In summary, BBR upregulated KL expression and prevented heart from cardiac senescence through anti-oxidative and anti-apoptotic effects, as well as alleviation of mitochondrial dysfunction. These effects may be mediated via regulation of the Klotho/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Hengfei Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, 100050 Beijing, China.
| |
Collapse
|
15
|
Song L, Mu L, Wang H. MicroRNA-489-3p aggravates neuronal apoptosis and oxidative stress after cerebral ischemia-reperfusion injury. Bioengineered 2022; 13:14047-14056. [PMID: 35730531 PMCID: PMC9342425 DOI: 10.1080/21655979.2022.2062534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) mostly occurs in the treatment stage of ischemic diseases and aggravate brain tissue damage. Although studies have demonstrated that miR-489-3p is closely related to CIRI, the effects of miR-489-3p on neural function in CIRI have not been directly studied. The transient middle cerebral artery occlusion (tMCAO) model was established by suture method, and the corresponding plasmids that interfered with the expression of miR-489-3p or Sirtuin1 (SIRT1) were injected into the model mice, and the behavioral changes of the mice were observed. Then the concentration of serum neuronal injury markers and oxidative stress indices were examined. Next, the pathological conditions, neuronal loss and apoptosis of brain tissue were observed by hematoxylin-eosin staining, Nissl staining, and Transferase-mediated deoxyuridine triphosphate-biotin nick end labeling staining. Finally, the hemoglobin content and cerebral edema in the mouse brain were determined. In addition, the expression levels of miR-489-3p and SIRT1 were detected by reverse transcription quantitative polymerase chain reaction or Western blot, and the targeting relationship between miR-489-3p and SIRT1 was verified by bioinformatics analysis and luciferase reporter assay. The experimental results found that in tMCAO mice, miR-489-3p in brain tissue was up-regulated and SIRT1 was down-regulated. Down-regulating miR-489-3p or up-regulating SIRT1 ameliorated behavioral dysfunction, neuronal damage and apoptosis, oxidative stress and brain histopathology. miR-489-3p targeted the regulation of SIRT1 expression, and down-regulating SIRT1 can reverse the protective effect of silenced miR-489-3p on brain injury. Taken together, by targeting SIRT1, elevated miR-489-3p aggravates CIRI-induced neuronal apoptosis and oxidative stress.
Collapse
Affiliation(s)
- LiGuo Song
- Department of Neurosurgery, The First People's Hospital of Mudanjiang, Mudanjiang City, Heilongjiang Province, China
| | - LuYan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Haerbin, Heilongjiang Province, China
| | - HongLiang Wang
- Department of Neurology, The Sixth People's Hospital of Nantong City, Nantong City, Jiangsu Province, China
| |
Collapse
|
16
|
Zhai R, Liu Y, Tong J, Yu Y, Yang L, Gu Y, Niu J. Empagliflozin Ameliorates Preeclampsia and Reduces Postpartum Susceptibility to Adriamycin in a Mouse Model Induced by Angiotensin Receptor Agonistic Autoantibodies. Front Pharmacol 2022; 13:826792. [PMID: 35401209 PMCID: PMC8984158 DOI: 10.3389/fphar.2022.826792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023] Open
Abstract
Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the maternal circulation. Here, we sought to determine the therapeutic value of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin (EMPA) in mice with AT1-AA-induced preeclampsia. Pregnant mice were injected with AT1-AA at gestation day (GD) 13 and treated daily with EMPA until GD 19, at which point some of the maternal mice were sacrificed and assessed. The other maternal mice were labored on time and challenged with adriamycin (ADR) at 12 weeks postpartum; their offspring were assessed for fetal outcomes. We showed that EMPA treatment significantly relieved high systolic blood pressure and proteinuria and ameliorated kidney injury in PE mice without affecting fetal outcomes. EMPA also ameliorated podocyte injury and oxidative stress, reduced the expression of SGLT2 and activated the AMPK/SIRT1 signaling pathway in vivo and in vitro. Remarkably, EMPA treatment during pregnancy reduced ADR-induced kidney and podocyte injury postpartum. These findings suggest that EMPA could be a potential pharmacological agent for PE.
Collapse
Affiliation(s)
- Ruonan Zhai
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jiahao Tong
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Lin Yang
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yong Gu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Department of Nephrology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Li X, Kang B, Eom Y, Zhong J, Lee HK, Kim HM, Song JS. Comparison of cytotoxicity effects induced by four different types of nanoparticles in human corneal and conjunctival epithelial cells. Sci Rep 2022; 12:155. [PMID: 34997120 PMCID: PMC8742118 DOI: 10.1038/s41598-021-04199-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of particulate matter (PM) on ocular surface health has attracted increased attention in recent years. Previous studies have reported that differences in the chemical composition of PM can affect the toxicological response. However, available information on the toxic effects of chemical components of PM on the ocular surface is insufficient. In this paper, we aimed to investigate the toxicity effects of chemical components of PM on the ocular surface, focusing on the effects of four different types of nanoparticles (NPs) in human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs), which include titanium dioxide (TiO2), carbon black (CB), zinc dioxide (ZnO), and silicon dioxide (SiO2). We found that the in vitro cytotoxic effects of CB, ZnO, and SiO2 NPs are dependent on particle properties and cell type as well as the exposure concentration and time. Here, the order of increasing toxicity was SiO2 → CB → ZnO, while TiO2 demonstrated no toxicity. Moreover, toxic effects appearing more severe in HCECs than HCjECs. Reactive oxygen species (ROS)-mediated oxidative stress plays a key role in the toxicity of these three NPs in HCECs and HCjECs, leading to apoptosis and mitochondrial damage, which are also important contributors to aging. Sirtuin1 (SIRT1) as an NAD+-dependent protein deacetylase that seems to play a potential protective role in this process. These findings implied that ROS and/or SIRT1 may become a potential target of clinical treatment of PM- or NP-related ocular surface diseases.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Boram Kang
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Jingxiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Ophthalmology, Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, 80, Guro-dong, Guro-gu, Seoul, 152-703, South Korea.
| |
Collapse
|
18
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
20
|
Erten M. Visfatin as a Promising Marker of Cardiometabolic Risk. ACTA CARDIOLOGICA SINICA 2021; 37:464-472. [PMID: 34584379 DOI: 10.6515/acs.202109_37(5).20210323b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue is an endocrine organ that produces molecules with important functions in the human body called adipokines. Visfatin can be secreted from various sources, such as macrophages, chondrocytes and amniotic epithelial cells other than adipose tissue. The main effect of visfatin is to promote inflammatory processes. In addition, visfatin has pivotal effects on the entire cardiovascular system, such as endothelial dysfunction, atherosclerosis, plaque rupture and mobilization, myocardial damage, fibrosis and new vessel formation. Vascular pathologies in other tissues also mediate its effects. Visfatin changes in a similar manner to cardiac markers in acute myocardial infarction, and the most cited feature in research studies is that it may be a cardiovascular risk marker. Visfatin is therefore expected to be widely used in cardiovascular pathology in the near future. Visfatin has many target tissues and various effects that occur in relatively complex biological pathways, making it difficult to understand visfatin adequately. In this review, we provide comprehensive information about this promising molecule.
Collapse
Affiliation(s)
- Mehmet Erten
- Laboratory of Medical Biochemistry, Public Health Lab., Malatya, Turkey
| |
Collapse
|
21
|
Zheng M, Hu C, Wu M, Chin YE. Emerging role of SIRT2 in non-small cell lung cancer. Oncol Lett 2021; 22:731. [PMID: 34429771 PMCID: PMC8371967 DOI: 10.3892/ol.2021.12992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most devastating cancer types, accounting for >80% of lung cancer cases. The median relative survival time of patients with NSCLC is <1 year. Lysine acetylation is a major post-translational modification that is required for various biological processes, and abnormal protein acetylation is associated with various diseases, including NSCLC. Protein deacetylases are currently considered cancer permissive partly due to malignant cells being sensitive to deacetylase inhibition. Sirtuin 2 (SIRT2), a primarily cytosolic nicotinamide adenine dinucleotide-dependent class III protein deacetylase, has been shown to catalyze the removal of acetyl groups from a wide range of proteins, including tubulin, ribonucleotide reductase regulatory subunit M2 and glucose-6-phosphate dehydrogenase. In addition, SIRT2 is also known to possess lysine fatty deacylation activity. Physiologically, SIRT2 serves as a regulator of the cell cycle and of cellular metabolism. It has been shown to play important roles in proliferation, migration and invasion during carcinogenesis. It is notable that both oncogenic and tumor suppressive functions of SIRT2 have been described in NSCLC and other cancer types, suggesting a context-specific role of SIRT2 in cancer progression. In addition, inhibition of SIRT2 exhibits a broad anticancer effect, indicating its potential as a therapeutic for NSCLC tumors with high expression of SIRT2. However, due to the diverse molecular and genetic characteristics of NSCLC, the context-specific function of SIRT2 remains to be determined. The current review investigated the functions of SIRT2 during NSCLC progression with regard to its regulation of metabolism, stem cell-like features and autophagy.
Collapse
Affiliation(s)
- Mengge Zheng
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Changyong Hu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Meng Wu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Yue Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
22
|
Shiojima Y, Takahashi M, Takahashi R, Moriyama H, Bagchi D, Bagchi M, Akanuma M. Effect of Dietary Pyrroloquinoline Quinone Disodium Salt on Cognitive Function in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. J Am Coll Nutr 2021; 41:796-809. [PMID: 34415830 DOI: 10.1080/07315724.2021.1962770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cognitive dysfunctions are increasing alarmingly around the world, and researchers are exploring preventive measures for improving brain performance. Pyrroloquinoline quinone (PQQ), a naturally occurring coenzyme in foods, exhibits potent antioxidant activity, and improves diverse functions which include mitochondrial activation, growth, repair, protection of nerve cells by increased expression of nerve growth factor (NGF) and NGF receptors; and suppression of fibril formation and aggregation of amyloid β. OBJECTIVE This randomized, double-blind, placebo-controlled, parallel-group clinical investigation (RCT) evaluated the efficacy and safety of PQQ disodium salt powder (mnemoPQQ®) for improved cognitive function after 12 weeks of supplementation in healthy Japanese male and female (age 40 to <80 Y). METHODS 64 healthy subjects were randomly assigned to receive either mnemoPQQ® (PQQ disodium salt: 21.5 mg/day) or a placebo over a period of 12 weeks. The efficacy of mnemoPQQ® on cognitive performance (memory, attention, judgment, and cognitive flexibility) was examined using Cognitrax as the primary outcome (primary endpoint), and forgetfulness questionnaire (DECO: Deterioration Cognitive Observee) and Mini-Mental State Examination-Japanese (MMSE-J) as the secondary outcome (secondary endpoint). RESULTS A total of 58 subjects (placebo = 31; Age = 70.91 ± 3.06 Y; mnemoPQQ® group = 27; Age = 72.10 ± 3.77 Y) completed the study over a period of 12 weeks of supplementation. Significant improvements were observed on the Cognitrax's cognitive function domain score on "composite memory", "verbal memory", "reaction time", "complex attention", "cognitive flexibility", "executive function", and "motor speed" in the mnemoPQQ® group as compared to the placebo group. The DECO and the MMSE-J scores were also significantly improved in the mnemoPQQ® group. No adverse events were observed. CONCLUSIONS Study demonstrates that supplementation of PQQ disodium salt is useful in improving memory, attention, judgment, and cognitive function, in middle-aged to elderly population, who feel they have become more forgetful because of aging.
Collapse
Affiliation(s)
| | - Megumi Takahashi
- Ryusendo Co., Ltd., R&D, Toshima-ku, Tokyo, Japan.,Laboratory of Ultrasound Theranostics, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Ryohei Takahashi
- Ryusendo Co., Ltd., R&D, Toshima-ku, Tokyo, Japan.,Laboratory of Ultrasound Theranostics, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | | | - Debasis Bagchi
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | | | | |
Collapse
|
23
|
Wang R, Wu Z, Bai L, Liu R, Ba Y, Zhang H, Cheng X, Zhou G, Huang H. Resveratrol improved hippocampal neurogenesis following lead exposure in rats through activation of SIRT1 signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1664-1673. [PMID: 33978298 DOI: 10.1002/tox.23162] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Lead (Pb) poses a potential environmental risk factor for cognitive dysfunction during early life and childhood. Resveratrol is considered a promising antioxidant with respect to the prevention of cognitive deficits and act as a potent SIRT1 agonist. Herein, this study aims to investigate the profile of neurogenesis markers following Pb exposure and to determine the regulatory role of resveratrol in this process. We confirmed firstly the protective effects of resveratrol against Pb-induced impairments of hippocampal neurogenesis in Male SD rats. Pb exposure early in life caused the altered expression of Ki-67, NeuN, caspase-3 and SIRT1 signaling, thereby resulting in spatial cognitive impairment of adolescent rats. As expected, resveratrol reduced cognitive damage and promoted neurogenesis in Pb-induced injury by regulation of SIRT1 pathway. Collectively, our study establishes the efficacy of resveratrol as a neuroprotective agent and provides a strong rationale for further studies on SIRT1-mediated mechanisms of neuroprotective functions.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zuntao Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lin Bai
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
HELVACI N, SARAÇOĞLU H, YILDIZ OG, KILIÇ E. The study of sirtuins in breast cancer patients before and after radiotherapy. Turk J Med Sci 2021; 51:1354-1359. [PMID: 33705642 PMCID: PMC8283445 DOI: 10.3906/sag-2012-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background/aim Targeting the new and unique proteins is an important medical strategy for treating breast cancer. It is quite important to find out proteins that have a role in the development of cancer. Sirtuins (SIRT) are well related in different physiological activities and connected with cancer. We aimed to determine the effect of radiotherapy on SIRT1 and SIRT2, which have not been yet been clarified as a tumor suppressor or promoter. Materials and methods Twenty-two women with nonmetastatic breast cancer enrolled in the study. Blood samples were taken before and after radiotherapy, soluble SIRT1 and SIRT2 levels were determined with ELISA kits. Results There was no difference in SIRT1 levels before and after radiotherapy (p = 0.548). SIRT2 levels were significantly found to be decreased after radiotherapy (p = 0.042). There was a strong and positive correlation before radiotherapy (p < 0.001), and a moderate and positive correlation after radiotherapy (p = 0.007) between SIRT1 and SIRT2. Conclusion These results suggest that SIRT2 may provide a new strategy for follow-up of breast cancer treatment. Additionally, by emphasizing the importance of SIRT2 in breast cancer, it opens ways to provide grounds for the development of the next generation of SIRT2-specific radiotracers. Finally, the most important thing, in fact, the positive correlation between SIRT1 and SIRT2 both before and after radiotherapy, appears to be clear evidence suggesting more oncogenic roles of sirtuins.
Collapse
Affiliation(s)
- Nazlı HELVACI
- Health Sciences Institute, Erciyes University, KayseriTurkey
| | - Hatice SARAÇOĞLU
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, KayseriTurkey
| | - Oğuz Galip YILDIZ
- Department of Radiation Oncology, Faculty of Medicine, Erciyes University, KayseriTurkey
| | - Eser KILIÇ
- Department of Medical Biochemistry, Faculty of Medicine, Erciyes University, KayseriTurkey
| |
Collapse
|
25
|
Hosoda R, Hamada H, Uesugi D, Iwahara N, Nojima I, Horio Y, Kuno A. Different Antioxidative and Antiapoptotic Effects of Piceatannol and Resveratrol. J Pharmacol Exp Ther 2021; 376:385-396. [PMID: 33335015 DOI: 10.1124/jpet.120.000096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Resveratrol affords protection against reactive oxygen species (ROS)-related diseases via activation of SIRT1, an NAD+-dependent deacetylase. However, the low bioavailability of resveratrol limits its therapeutic applications. Since piceatannol is a hydroxyl analog of resveratrol with higher bioavailability, it could be an alternative to resveratrol. In this study, we compared the cytotoxicity, antioxidative activity, and mechanisms of cytoprotection of piceatannol with those of resveratrol. In C2C12 cells incubated with piceatannol, electrospray ionization mass spectrometry analysis showed that piceatannol was present in the intracellular fraction. A high concentration (50 μM) of piceatannol, but not resveratrol, induced mitochondrial depolarization and apoptosis. However, piceatannol at 10 μM inhibited the increase in mitochondrial ROS level induced by antimycin A, and this ROS reduction was greater than that by resveratrol. The reduction in hydrogen peroxide-induced ROS by piceatannol was also greater than that by resveratrol or vitamin C. Piceatannol reduced antimycin A-induced apoptosis more than did resveratrol. SIRT1 knockdown abolished the antiapoptotic activity of resveratrol, whereas it blocked only half of the antiapoptotic activity of piceatannol. Piceatannol, but not resveratrol, induced heme oxygenase-1 (HO1) expression, which was blocked by knockdown of the transcription factor NRF2, but not by SIRT1 knockdown. HO1 knockdown partially blocked the reduction of ROS by piceatannol. Furthermore, the antiapoptotic action of piceatannol was abolished by HO1 knockdown. Our results suggest that the therapeutic dose of piceatannol protects cells against mitochondrial ROS more than does resveratrol via SIRT1- and NRF2/HO1-dependent mechanisms. The activation of NRF2/HO1 could be an advantage of piceatannol compared with resveratrol for cytoprotection. SIGNIFICANCE STATEMENT: This study showed that piceatannol and resveratrol were different in cytotoxicity, oxidant-scavenging activities, and mechanisms of cytoprotection. Protection by piceatannol against apoptosis induced by reactive oxygen species was superior to that by resveratrol. In addition to the sirtuin 1-dependent pathway, piceatannol exerted nuclear factor erythroid 2-related factor 2/heme oxygenase-1-mediated antioxidative and antiapoptotic effects, which could be an advantage of piceatannol compared with resveratrol.
Collapse
Affiliation(s)
- Ryusuke Hosoda
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Japan (R.H., N.I., I.N., Y.H., A.K.) and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan (H.H., D.U.)
| | - Hiroki Hamada
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Japan (R.H., N.I., I.N., Y.H., A.K.) and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan (H.H., D.U.)
| | - Daisuke Uesugi
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Japan (R.H., N.I., I.N., Y.H., A.K.) and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan (H.H., D.U.)
| | - Naotoshi Iwahara
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Japan (R.H., N.I., I.N., Y.H., A.K.) and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan (H.H., D.U.)
| | - Iyori Nojima
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Japan (R.H., N.I., I.N., Y.H., A.K.) and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan (H.H., D.U.)
| | - Yoshiyuki Horio
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Japan (R.H., N.I., I.N., Y.H., A.K.) and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan (H.H., D.U.)
| | - Atsushi Kuno
- Department of Pharmacology, School of Medicine, Sapporo Medical University, Sapporo, Japan (R.H., N.I., I.N., Y.H., A.K.) and Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan (H.H., D.U.)
| |
Collapse
|
26
|
Evaluation of silent information regulator T (SIRT) 1 and Forkhead Box O (FOXO) transcription factor 1 and 3a genes in glaucoma. Mol Biol Rep 2020; 47:9337-9344. [PMID: 33200312 DOI: 10.1007/s11033-020-05994-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Analysis of the reactive oxygen species (ROS)-detoxifying biomarkers may elucidate the mitochondrial dysfunction in glaucoma pathogenesis. Therefore, we purposed to investigate the effects of ROS-detoxifying molecules including Silent Information Regulator T1 (SIRT1) and Forkhead Box O 1 (FOXO1) and 3a (FOXO3a) transcription factors in patients with glaucoma. Our analyses included 20 eyes from patients with primary open-angle glaucoma (POAG) and 20 eyes from patients with pseudoexfoliation glaucoma (PXG) who were scheduled for trabeculectomy. After extraction of total RNA from trabecular meshwork tissue, we compared the levels of SIRT1, FOXO1and FOXO3a genes in the oxidative pathway with the level of glyceraldehyde-3 phosphate dehydrogenase (GAPDH), the reference gene, using real-time polymerase chain reaction. Relative gene expression was calculated using the threshold cycle (2-ΔΔCT) method. We observed similarly reduced expression levels of SIRT1, FOXO1, and FOXO3a genes versus GAPDH among patient groups (p = 0.40; p = 0.56; p = 0.35, respectively). This is the first study to identify the role of SIRT1 and FOXOs in human TM with glaucoma. Relative expression levels of SIRT1, FOXO1, and FOXO3a genes versus a control gene (GAPDH) were decreased in POAG and PXG groups. Our results show that SIRT1and FOXOs (1-3a) deserve special attention in the pathogenesis of glaucoma.
Collapse
|
27
|
Mohammed ET, Hashem KS, Abdelazem AZ, Foda FAMA. Prospective Protective Effect of Ellagic Acid as a SIRT1 Activator in Iron Oxide Nanoparticle-Induced Renal Damage in Rats. Biol Trace Elem Res 2020; 198:177-188. [PMID: 31933277 DOI: 10.1007/s12011-020-02034-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/04/2020] [Indexed: 02/01/2023]
Abstract
Despite the wide application of iron oxide nanoparticles (IONPs), little is known about the specific mechanism of their nephrotoxic effect. We aimed to evaluate the nephrotoxic effects of iron oxide nanoparticles (IONPs) in vivo and the protective effect of ellagic acid (EA) as a silent information regulator sirtuin 1 (SIRT1) activator against the induced nephrotoxicity. Forty male albino Wistar rats were randomly distributed into four equal groups (10 rats each): the control group (oral saline for 30 days), ellagic acid (EA) group (10 mg/kg b.w. EA, orally for 30 days), IONP group (20 mg/kg b.w. IONP I/P injection at the 24th-30th day), and EA + IONP group (10 mg/kg b.w./day EA for 30 days + 20 mg/kg b.w. IONPs at the 24th-30th day). In the present study, the potent antioxidant and antiapoptotic effects of EA were indicated by the significant overexpression of SIRT1 in renal tissues that leads to significant decreases in renal MDA content, P53 protein level and forkhead-box transcription factor1 (FOXO1) expression, and significant increases in renal GSH level, catalase activity, growth arrest and DNA damage-inducible protein 45 alpha (GADDα45), and renal inhibition of apoptosis protein (KIAP) gene expression levels in the EA + IONP-treated group. These results were confirmed by the improved histopathological renal features with EA administration. In conclusion, the present study provides the first evidence for the usefulness of EA as a sirtuin1 activator in the prevention or treatment of renal damage. Thus, EA could be used as a promising therapy for the prevention of IONP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Eman Taha Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Khalid S Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Z Abdelazem
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma A M A Foda
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
28
|
Sun XJ, Zhao X, Xie JN, Wan H. Crocin alleviates schizophrenia-like symptoms in rats by upregulating silent information regulator-1 and brain derived neurotrophic factor. Compr Psychiatry 2020; 103:152209. [PMID: 33045669 DOI: 10.1016/j.comppsych.2020.152209] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In neonatal rats, MK-801 treatments can produce schizophrenia-like symptoms. Crocin is a water soluble carotenoid in Saffron that exerts potent neuroprotective effects. This work aimed to demonstrate the function of crocin in the alleviation of motor and cognitive impairments elicited by MK-801 in a neonatal rodent schizophrenia model, and to illustrate the underlying molecular mechanisms. METHODS Rats were treated with vehicle, MK-801 (1 mg/kg), MK-801 + 25 mg/kg crocin, or MK-801 + 50 mg/kg crocin. Motor learning and coordination, locomotion and exploratory activities, as well as spatial memory were assessed using the rotarod test, pen field test, and the Morris water maze test, respectively. Relative mRNA and protein levels of genes of interest were analyzed using qRT-PCR and Western blot assays, respectively. RESULTS In the hippocampus of rats with MK-801-elicited schizophrenia, administration of crocin elevated the expression of silent information regulator-1 (SIRT1) and brain derived neurotrophic factor (BDNF), and relieved the oxidative stress. The learning deficits and motor perturbations caused by MK-801 treatments were also alleviated by the crocin administration. CONCLUSION Collectively, crocin has exerted neuroprotective effects in the rat model of MK-801-elicited schizophrenia, via regulations of SIRT1 and downstream BDNF expression in the hippocampus.
Collapse
Affiliation(s)
- Xi-Juan Sun
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China
| | - Xin Zhao
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China
| | - Jun-Ning Xie
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China
| | - Hao Wan
- Open Mental Department of Qingdao Mental Health Center, Qingdao University, No. 299 Nanjing Road, Qingdao 266034, Shandong, China.
| |
Collapse
|
29
|
Pushpakumar S, Ren L, Juin SK, Majumder S, Kulkarni R, Sen U. Methylation-dependent antioxidant-redox imbalance regulates hypertensive kidney injury in aging. Redox Biol 2020; 37:101754. [PMID: 33080442 PMCID: PMC7575806 DOI: 10.1016/j.redox.2020.101754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
The prevalence of hypertension increases with age, and oxidative stress is a major contributing factor to the pathogenesis of hypertension-induced kidney damage in aging. The nicotinamide adenine dinucleotide phosphate (NADPH) family is one of the major sources of reactive oxygen species (ROS) generation, and several NADPH oxidase isoforms are highly expressed in the kidney. Although epigenetic protein modification plays a role in organ injury, the methylation of the oxidant-antioxidant defense system and their role in hypertension-induced kidney damage in aging remains underexplored. The present study investigated the role of NADPH oxidase 4, superoxide dismutases (SODs), catalase, and NOS in Ang-II induced kidney damage in aging. Wild type (WT, C57BL/6J) mice aged 12-14 and 75-78 weeks were used and treated with or without Ang-II (1000 ng/kg/min) for 4 weeks with control mice receiving saline. Aged mice with or without Ang-II exhibited higher mean BP, lower renal blood flow, and decreased renal vascular density compared to young mice. While superoxide, 4-HNE, p22phox, Nox4, iNOS were increased in the aged kidney, the expression of eNOS, MnSOD, CuSOD, catalase, Sirt1, and -3 as well as the ratio of GSH/GSSG, and activities of SODs and catalase were decreased compared to young control mice. The changes further deteriorated with Ang-II treatment. In Ang-II treated aged mice, the expressions of DNMTs were increased and associated with increased methylation of SODs, Sirt1, and Nox4. We conclude that hypermethylation of antioxidant enzymes in the aged kidney during hypertension worsens redox imbalance leading to kidney damage.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Suravi Majumder
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rohan Kulkarni
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
30
|
Li M, Li SC, Dou BK, Zou YX, Han HZ, Liu DX, Ke ZJ, Wang ZF. Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta Pharmacol Sin 2020; 41:1025-1032. [PMID: 32203080 PMCID: PMC7471431 DOI: 10.1038/s41401-020-0386-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Cycloastragenol (CAG) is the active form of astragaloside IV isolated from Astragalus Radix, which displays multiple pharmacological effects. Silent information regulator 1 (SIRT1), a class III histone deacetylase, has been shown to play an important role in neuroprotection against cerebral ischemia. In this study, we investigated whether CAG protected against ischemic brain injury and, if so, whether the beneficial effects were associated with the regulation of SIRT1 in the ischemic brain. Mice were subjected to 45 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. CAG (5, 10, 20 mg/kg) was injected intraperitoneally at the onset of reperfusion, 12 h later and then twice daily for up to three days. CAG dose-dependently reduced brain infarct volume, significantly ameliorated functional deficits, and prevented neuronal cell loss in MCAO mice. Meanwhile, CAG significantly reduced matrix metalloproteinase-9 activity, prevented tight junction degradation and subsequently ameliorated blood-brain barrier disruption. Moreover, CAG significantly upregulated SIRT1 expression in the ischemic brain but did not directly activate its enzymatic activity. Concomitant with SIRT1 upregulation, CAG reduced p53 acetylation and the ratio of Bax to Bcl-2 in the ischemic brain. CAG also inhibited NF-κB p65 nuclear translocation. As a result, CAG suppressed the mRNA expression of pro-inflammatory cytokines, including TNF-α and IL-1β, and inhibited the activation of microglia and astrocytes in the ischemic brain. Our findings suggest that CAG is neuroprotective against ischemic brain injury in mice and that its beneficial effect may involve SIRT1 upregulation and the inhibition of apoptosis and neuroinflammation in the ischemic brain.
Collapse
|
31
|
Apryatin SA, Shipelin VA, Trusov NV, Mzhel’skaya KV, Kirbaeva NV, Soto JS, Riger NA, Gmoshinski IV. The Effect of Quercetin on Metabolism and Behavioral Responses in Mice with Normal and Impaired Leptin Reception. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020040020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Niu J, Cao Y, Ji Y. Resveratrol, a SIRT1 Activator, Ameliorates MK-801-Induced Cognitive and Motor Impairments in a Neonatal Rat Model of Schizophrenia. Front Psychiatry 2020; 11:716. [PMID: 32793005 PMCID: PMC7393240 DOI: 10.3389/fpsyt.2020.00716] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In neonatal rats, MK-801 treatment generates schizophrenia-like symptoms. Resveratrol (RSV) is a phenolic compound and a potent neuroprotective agent. This research aimed to illustrate the effect of RSV on the amelioration of MK-801-induced cognitive and motor impairments in a neonatal rat schizophrenia model and the related potential molecular changes. METHODS Rats were administrated with MK-801, MK-801 + RSV (40 mg/kg), or MK-801 + RSV (80 mg/kg). Motor learning, coordination, locomotor and exploratory activity, and spatial memory were measured by rotarod test, pen field test, and Morris water maze test. Relative protein levels were analyzed by Western blot and ELISA. mRNA levels were shown by qRT-PCR. RESULTS In the hippocampus of MK-801-induced schizophrenia rat model, RSV enhanced silent information regulator 1 (SIRT1) and brain derived neurotrophic factor (BDNF) expression and alleviated oxidative stress. Motor perturbations and learning impairments by MK-801 treatment were ameliorated by the administration of RSV. CONCLUSION In conclusion, RSV showed neuroprotective effect on MK-801-induced schizophrenia rat model through regulating SIRT1 and downstream BDNF expression in the hippocampus.
Collapse
Affiliation(s)
- Juan Niu
- Psychological Clinic, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuquan Cao
- Rizhao Mental Health Center, Rizhao, China
| | - Yongjuan Ji
- Department of Mental Health, Qingdao Women and Children’s Hospital, Qingdao, China
| |
Collapse
|
33
|
Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI, Hong Y. The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba. Parasit Vectors 2020; 13:368. [PMID: 32698828 PMCID: PMC7376869 DOI: 10.1186/s13071-020-04237-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The encystation of Acanthamoeba leads to the development of resilient cysts from vegetative trophozoites. This process is essential for the survival of parasites under unfavorable conditions. Previous studies have reported that, during the encystation of A. castellanii, the expression levels of encystation-related factors are upregulated. However, the regulatory mechanisms for their expression during the encystation process remains unknown. Proteins in the sirtuin family, which consists of nicotinamide adenine dinucleotide-dependent deacetylases, are known to play an important role in various cellular functions. In the present study, we identified the Acanthamoeba silent-information regulator 2-like protein (AcSir2) and examined its role in the growth and encystation of Acanthamoeba. METHODS We obtained the full-length sequence for AcSir2 using reverse-transcription polymerase chain reaction. In Acanthamoeba transfectants that constitutively overexpress AcSir2 protein, SIRT deacetylase activity was measured, and the intracellular localization of AcSir2 and the effects on the growth and encystation of trophozoites were examined. In addition, the sirtuin inhibitor salermide was used to determine whether these effects were caused by AcSir2 overexpression RESULTS: AcSir2 was classified as a class-IV sirtuin. AcSir2 exhibited functional SIRT deacetylase activity, localized mainly in the nucleus, and its transcription was upregulated during encystation. In trophozoites, AcSir2 overexpression led to greater cell growth, and this growth was inhibited by treatment with salermide, a sirtuin inhibitor. When AcSir2 was overexpressed in the cysts, the encystation rate was significantly higher; this was also reversed with salermide treatment. In AcSir2-overexpressing encysting cells, the transcription of cellulose synthase was highly upregulated compared with that of control cells, and this upregulation was abolished with salermide treatment. Transmission electron microscope-based ultrastructural analysis of salermide-treated encysting cells showed that the structure of the exocyst wall and intercyst space was impaired and that the endocyst wall had not formed. CONCLUSIONS These results indicate that AcSir2 is a SIRT deacetylase that plays an essential role as a regulator of a variety of cellular processes and that the regulation of AcSir2 expression is important for the growth and encystation of A. castellanii.
Collapse
Affiliation(s)
- So-Young Joo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ja Moon Aung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
34
|
Das PK, Islam F, Lam AK. The Roles of Cancer Stem Cells and Therapy Resistance in Colorectal Carcinoma. Cells 2020; 9:1392. [PMID: 32503256 PMCID: PMC7348976 DOI: 10.3390/cells9061392] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs) are the main culprits involved in therapy resistance and disease recurrence in colorectal carcinoma (CRC). Results using cell culture, animal models and tissues from patients with CRC suggest the indispensable roles of colorectal CSCs in therapeutic failure. Conventional therapies target proliferating and mature cancer cells, while CSCs are mostly quiescent and poorly differentiated, thereby they can easily survive chemotherapeutic insults. The aberrant activation of Wnt/β-catenin, Notch, Hedgehog, Hippo/YAP (Yes-associated protein) and phosphatidylinositol 3-kinase/protein kinase B facilitates CSCs with excessive self-renewal and therapy resistance property in CRC. CSCs survive the chemo-radiotherapies by escaping therapy mediated DNA damage via altering the cell cycle checkpoints, increasing DNA damage repair capacity and by an efficient scavenging of reactive oxygen species. Furthermore, dysregulations of miRNAs e.g., miR-21, miR-93, miR-203, miR-215, miR-497 etc., modulate the therapeutic sensitivity of colorectal CSCs by regulating growth and survival signalling. In addition, a reversible quiescent G0 state and the re-entering cell cycle capacity of colorectal CSCs can accelerate tumour regeneration after treatment. Moreover, switching to favourable metabolic signatures during a therapeutic regimen will add more complexity in therapeutic outcomes against CSCs. Therapeutic strategies targeting these underlying mechanisms of CSCs' therapy resistance could provide a promising outcome, however, deep understanding and concerted research are necessary to design novel therapies targeting CSCs. To conclude, the understanding of these mechanisms of CSC in CRC could lead to the improved management of patients with CRC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
35
|
The roles of resveratrol on cardiac mitochondrial function in cardiac diseases. Eur J Nutr 2020; 60:29-44. [PMID: 32372266 DOI: 10.1007/s00394-020-02256-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
Left ventricular (LV) dysfunction is commonly associated with a variety of health conditions including acute myocardial infarction and obesity/diabetes. In addition, administration of several pharmacological agents such as anticancer, antiviral, and immunosuppressive drugs has been shown to be related with LV dysfunction. The molecular mechanism responsible for LV dysfunction has been extensively studied, and it has been proposed that the overproduction of reactive oxygen species (ROS) plays a crucial role in the regulation of this function. Mitochondria require the balance between ROS production and antioxidants to maintain their appropriate function and to prevent excessive ROS production. Thus, the excessive production of ROS and the reduced scavenging process under any pathological conditions could disrupt mitochondrial function, leading to energy depletion with subsequent cell death. Therefore, maintenance of the balance between oxidative stress and antioxidants is essential. Resveratrol, a stilbene, has been investigated extensively, and potentially used to treat or prevent various cardiovascular diseases. Resveratrol directly upregulates antioxidative capacity by increasing antioxidant genes such as heme oxygenase-1, superoxide dismutase, catalase, and glutathione. In this review, accumulated data from in vitro, ex vivo, and in vivo studies regarding the effects of resveratrol on cardiac mitochondrial function in cardiac pathologies are comprehensively summarized and discussed. Since there is no conclusive available clinical study regarding the effects of resveratrol on cardiac mitochondrial function, this review also aims to encourage more clinical investigations to confirm findings from basic research. This comprehensive review will provide insight regarding the potential mechanistic roles of resveratrol in preventing and/or treating patients with cardiovascular diseases to improve LV function and their health status.
Collapse
|
36
|
Van Hau T, Ruankham W, Suwanjang W, Songtawee N, Wongchitrat P, Pingaew R, Prachayasittikul V, Prachayasittikul S, Phopin K. Repurposing of Nitroxoline Drug for the Prevention of Neurodegeneration. Chem Res Toxicol 2019; 32:2182-2191. [DOI: 10.1021/acs.chemrestox.9b00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Truong Van Hau
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Eastern International University, Binh Duong 820000, Vietnam
| | - Waralee Ruankham
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Kamonrat Phopin
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
37
|
Chen F, Zhou CC, Yang Y, Liu JW, Yan CH. GM1 Ameliorates Lead-Induced Cognitive Deficits and Brain Damage Through Activating the SIRT1/CREB/BDNF Pathway in the Developing Male Rat Hippocampus. Biol Trace Elem Res 2019; 190:425-436. [PMID: 30414004 DOI: 10.1007/s12011-018-1569-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023]
Abstract
Developmental lead (Pb) exposure involves various serious consequences, especially leading to neurotoxicity. In this study, we examined the possible role of monosialoganglioside (GM1) in lead-induced nervous impairment in the developing rat. Newborn male Sprague-Dawley rat pups were exposed to lead from birth for 30 days and then subjected to GM1 administration (0.4, 2, or 10 mg/kg; i.p.) or 0.9% saline. The results showed that developmental lead exposure significantly impaired spatial learning and memory in the Morris water maze test, reduced GM1 content, induced oxidative stress, and weakened the antioxidative systems in the hippocampus. However, co-treatment with GM1 reversed these effects. Moreover, GM1 counteracted lead-induced apoptosis by decreasing the expression of Bax, cleaved caspase-3, and by increasing the level of Bcl-2 in a dose-dependent manner. Furthermore, we found that GM1 upregulated the expression of SIRT1, CREB phosphorylation, and BDNF, which underlie learning and memory in the lead-treated developing rat hippocampus. In conclusion, our study demonstrated that GM1 exerts a protective effect on lead-induced cognitive deficits via antioxidant activity, preventing apoptosis, and activating SIRT1/CREB/BDNF in the developing rat hippocampus, implying a novel potential assistant therapy for lead poisoning.
Collapse
Affiliation(s)
- Fei Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Can-Can Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yin Yang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
38
|
Fujiwara D, Iwahara N, Sebori R, Hosoda R, Shimohama S, Kuno A, Horio Y. SIRT1 deficiency interferes with membrane resealing after cell membrane injury. PLoS One 2019; 14:e0218329. [PMID: 31242212 PMCID: PMC6594621 DOI: 10.1371/journal.pone.0218329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/30/2019] [Indexed: 01/07/2023] Open
Abstract
Activation of SIRT1, an NAD+-dependent protein deacetylase, ameliorates muscular pathophysiology of δ-sarcoglycan-deficient TO-2 hamsters and dystrophin-deficient mdx mice. We found that SIRT1 was highly expressed beneath the cellular membranes of muscle cells. To elucidate functional roles of SIRT1 on muscles, skeletal muscle-specific SIRT1 knockout mice (SIRT1-MKO) were generated. SIRT1-MKO mice showed muscular pathology similar to mild muscular dystrophies with increased numbers of centrally nucleated small myofibers and decreased numbers of middle-sized (2000–3001 μm2) myofibers compared to those of wild-type (WT) mice. Accordingly, SIRT1-MKO mice showed significantly decreased exercise capacity in treadmill and inverted hanging tests with higher levels of serum creatine kinase activities compared with those in WT mice. Evans blue dye uptake after exercise was greater in the muscles of SIRT1-MKO than those of WT mice, suggesting membrane fragility in SIRT1-MKO mice. Because SIRT1 was dominantly localized beneath the membranes of muscular cells, SIRT1 may have a new role in the membranes. We found that levels of fluorescent FM1-43 dye intake after laser-induced membrane disruption in C2C12 cells were significantly increased by SIRT1 inhibitors or Sirt1-siRNA compared with those of control cells. Inhibition of SIRT1 or SIRT1-knockdown severely disturbed the dynamic aggregation of membrane vesicles under the injured site but did not affect expression levels of membrane repair proteins. These data suggested that SIRT1 had a critical role in the resealing of membrane-ruptured muscle cells, which could affect phenotypes of SIRT1-MKO mice. To our knowledge, this report is the first to demonstrate that SIRT1 affected plasma-membrane repair mechanisms.
Collapse
Affiliation(s)
- Daisuke Fujiwara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rio Sebori
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
- * E-mail:
| |
Collapse
|
39
|
He P, Yan S, Wen X, Zhang S, Liu Z, Liu X, Xiao C. Eriodictyol alleviates lipopolysaccharide-triggered oxidative stress and synaptic dysfunctions in BV-2 microglial cells and mouse brain. J Cell Biochem 2019; 120:14756-14770. [PMID: 31016762 DOI: 10.1002/jcb.28736] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 01/12/2023]
Abstract
Oxidative stress takes part in the development of the neurodegenerative disease. Eriodictyol, a flavonoid, commonly presents in citrus fruits, which was well-known for its various bioactivities. The purpose of this study was to investigate the neuroprotective effects of eriodictyol on lipopolysaccharide (LPS)-induced neuroinflammation, oxidative stress, synaptic dysfunctions, and the potential mechanisms involved. We found that eriodictyol explicitly restored LPS-triggered the decrease of cell viability and the mitochondrial potential as well as inflammation responses via mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) pathways regulated by reactive oxygen species (ROS). Besides, eriodictyol alleviated LPS-induced oxidative stress via NF-E2-Related factor2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway in vivo and in vitro. Furthermore, eriodictyol reduced LPS-elicited synaptic dysfunctions via increasing the expression of silent information regulator 1 (Sirt1). Overall, eriodictyol protects LPS-triggered oxidative stress, neuroinflammation, and synaptic dysfunctions partially through MAPKs, NF-κB mediated by ROS, Sirt1, and Nrf2/Keap1 signal pathways, which further supports that eriodictyol is a potentially nutritional preventive strategy for oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandi He
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi province, PR China
| | - Shikai Yan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi province, PR China
| | - Xin Wen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi province, PR China
| | - Shuhan Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi province, PR China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi province, PR China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi province, PR China
| | - Chunxia Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi province, PR China
| |
Collapse
|
40
|
Gadelha APR, Bravim B, Vidal J, Reignault LC, Cosme B, Huber K, Bracher F, de Souza W. Alterations on growth and cell organization of Giardia intestinalis trophozoites after treatment with KH-TFMDI, a novel class III histone deacetylase inhibitor. Int J Med Microbiol 2019; 309:130-142. [PMID: 30665874 DOI: 10.1016/j.ijmm.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Giardia trophozoites have developed resistance mechanisms to currently available compounds, leading to treatment failures. In this context, the development of new additional agents is mandatory. Sirtuins, which are class III NAD+-dependent histone deacetylases, have been considered important targets for the development of new anti-parasitic drugs. Here, we evaluated the activity of KH-TFMDI, a novel 3-arylideneindolin-2-one-type sirtuin inhibitor, on G. intestinalis trophozoites. This compound decreased the trophozoite growth presenting an IC50 value lower than nicotinamide, a moderately active inhibitor of yeast and human sirtuins. Light and electron microscopy analysis showed the presence of multinucleated cell clusters suggesting that the cytokinesis could be compromised in treated trophozoites. Cell rounding, concomitantly with the folding of the ventro-lateral flange and flagella internalization, was also observed. These cells eventually died by a mechanism which lead to DNA/nuclear damage, formation of multi-lamellar bodies and annexin V binding on the parasite surface. Taken together, these data show that KH-TFMDI has significant effects against G. intestinalis trophozoites proliferation and structural organization and suggest that histone deacetylation pathway should be explored on this protozoon as target for chemotherapy.
Collapse
Affiliation(s)
- Ana Paula R Gadelha
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Bárbara Bravim
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Juliana Vidal
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lissa Catherine Reignault
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Cosme
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wanderley de Souza
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
41
|
Dietary modulation of mitochondrial DNA damage: implications in aging and associated diseases. J Nutr Biochem 2019; 63:1-10. [DOI: 10.1016/j.jnutbio.2018.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
|
42
|
Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression. Chem Biol Interact 2019; 297:44-49. [DOI: 10.1016/j.cbi.2018.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 01/18/2023]
|
43
|
Dietary supplementation of weaned piglets with a yeast-derived mannan-rich fraction modulates cecal microbial profiles, jejunal morphology and gene expression. Animal 2019; 13:1591-1598. [DOI: 10.1017/s1751731118003361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Zheng XW, Shan CS, Xu QQ, Wang Y, Shi YH, Wang Y, Zheng GQ. Buyang Huanwu Decoction Targets SIRT1/VEGF Pathway to Promote Angiogenesis After Cerebral Ischemia/Reperfusion Injury. Front Neurosci 2018; 12:911. [PMID: 30564092 PMCID: PMC6288378 DOI: 10.3389/fnins.2018.00911] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Ischemia stroke is known as the major cause of morbidity and mortality. Buyang Huanwu Decoction (BHD), a classical traditional Chinese medicine (TCM) formula, has been used to prevent and treat stoke for hundreds of years. The purpose of present study is to investigate the effects of BHD on angiogenesis in rats after cerebral ischemia/reperfusion (I/R) injury targeting Silent information regulator 1 (SIRT1) / Vascular endothelial growth factor (VEGF) pathway. Methods: The cerebral I/R injury model was induced by middle cerebral artery occlusion (MCAO). Adult Sprag-Dawley (SD) rats were randomly divided into five groups: sham group, normal saline (NS) group, BHD group, BHD+EX527 (SIRT1 specific inhibitor) group, and NS+EX527 group. Each group was divided into the subgroups according to 1, 3, 7, or 14 days time-point after cerebral ischemia/reperfusion, respectively. Neurological function score (NFS) was evaluated by the Rogers scale; microvascular density (MVD) in brain tissue around infarction area was observed by immunofluorescence; and the expression of SIRT1 and VEGF was assessed by Western Blot and Quantitative Real-time-PCR. Results: BHD can significantly improve NFS (P < 0.05), increase the MVD in the boundary ischemic area (P < 0.01) and elevate the expression of protein and mRNA of SIRT1 and VEGF following I/R injury (P < 0.01). In contrast, treatment with EX527 reversed the BHD-induced improvements in NFS (P < 0.01) and decreased the MVD (P < 0.01) and the expression of SIRT1 and VEGF (P < 0.05). Conclusion: BHD exerts neuroprotection targeting angiogenesis through the up-regulation of SIRT1/VEGF pathway against cerebral ischemic injury in rats.
Collapse
Affiliation(s)
- Xia-Wei Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Shuo Shan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Qing Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Kuno A, Hosoda R, Sebori R, Hayashi T, Sakuragi H, Tanabe M, Horio Y. Resveratrol Ameliorates Mitophagy Disturbance and Improves Cardiac Pathophysiology of Dystrophin-deficient mdx Mice. Sci Rep 2018; 8:15555. [PMID: 30348945 PMCID: PMC6197260 DOI: 10.1038/s41598-018-33930-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023] Open
Abstract
Autophagy activation improves the phenotype in mdx mice, a Duchenne muscular dystrophy (DMD) model, although the underlying mechanisms are obscure. We previously found that resveratrol, a strong inducer of autophagy, ameliorates the cardiac pathology of mdx mice. Autophagy could eliminate damaged mitochondria, a major source of intracellular reactive oxygen species (ROS), although there is no evidence for mitochondriopathy in dystrophic cardiomyopathy. To elucidate resveratrol’s function, we investigated the deletion of mitochondrial DNA (mtDNA), autophagy of damaged mitochondria (mitophagy), and ROS accumulation in the mdx mouse heart. Low levels of normal mtDNA and abnormal accumulations of mitochondria-containing autophagosomes were found in the mdx mouse heart. Administering resveratrol to mdx mice for 56 weeks ameliorated the cardiomyopathy, with significant reductions in the amount of mtDNA deletion, the number of mitochondria-containing autophagosomes, and the ROS levels. Resveratrol induced nuclear FoxO3a accumulation and the expression of autophagy-related genes, which are targets of FoxOs. The most effective dose in mdx mice was 0.4 g resveratrol/kg food. In conclusion, resveratrol improved cardiomyopathy by promoting mitophagy in the mdx mouse heart. We propose that acquired mitochondriopathy worsens the pathology of DMD and is a potential therapeutic target for the cardiomyopathy in DMD patients.
Collapse
Affiliation(s)
- Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Rio Sebori
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Takashi Hayashi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hiromi Sakuragi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mika Tanabe
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
46
|
Verçoza BRF, Godinho JLP, de Macedo-Silva ST, Huber K, Bracher F, de Souza W, Rodrigues JCF. KH-TFMDI, a novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis. Apoptosis 2018; 22:1169-1188. [PMID: 28685254 DOI: 10.1007/s10495-017-1397-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis. Herein, we evaluated the effects of KH-TFMDI, a novel histone deacetylase inhibitor, on Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values of this compound for promastigotes and intracellular amastigotes were 1.976 and 1.148 μM, respectively, after 72 h of treatment. Microscopic analyses revealed that promastigotes became elongated and thinner in response to KH-TFMDI, indicating changes in cytoskeleton organization. Immunofluorescence microscopy, western blotting and flow cytometry using an anti-acetylated tubulin antibody revealed an increase in the expression of acetylated tubulin. Furthermore, transmission electron microscopy revealed several ultrastructural changes, such as (a) mitochondrial swelling, followed by the formation of many vesicles inside the matrix; (b) presence of lipid bodies randomly distributed through the cytoplasm; (c) abnormal chromatin condensation; and (d) formation of blebs on the plasma membrane. Physiological studies for mitochondrial function, flow cytometry with propidium iodide and TUNEL assay confirmed the alterations in the mitochondrial metabolism, cell cycle, and DNA fragmentation, respectively, which could result to cell death by mechanisms related to apoptosis-like. All these together indicate that histone deacetylases are promising targets for the development of new drugs to treat Leishmania, and KH-TFMDI is a promising drug candidate that should be tested in vivo.
Collapse
Affiliation(s)
- Brunno Renato Farias Verçoza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Joseane Lima Prado Godinho
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Sara Teixeira de Macedo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Kilian Huber
- Departament of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Departament of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Munich, Germany
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, CCS, Bloco G, subsolo, Rio de Janeiro, CEP 21941-902, Brazil. .,Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Polo Avançado de Xerém, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil. .,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Liu Z, Zhang M, Zhou T, Shen Q, Qin X. Exendin-4 promotes the vascular smooth muscle cell re-differentiation through AMPK/SIRT1/FOXO3a signaling pathways. Atherosclerosis 2018; 276:58-66. [PMID: 30036742 DOI: 10.1016/j.atherosclerosis.2018.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The phenotype switching of vascular smooth muscle cells (VSMCs) plays a key role during development and progression of vascular remodeling diseases. Recent studies show that GLP-1 can inhibit intima thickening to delay the progression of atherosclerotic plaques. The purpose of this study was to investigate the role of Exendin-4, a GLP-1 receptor agonist, in VSMCs phenotype switching and the related mechanisms. METHODS Immunohistochemistry and Western blot were used to detect the effect of Exendin-4 on expression of markers of contractile VSMCs. Phalloidin staining was performed to observe the effect of Exendin-4 on morphology of VSMCs. RESULTS Exendin-4 significantly increased the protein levels of contractile VSMCs markers like Calponin and SM22α. After treatment of Exendin-4, VSMCs showed more typical characteristic spindle shape. In addition, Exendin-4 significantly upregulated the phosphorylation of AMPK as well as the protein levels of Sirtuin1 (SIRT1) and FOXO3a in VSMCs. After inhibiting AMPK activity with compound C and SIRT1 activity with EX527, and knocking down FOXO3a expression through RNAi technique, Exendin-4 increased the protein levels of Calponin and SM22α and promoted the redifferentiation of VSMCs mainly through AMPK/SIRT1/FOXO3a signaling pathways. CONCLUSIONS Exendin-4 can regulate the phenotype switching of VSMCs and promote redifferentiation of VSMCs through AMPK/SIRT1/FOXO3a signaling pathways.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Actins/metabolism
- Animals
- Biomarkers/metabolism
- Calcium-Binding Proteins/metabolism
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Cell Differentiation/drug effects
- Cell Plasticity/drug effects
- Cell Shape/drug effects
- Cells, Cultured
- Disease Models, Animal
- Exenatide/pharmacology
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/metabolism
- Male
- Microfilament Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Sirtuin 1/metabolism
- Calponins
Collapse
Affiliation(s)
- Zihan Liu
- Institute of Cardiovascular Science, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Mengqian Zhang
- Institute of Cardiovascular Science, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Tengfei Zhou
- Institute of Cardiovascular Science, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Qiang Shen
- Institute of Cardiovascular Science, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaomei Qin
- Institute of Cardiovascular Science, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
48
|
Shen J, Xu L, Qu C, Sun H, Zhang J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav Brain Res 2018; 349:1-7. [DOI: 10.1016/j.bbr.2018.04.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
|
49
|
Kabil SL. Beneficial effects of cilostazol on liver injury induced by common bile duct ligation in rats: Role of SIRT1 signaling pathway. Clin Exp Pharmacol Physiol 2018; 45:1341-1350. [DOI: 10.1111/1440-1681.13004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Soad L. Kabil
- Department of Pharmacology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
50
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|