1
|
Yan Y, Zhang A, Zhang K, Jiang S, Hong L, Ye C, Cao L, Yang T, Hu Y, Pan R, Li C, Wu S, Cheng X, Wu B. Regional Hypoperfusion Predicts White Matter Tract Degeneration in Recent Single Subcortical Infarcts. J Am Heart Assoc 2025:e040529. [PMID: 40371629 DOI: 10.1161/jaha.124.040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The association between baseline cerebral perfusion status and perilesional white matter degeneration in recent single subcortical infarcts (RSSIs) is still not well understood. We aimed to investigate the clinical relevance and possible predictors of long-term morphological changes of RSSIs. METHODS Patients with RSSI who had baseline computed tomography perfusion and at least 1 follow-up magnetic resonance imaging were retrospectively enrolled from the stroke registry databases. Computed tomography perfusion measurements, infarct size and location, small vessel disease burden, and clinical and radiological outcomes were evaluated. We assessed the association between perfusion status and neuroimaging evolution. RESULTS Among the eligible 104 patients with RSSI, the majority (80.8%) had cavitated lesion evolution, and nearly half (46.2%) developed white matter tract degeneration. Patients with secondary white matter injury showed worse functional outcomes. The computed tomography perfusion parameter ratios were defined as the measurements in the regions of interest (infarct lesion or mirrored region) divided by those in the hemisphere of the same side with regions of interest. Lower cerebral blood flow ratio and cerebral blood volume ratio on either lesion side and opposite side were independently associated with white matter tract degeneration after adjusting for hypertension, National Institutes of Health Stroke Scale score, lesion volume, corticospinal tract infarction and follow-up time. We also found a mediation effect of the contralateral cerebral blood flow ratio between corticospinal tract infarction and white matter injury. CONCLUSIONS White matter tract degeneration has potential clinical value for indicating worse functional outcomes in RSSIs. Baseline regional hypoperfusion, especially with a lower contralateral cerebral blood flow ratio, independently predicts secondary white matter injury.
Collapse
Affiliation(s)
- Yuying Yan
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Anqi Zhang
- Department of Neurology National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai China
| | - Kai Zhang
- Department of Radiology West China Hospital, Sichuan University Chengdu China
| | - Shuai Jiang
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Lan Hong
- Department of Neurology National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai China
| | - Chen Ye
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Le Cao
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Tang Yang
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Yi Hu
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Ruosu Pan
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Congjun Li
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Simiao Wu
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| | - Xin Cheng
- Department of Neurology National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University Shanghai China
| | - Bo Wu
- Department of Neurology West China Hospital, Sichuan University Chengdu China
| |
Collapse
|
2
|
Ackah JA, Li X, Zeng H, Chen X. Imaging-validated correlates and implications of the pathophysiologic mechanisms of ageing-related cerebral large artery and small vessel diseases: a systematic review and meta-analysis. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:12. [PMID: 40264233 PMCID: PMC12016073 DOI: 10.1186/s12993-025-00274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Cerebral large artery and small vessel diseases are considered substrates of neurological disorders. We explored how the mechanisms of neurovascular uncoupling, dysfunctional blood-brain-barrier (BBB), compromised glymphatic pathway, and impaired cerebrovascular reactivity (CVR) and autoregulation, identified through diverse neuroimaging techniques, impact cerebral large artery and small vessel diseases. METHODS Studies (1990-2024) that reported on neuroradiological findings on ageing-related cerebral large artery and small vessel diseases were reviewed. Fifty-two studies involving 23,693 participants explored the disease mechanisms, 9 studies (sample size = 3,729) of which compared metrics of cerebrovascular functions (CF) between participants with cerebral large artery and small vessel diseases (target group) and controls with no vascular disease. Measures of CF included CVR, cerebral blood flow (CBF), blood pressure and arterial stiffness. RESULTS The findings from 9 studies (sample size = 3,729, mean age = 60.2 ± 11.5 years), revealed negative effect sizes of CVR [SMD = - 1.86 (95% CI - 2.80, - 0.92)] and CBF [SMD = - 2.26 (95% CI - 4.16, - 0.35)], respectively indicating a reduction in cerebrovascular functions in the target group compared to their controls. Conversely, there were significant increases in the measures of blood pressure [SMD = 0.32 (95% CI 0.18, 0.46)] and arterial stiffness [SMD = 0.87 (95% CI 0.77, 0.98)], which signified poor cerebrovascular functions in the target group. In the combined model the overall average effect size was negative [SMD = - 0.81 (95% CI - 1.53 to - 0.08), p < 0.001]. Comparatively, this suggests that the negative impacts of CVR and CBF reductions significantly outweighed the effects of blood pressure and arterial stiffness, thereby predominantly shaping the overall model. Against their controls, trends of reduction in CF were observed exclusively among participants with cerebral large artery disease (SMD = - 2.09 [95% CI: - 3.57, - 0.62]), as well as those with small vessel diseases (SMD = - 0.85 [95% CI - 1.34, - 0.36]). We further delineated the underlying mechanisms and discussed their interconnectedness with cognitive impairments. CONCLUSION In a vicious cycle, dysfunctional mechanisms in the glymphatic system, neurovascular unit, BBB, autoregulation, and reactivity play distinct roles that contribute to reduced CF and cognitive risk among individuals with cerebral large artery and/or small vessel diseases. Reduction in CVR and CBF points to reductions in CF, which is associated with increased risk of cognitive impairment among ageing populations ≥ 60 years.
Collapse
Affiliation(s)
- Joseph A Ackah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xuelong Li
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huixing Zeng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiangyan Chen
- Division of Science, Engineering, and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Li Z, Liu X, Sun H, Jiang X, Zhang Y, Ji L, Zhang L, Wang M, Gu M, Li S, Zhang Y, Liu Y, Shi H, Jiang T, Mei Y, Zhu L, Zhou J, Deng Q. Predictors for recurrent ischemic stroke in patients with watershed infarct induced by intracranial artery stenosis. Clin Neurol Neurosurg 2025; 254:108897. [PMID: 40288288 DOI: 10.1016/j.clineuro.2025.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND AND PURPOSE Symptomatic intracranial artery stenosis (sICAS) is strongly associated with an elevated risk of recurrent ischemic stroke, yet the underlying risk factors remain elusive. In this present study, we aimed to investigate the risk factors and predictive value of imaging features for recurrent ischemic stroke in patients with watershed infarction caused by ICAS. METHODS We prospectively collected clinical information and imaging data from patients with watershed infarction caused by ICAS. The primary outcome was recurrent ischemic cerebrovascular events in the same territory within 1 year. The original magnetic resonance images (MRI) were post-processed by the Fast-processing of ischemic stroke (F-Stroke) software to compute the perfusion parameters. The assessment of white matter hyperintensity (WMH) was performed in accordance with the Fazekas scale. Binary logistic regression analysis was performed to explore the association of imaging characteristics and recurrent ischemic stroke. Subsequently, we performed ROC curve analyses to determine their discriminatory capacity for ischemic stroke recurrence. RESULTS A total of 139 patients were successfully enrolled in the present study. The recurrence rate in the total population was 18.71 %. Compared with patients without recurrent ischemic stroke, those who experienced recurrence had a higher proportion of prior ischemic stroke history (25.66 % vs. 53.85 %) and severe WMH (30.77 % vs. 7.97 %), as well as higher baseline NIHSS scores and volume of Tmax > 4 s. Logistic regression analysis revealed that both the volume of Tmax > 4 s and severe WMH significantly influenced the risk of recurrent ischemic stroke occurrence. Furthermore, ROC curve analyses demonstrated that the discriminatory capacity of the volume of Tmax > 4 s (AUC = 0.64, 95 %CI = 0.51-0.77, P = 0.029) was marginally superior to WMH scores (AUC = 0.62, 95 %CI = 0.49-0.75, P = 0.066). Whereas, the combination of the volume of Tmax > 4 s and the WMH scores showed better discriminatory capacity (AUC = 0.73, 95 %CI = 0.61-0.85, P < 0.001). CONCLUSION MR-guiding cerebral hypoperfusion and severe WMH is susceptible to recurrence of ischemic stroke, thereby serving as valuable predictors for recurrence in patients with watershed infarction caused by ICAS.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Xinwei Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Xiaozong Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Yiting Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Lifan Ji
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Luyao Zhang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Meng Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Mengmeng Gu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Shuo Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Yuqiao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Yukai Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Hongchao Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Yanping Mei
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing.
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, China.
| |
Collapse
|
4
|
Ackah JA, Du H, Yang W, Zeng H, Chan JTL, Lo MLC, Chen X. The burden of intracranial atherosclerosis on cerebral small vessel disease: A community cohort study. Ann Clin Transl Neurol 2025. [PMID: 40244886 DOI: 10.1002/acn3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE Exploring the prevalence and association between intracranial atherosclerosis (ICAS) and cerebral small vessel diseases (CSVD), this study delved beyond the current scope, utilising high-resolution vessel wall MRI (HRVW-MRI) to investigate how subtle changes in intracranial atherosclerotic features influence the various burdens of CSVD. METHODS Stroke-free Chinese adult participants were recruited from our ongoing community-based MRI cohort. HRVW-MRI technique with a T1-weighted 3D SPACE sequence was used to assess atherosclerotic plaque features: plaque load, degree of stenosis, remodelling index, eccentricity. A multi-sequence MRI assessment elucidated CSVD markers, including white matter hyperintensities, lacune infarcts, microbleeds and enlarged perivascular spaces. Statistical analyses, including sensitivity and specificity tests, chi-square, correlation and regression models were fitted to explore the association between ICAS and CSVD. RESULTS Of the 225 participants (mean age 64.90 ± 6.87 years) included in the study, 101 (45%) were males. Thirty-nine participants (17.3%) presented with ICAS (8 progressive plaques and 31 were pre-atherosclerotic). One hundred and six (47.1%) participants recorded at least one clinically significant marker of CSVD. The subtle changes (increment or decrement) in atherosclerotic features such as positive remodelling, plaque load, eccentricity, degree of stenosis and the morphology (ICAS severity) may parallelly influence the distinct markers and overall CSVD burden. INTERPRETATION This study demonstrates that the association between ICAS and CVSD extends beyond mere co-existence due to shared risk factors, suggesting the presence of a dose-effect relationship between ICAS and CVSD. HRVW-MRI could elucidate diagnostic metrics and characteristic features that reveal how ICAS impacts distinct CSVD burdens, thereby enhancing clinical decisions.
Collapse
Affiliation(s)
- Joseph Amihere Ackah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Heng Du
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Yang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Huixing Zeng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Jason Tsz Lok Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Michael Lung Cheung Lo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| | - Xiangyan Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
5
|
Wang S, Xu Z, Li J, Lai Z, Shi C, He J. A cross-sectional study on white matter hyperitensity in patients at the initial diagnosis of neuropsychiatric SLE: Correlation with Clinical and Laboratory Findings. Clin Rheumatol 2025; 44:1571-1580. [PMID: 40009312 DOI: 10.1007/s10067-025-07379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/12/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES This study aimed to investigate the differences between neuropsychiatric systemic lupus erythematosus (NPSLE) patients with and without white matter hyperintensity (WMH) on magnetic resonance imaging (MRI) and to identify factors independently associated with the development of WMH in NPSLE. METHOD A comparative analysis was conducted on 84 NPSLE patients hospitalized at Peking University People's Hospital from 2015 to 2022 at the initial diagnosis of NPSLE. Patients were categorized based on the presence of WMH on brain MRI scans. Demographic data, clinical characteristics, and laboratory parameters were reviewed and statistically analyzed. RESULTS The study included 84 NPSLE patients, 50% exhibiting WMH (NPSLE-WMH +). At the initial diagnosis of NPSLE, the NPSLE-WMH + group showed significantly higher levels of antinuclear antibody (ANA) titer, anti-double-stranded DNA antibody (anti-dsDNA), anti-nucleosome antibody (ANuA), and lower serum C3 levels. The proportion of patients with reduced WBC, elevated anti-dsDNA, elevated ANuA, elevated anticardiolipin antibody (ACA), positive urinary protein (UPR), and positive ANA was higher in the NPSLE-WMH + group. Univariate and multivariate analyses revealed that positive UPR (p = 0.040), positive ANA (p = 0.025), elevated anti-dsDNA (0.047), and elevated ACA (p = 0.025) were potentially independent factors associated with WMH development in NPSLE patients. CONCLUSIONS This study provides novel insights into the clinical and laboratory differences between NPSLE patients with and without WMH, identifying specific independently associated factors for WMH development. These findings may contribute to a better understanding of this intricate disease. Key Points • Although WMH is one of the most frequently observed lesions on MRI in patients with NPSLE, previous literature has given limited attention to it. This study focuses on the differences between NPSLE patients with and without WMH, unveiling independently associated factors for developing WMH in this disease.
Collapse
Affiliation(s)
- Shiyang Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Haidian District, No. 51, North Huayuan Road, Beijing, China
| | - Zhihu Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| | - Jiaxi Li
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People's Hospital, Department of Rheumatology and Immunology, No. 11, Xizhimen South Street, Xicheng District, Beijing, China
| | - Zhanhong Lai
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People's Hospital, Department of Rheumatology and Immunology, No. 11, Xizhimen South Street, Xicheng District, Beijing, China
| | - Chuan Shi
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Haidian District, No. 51, North Huayuan Road, Beijing, China.
| | - Jing He
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People's Hospital, Department of Rheumatology and Immunology, No. 11, Xizhimen South Street, Xicheng District, Beijing, China.
| |
Collapse
|
6
|
Clements GM, Camacho P, Bowie DC, Low KA, Sutton BP, Gratton G, Fabiani M. Effects of Aging, Estimated Fitness, and Cerebrovascular Status on White Matter Microstructural Health. Hum Brain Mapp 2025; 46:e70168. [PMID: 40116177 PMCID: PMC11926577 DOI: 10.1002/hbm.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 03/23/2025] Open
Abstract
White matter (WM) microstructural health declines with increasing age, with evidence suggesting that improved cardiorespiratory fitness (CRF) may mitigate this decline. Specifically, higher fit older adults tend to show preserved WM microstructural integrity compared to their lower fit counterparts. However, the extent to which fitness and aging independently impact WM integrity across the adult lifespan is still an open question, as is the extent to which cerebrovascular health mediates these relationships. In a large sample (N = 125, aged 25-72), we assessed the impact of age and estimated cardiorespiratory fitness on fractional anisotropy (FA, derived using diffusion weighted imaging, dwMRI) and probed the mediating role of cerebrovascular health (derived using diffuse optical tomography of the cerebral arterial pulse, pulse-DOT) in these relationships. After orthogonalizing age and estimated fitness and computing a PCA on whole brain WM regions, we found several WM regions impacted by age that were independent from the regions impacted by estimated fitness (hindbrain areas, including brainstem and cerebellar tracts), whereas other areas showed interactive effects of age and estimated fitness (midline areas, including fornix and corpus callosum). Critically, cerebrovascular health mediated both relationships suggesting that vascular health plays a linking role between age, fitness, and brain health. Secondarily, we assessed potential sex differences in these relationships and found that, although females and males generally showed the same age-related FA declines, males exhibited somewhat steeper declines than females. Together, these results suggest that age and fitness impact specific WM regions and highlight the mediating role of cerebrovascular health in maintaining WM health across adulthood.
Collapse
Affiliation(s)
- Grace M. Clements
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Air Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOhioUSA
| | - Paul Camacho
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Daniel C. Bowie
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of PsychologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Kathy A. Low
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Bradley P. Sutton
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of BioengineeringUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of PsychologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of PsychologyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| |
Collapse
|
7
|
Zhao H, Li Y, Yin X, Liu Z, Zhou Z, Sun H, Fan Y, Wang S, Xin T. Neuroticism and cerebral small vessel disease: A genetic correlation and Mendelian randomization analysis. Neuroscience 2025; 566:1-8. [PMID: 39681255 DOI: 10.1016/j.neuroscience.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVES The association of neuroticism and cerebral small vessel disease (CSVD) development remains unclear. In this study, we used Mendelian randomization (MR) to explore the potential role of neuroticism in CSVD development. METHODS We collected data on ischemic stroke (IS); small vessel stroke (SVS); three neuroimaging markers altered in CSVD, including white matter hyperintensity (WMH), fractional anisotropy (FA), and mean diffusivity (MD); and three neuroticism clusters, including depressed affect, worry, sensitivity to environmental stress and adversity (SESA), from large-scale genome-wide association studies (GWAS). Bidirectional MR analyses were used to evaluate the association between neuroticism and CSVD, primarily estimated using the inverse variance weighted (IVW) method. The linkage disequilibrium score (LDSC) regression was employed to assess the association between various phenotypes. RESULTS LDSC analysis unveiled a noteworthy genetic correlation between depressed affect and IS (rg = 0.111, p = 0.001) as well as between worry and SVS (rg = -0.111, p = 0.032). Our study revealed a causal correlation between SESA and FA using both forward and reverse MR analyses (SESA on FA, odds ratio (OR) = 0.186 (0.071 to 0.483), p = 5.50 × 10-4; FA on SESA, OR = 0.996 (0.9916 to 0.9997), p = 0.035). Meanwhile, FA also exerted a statistical causal influence on depressed affect cluster (OR = 0.992 (0.987 to 0.997), p = 0.001). INTERPRETATION This research suggests a potential correlation between certain aspects of neuroticism and CSVD, with further studies needed to better understand the causal relationship and its implications for patient intervention.
Collapse
Affiliation(s)
- Hongbo Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Zihao Liu
- Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zijian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China
| | - Yang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan, 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan, 250117, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
8
|
Zhang Q, Ma D, Du H, Wang T, Li W. Combination of White Matter Hyperintensity and Neutrophil-to-Lymphocyte Ratio Predicts Short-Term Prognosis of Acute Ischemic Stroke Patients. Int J Gen Med 2024; 17:6199-6206. [PMID: 39698042 PMCID: PMC11653866 DOI: 10.2147/ijgm.s486511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Purpose To assess the value of combination of white matter hyperintensity (WMH) and neutrophil-to-lymphocyte ratio (NLR) in predicting short-term prognosis of acute ischemic stroke (AIS) patients. Patients and Methods Three hundred and nine AIS patients were included in this prospective observational research. They were evaluated at 3-month after the onset of AIS using modified Rankin Scale (mRS) score. A mRS score of 0-2 was defined as a favourable outcome, while an mRS score of 3-6 was defined as an unfavourable outcome. Multivariate analysis was used to identify the independent associations of WMH and NLR with short-term prognosis of AIS patients, and receiver operating characteristic (ROC) curves were used to evaluate the predictive values of WMH, NLR and their combination for short-term prognosis of AIS patients, and Z test was used to compare the area under curve (AUC). Results Among 309 AIS patients, 201 (65.0%) had a favorable 3-month outcome, while 108 (35.0%) had an unfavorable outcome. According to the results of multivariate analysis, WMH, NLR and on-admission NIHSS score were independently associated with unfavourable outcome of AIS after adjusting for diabetes mellitus, atrial fibrillation, TOAST subtype and LDL-cholesterol. ROC curves showed that the AUCs of WMH, NLR and their combination for predicting short-term prognosis of AIS patients were 0.760 [standard error (SE): 0.029, 95% confidence interval (CI): 0.703-0.817, P<0.001], 0.717 (SE: 0.030, 95% CI: 0.661-0.774, P<0.001) and 0.906 (SE: 0.019, 95% CI: 0.868-0.944, P<0.001), respectively. The AUC of combination prediction was significantly higher than those of individual predictions (0.906 vs 0.760, Z=4.211, P<0.001; 0.906 vs 0.717, Z=5.322, P<0.001). Conclusion WMH and NLR were independently associated with short-term prognosis of AIS patients, and the combination of WMH and NLR could be applied in predicting short-term prognosis of AIS patients, having a high predictive value.
Collapse
Affiliation(s)
- Qingyan Zhang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310000, People’s Republic of China
| | - Danyue Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310000, People’s Republic of China
| | - Hebin Du
- Department of Neurology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, People’s Republic of China
| | - Tiantian Wang
- Department of Neurology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, People’s Republic of China
| | - Wei Li
- Department of Neurology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, People’s Republic of China
| |
Collapse
|
9
|
Wang N, Li J, Zhang X, Gao Y, Sui C, Zhang N, Che Y, Liang C, Guo L, Li M. Hippocampal fimbria atrophy and its mediating effect between cerebral small vessel disease and cognitive impairment. Neuroscience 2024; 562:54-62. [PMID: 39461662 DOI: 10.1016/j.neuroscience.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
We aimed to investigate the relationship between the volume reduction in hippocampal (HP) subregions and cognitive impairment in patients with cerebral small vessel disease (CSVD). Clinical, cognitive, and magnetic resonance imaging data were obtained for 315 participants. The CSVD group included 146 participants with a total CSVD score of 1-4. 169 participants with a total CSVD score of zero were used as control group (CSVD-0). The volume differences of 19 HP subregions between CSVD and CSVD-0 groups were analyzed, and we investigated the hazard factors that might cause subregional volume reduction in HP. Mediation analysis was performed to detect the relationship among HP subregional volumes, CSVD burden, and cognitive function. In our results, significant differences can be found in the volumes of CA4 body, presubiculum-head, presubiculum-body, subiculum-body, GC-ML-DG-head, GC-ML-DG-body, fimbria, and HP tail between CSVD group and control group. Regression analysis showed that fimbria was the most impacted HP subregion by CSVD. And mediation analysis revealed fimbria volume was a mediator variable between total CSVD score and MoCA/SCWT score. These results suggest that the volumes of HP subregions, especially the fimbria, may be effective potential biomarkers for early detecting cognitive impairment in CSVD.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Jing Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xinyue Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Yena Che
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, Shandong 250021, China.
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China.
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| |
Collapse
|
10
|
Song Y, Zhou X, Zhao H, Zhao W, Sun Z, Zhu J, Yu Y. Characterizing the role of the microbiota-gut-brain axis in cerebral small vessel disease: An integrative multi‑omics study. Neuroimage 2024; 303:120918. [PMID: 39505226 DOI: 10.1016/j.neuroimage.2024.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Prior efforts have revealed changes in gut microbiome, circulating metabolome, and multimodal neuroimaging features in cerebral small vessel disease (CSVD). However, there is a paucity of research integrating the multi-omic information to characterize the role of the microbiota-gut-brain axis in CSVD. METHODS We collected gut microbiome, fecal and blood metabolome, multimodal magnetic resonance imaging data from 37 CSVD patients with white matter hyperintensities and 46 healthy controls. Between-group comparison was performed to identify the differential gut microbial taxa, followed by performance of multi-stage microbiome-metabolome-neuroimaging-neuropsychology correlation analyses in CSVD patients. RESULTS Our data showed both depleted and enriched gut microbes in CSVD patients. Among the differential microbes, Haemophilus and Akkermansia were associated with a range of metabolites enriched for Aminoacyl-tRNA biosynthesis pathway. Furthermore, the affected metabolites were associated with neuroimaging measures involving gray matter morphology, spontaneous intrinsic brain activity, white matter integrity, and global structural network topology, which were in turn related to cognition and emotion in CSVD patients. CONCLUSION Our findings provide an integrative framework to understand the pathophysiological mechanisms underlying the interplay between gut microbiota dysbiosis and CSVD, highlighting the potential of targeting the microbiota-gut-brain axis as a therapeutic strategy in CSVD patients.
Collapse
Affiliation(s)
- Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, PR China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, PR China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, PR China.
| |
Collapse
|
11
|
Shahid S, Wali A, Iftikhar S, Shaukat S, Zikria S, Rasheed J, Asuroglu T. Computational imaging for rapid detection of grade-I cerebral small vessel disease (cSVD). Heliyon 2024; 10:e37743. [PMID: 39309774 PMCID: PMC11416517 DOI: 10.1016/j.heliyon.2024.e37743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
An early identification and subsequent management of cerebral small vessel disease (cSVD) grade 1 can delay progression into grades II and III. Machine learning algorithms have shown considerable promise in medical image interpretation automation. An experimental cross-sectional study aimed to develop an automated computer-aided diagnostic system based on AI (artificial intelligence) tools to detect grade 1-cSVD with improved accuracy. Patients with Fazekas grade 1 cSVD on Non-Contrast Magnetic Resonance Imaging (MRI) Brain of age >40 years of both genders were included. The dataset was pre-processed to be fed into a 3D convolutional neural network (CNN) model. A 3D stack with the shape (120, 128, 128, 1) containing axial slices from the brain magnetic resonance image was created. The model was created from scratch and contained four convolutional and three fully connected (FC) layers. The dataset was preprocessed by making a 3D stack, and normalizing, resizing, and completing the stack was performed. A 3D-CNN model architecture was designed to train and test preprocessed images. We achieved an accuracy of 93.12 % when 2D axial slices were used. When the 2D slices of a patient were stacked to form a 3D image, an accuracy of 85.71 % was achieved on the test set. Overall, the 3D-CNN model performed very well on the test set. The earliest and the most accurate diagnosis from computational imaging methods can help reduce the huge burden of cSVD and its associated morbidity in the form of vascular dementia.
Collapse
Affiliation(s)
- Saman Shahid
- Department of Sciences & Humanities, National University of Computer & Emerging Sciences (NUCES)-FAST Lahore Campus, Punjab, Pakistan
| | - Aamir Wali
- Department of Data Sciences, National University of Computer & Emerging Sciences (NUCES)-FAST Lahore Campus, Punjab, Pakistan
| | - Sadaf Iftikhar
- Department of Neurology, King Edward Medical University/Mayo Hospital, Lahore, Punjab, Pakistan
| | - Suneela Shaukat
- Department of Radiology, King Edward Medical University/Mayo Hospital, Lahore, Punjab, Pakistan
| | - Shahid Zikria
- Department of Sciences & Humanities, National University of Computer & Emerging Sciences (NUCES)-FAST Lahore Campus, Punjab, Pakistan
- Department of Computer Science, Information Technology University (ITU), Lahore, Punjab, Pakistan
| | - Jawad Rasheed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
- Department of Software Engineering, Istanbul Nisantasi University, Istanbul, Turkey
- Deep Learning and Medical Image Analysis Laboratory, Bogazici University, Istanbul, Turkey
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
12
|
Shinto LH, Murchison CF, Silbert LC, Dodge HH, Lahna D, Rooney W, Kaye J, Quinn JF, Bowman GL. ω-3 PUFA for Secondary Prevention of White Matter Lesions and Neuronal Integrity Breakdown in Older Adults: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2426872. [PMID: 39088212 PMCID: PMC11294966 DOI: 10.1001/jamanetworkopen.2024.26872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
Importance Older adults with lower intake and tissue levels of long-chain ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) have more brain white matter lesions (WMLs), an association suggesting that small-vessel ischemic disease, a major contributor to the development of dementia, including Alzheimer disease, may be preventable through ω-3 treatment. Objective To determine whether ω-3 treatment reduces WML accumulation in older adults without dementia harboring WMLs and with suboptimal ω-3 status. Design, Setting, and Participants This quadruple-blinded, placebo-controlled, randomized clinical trial with treatment stratification by apolipoprotein E ε4 allele (APOE*E4) carrier status used linear mixed-effects models to estimate mean annual change between groups. The study was conducted at Oregon Health & Science University, a major academic medical center in the Pacific Northwest, from May 2014 to final participant visit in September 2019. Data analysis concluded in July 2022. Participants were adults without dementia aged 75 years and older with WMLs greater than or equal to 5 cm3 and plasma ω-3 PUFA less than 5.5 weight percentage of total. Intervention Three-year treatment with 1.65 g of ω-3 PUFA (975 mg of EPA and 650 mg of DHA) vs a soybean oil placebo matched for taste, smell, and appearance. Main Outcomes and Measures The primary outcome was annual WML progression measured using magnetic resonance imaging. Secondary outcomes included diffusion tensor imaging of fractional anisotropy (DTI-FA), representing neuronal integrity breakdown. Results A total of 102 participants (62 women [60.8%]; mean age, 81 years [range, 75-96 years]) were equally randomized, 51 per treatment group. Although the ω-3 group had less annual WML accumulation than the placebo group, the difference was not statistically significant (1.19 cm3 [95% CI, 0.64-1.74 cm3] vs 1.34 cm3 [95% CI, 0.80-1.88 cm3]; P = .30). Similarly, the ω-3 group had less annual DTI-FA decline than the placebo group, but the difference was not statistically significant (-0.0014 mm2/s [95% CI, -0.0027 to 0.0002 mm2/s] vs -0.0027 mm2/s [95% CI, -0.0041 to -0.0014 mm2/s]; P = .07). Among APOE*E4 carriers, the annual DTI-FA decline was significantly lower in the group treated with ω-3 than the placebo group (-0.0016 mm2/s [95% CI, -0.0032 to 0.0020 mm2/s] vs -0.0047 mm2/s [95% CI, -0.0067 to -0.0025 mm2/s]; P = .04). Adverse events were similar between treatment groups. Conclusions and Relevance In this 3-year randomized clinical trial, ω-3 treatment was safe and well-tolerated but failed to reach significant reductions in WML accumulation or neuronal integrity breakdown among all participants, which may be attributable to sample size limitations. However, neuronal integrity breakdown was reduced by ω-3 treatment in APOE*E4 carriers, suggesting that this treatment may be beneficial for this specific group. Trial Registration ClinicalTrials.gov Identifier: NCT01953705.
Collapse
Affiliation(s)
- Lynne H. Shinto
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
| | - Charles F. Murchison
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Department of Biostatistics, University of Alabama, Birmingham
| | - Lisa C. Silbert
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
| | - Hiroko H. Dodge
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Interdisciplinary Brain Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - David Lahna
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
| | - William Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland
| | - Jeffrey Kaye
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
| | - Joseph F. Quinn
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
- Parkinson’s Disease Center, Oregon Health & Science University, Portland
| | - Gene L. Bowman
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
13
|
Song X, Chen W, Zhao X, Zheng Z, Sang Z, Li R, Wu J. Decreased flow in ischemic stroke with coexisting intracranial artery stenosis and white matter hyperintensities. J Cent Nerv Syst Dis 2024; 16:11795735241266572. [PMID: 39055050 PMCID: PMC11271110 DOI: 10.1177/11795735241266572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Background Stroke patients with coexisting intracranial artery stenosis (ICAS) and white matter lesions (WML) usually have a poor outcome. However, how WML affects stroke prognosis has not been determined. Objective To investigate the quantitative forward flow at the middle cerebral artery in ICAS patients with different degrees of WML using 4D flow. Design Single-center cross-sectional cohort study. Methods Ischemic stroke patients with symptomatic middle cerebral artery (MCA) atherosclerosis were included, and they were divided into 2 groups based on Fazekas scale on Flair image (mild group = Fazekas 0-2, and severe group = Fazekas >2), TOF-MRA and 4D flow were performed to quantify the stenosis degree and forward flow at the proximal of stenosis. The flow parameters were compared between different white matter hyperintensity (WMH) groups, as well as in different MCA stenosis groups, logistic regression was used to validate the association between forward flow and WMH. Results A total of 66 patients were included in this study (mean age 56 years old, 68.2% male). 77.3% of them presented with WMH (Fazekas 1-5). Comparison of flow index between mild and severe WMH groups found a significantly lower forward flow (2.34 ± 1.09 vs 3.04 ± 1.35), higher PI (0.75 ± 0.43 vs 0.66 ± 0.32), and RI (0.49 ± 0.19 vs 0.46 ± 0.15) at ipsilateral infarction MCA in the severe WMH group, all P-values <0.05. After adjusting for other covariates, forward mean flow at ipsilateral infarction MCA is still associated with severe WMH independently, OR = 0.537, 95% CI (0.294, 0.981), P = 0.043. Conclusion Intracranial artery stenosis patients with coexisting severe WMH suffer from significantly decreased flow, which could explain the poor clinical outcome in this population, and also provide some insight into recanalization therapy in the future.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wenwen Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhenhua Sang
- Department of Information Technology Service, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Jian Wu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2024; 19:1454-1462. [PMID: 38051887 PMCID: PMC10883517 DOI: 10.4103/1673-5374.385841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/22/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease, the most common cerebrovascular disease. However, the causal relationship between hypertension and cerebral small vessel disease remains unclear. Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease. Chronic hypertension and lifestyle factors are associated with risks for stroke and dementia, and cerebral small vessel disease can cause dementia and stroke. Hypertension is the main driver of cerebral small vessel disease, which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction, leukoaraiosis, white matter lesions, and intracerebral hemorrhage, ultimately resulting in cognitive decline and demonstrating that the brain is the target organ of hypertension. This review updates our understanding of the pathogenesis of hypertension-induced cerebral small vessel disease and the resulting changes in brain structure and function and declines in cognitive ability. We also discuss drugs to treat cerebral small vessel disease and cognitive impairment.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center; Beijing Engineering Research Center for Nervous System Drugs; National Center for Neurological Disorders; National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
15
|
Li K, Wang S, Luo X, Zeng Q, Liu X, Hong L, Li J, Hong H, Xu X, Zhang Y, Jiaerken Y, Zhang R, Xie L, Xu S, Zhang X, Chen Y, Liu Z, Zhang M, Huang P. Associations of Alzheimer's Disease Pathology and Small Vessel Disease With Cerebral White Matter Degeneration: A Tract-Based MR Diffusion Imaging Study. J Magn Reson Imaging 2024; 60:268-278. [PMID: 37737474 DOI: 10.1002/jmri.29022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND White matter (WM) degeneration is a key feature of Alzheimer's disease (AD). However, the underlying mechanism remains unclear. PURPOSE To investigate how amyloid-β (Aβ), tau, and small vascular disease (SVD) jointly affect WM degeneration in subjects along AD continuum. STUDY TYPE Retrospective. SUBJECTS 152 non-demented participants (age: 55.8-91.6, male/female: 66/86) from the ADNI database were included, classified into three groups using the A (Aβ)/T (tau)/N pathological scheme (Group 1: A-T-; Group 2: A+T-; Group 3: A+T+) based on positron emission tomography data. FIELD STRENGTH/SEQUENCE 3T; T1-weighted images, T2-weighted fluid-attenuated inversion recovery images, T2*-weighted images, diffusion-weighted spin-echo echo-planar imaging sequence (54 diffusion directions). ASSESSMENT Free-water diffusion model (generated parameters: free water, FW; tissue fractional anisotropy, FAt; tissue mean diffusivity, MDt); SVD total score; Neuropsychological tests. STATISTICAL TESTS Linear regression analysis was performed to investigate the independent contribution of AD (Aβ and tau) and SVD pathologies to diffusion parameters in each fiber tract, first in the entire population and then in each subgroup. We also investigated associations between diffusion parameters and cognitive functions. The level of statistical significance was set at p < 0.05 (false discovery rate corrected). RESULTS In the entire population, we found that: 1) Increased FW was significantly associated with SVD and tau, while FAt and MDt were significantly associated with Aβ and tau; 2) The spatial pattern of fiber tracts related to a certain pathological marker is consistent with the known distribution of that pathology; 3) Subgroup analysis showed that Group 2 and 3 had more alterations of FAt and MDt associated with Aβ and tau; 4) Diffusion imaging indices showed significant associations with cognitive score in all domains except memory. DATA CONCLUSION WM microstructural injury was associated with both AD and SVD pathologies, showing compartment-specific, tract-specific, and stage-specific WM patterns. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jixuan Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Linyun Xie
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Xu W, Chen K, Yuan Y, Guo M, Dong Q, Cui M. Ring finger protein 216 loss-of-function induces white matter hyperintensities by inhibiting oligodendroglia proliferation. Cell Biochem Funct 2024; 42:e4057. [PMID: 38853469 DOI: 10.1002/cbf.4057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
White matter hyperintensities (WMHs) refer to a group of diseases with numerous etiologies while oligodendrocytes remain the centerpiece in the pathogenesis of WMHs. Ring Finger Protein 216 (RNF216) encodes a ubiquitin ligase, and its mutation begets WMHs, ataxia, and cognitive decline in patients. Yet no study has revealed the function of RNF216 in oligodendroglia and WHIs before. In this study, we summarized the phenotypes of RNF216-mutation cases and explored the normal distribution of RNF216 in distinct brain regions and neuronal cells by bioinformatic analysis. Furthermore, MO3.13, a human oligodendrocyte cell line, was applied to study the function alteration after RNF216 knockdown. As a result, WMHs were the most common symptom in RNF216-mutated diseases, and RNF216 was indeed relatively enriched in corpus callosum and oligodendroglia in humans. The downregulation of RNF216 in oligodendroglia remarkably hampered cell proliferation by inhibiting the Akt pathway while having no significant effect on cell injury and oligodendrocyte maturation. Combining clinical, bioinformatical, and experimental evidence, our study implied the pivotal role of RNF216 in WMHs which might serve as a potent target in the therapy of WMHs.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Liu ZY, Wang P, Zhai FF, Ao DH, Han F, Li ML, Zhou LX, Ni J, Yao M, Zhang SY, Cui LY, Jin ZY, Zhu YC. Dynamic Mechanism of Cerebral Venous Disruption: Longitudinal Evidence From a Community-Based Cohort. J Am Heart Assoc 2024; 13:e034145. [PMID: 38761086 PMCID: PMC11179834 DOI: 10.1161/jaha.123.034145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND This study aims to investigate the temporal and spatial patterns of structural brain injury related to deep medullary veins (DMVs) damage. METHODS AND RESULTS This is a longitudinal analysis of the population-based Shunyi cohort study. Baseline DMVs numbers were identified on susceptibility-weighted imaging. We assessed vertex-wise cortex maps and diffusion maps at both baseline and follow-up using FSL software and the longitudinal FreeSurfer analysis suite. We performed statistical analysis of global measurements and voxel/vertex-wise analysis to explore the relationship between DMVs number and brain structural measurements. A total of 977 participants were included in the baseline, of whom 544 completed the follow-up magnetic resonance imaging (age 54.97±7.83 years, 32% men, mean interval 5.56±0.47 years). A lower number of DMVs was associated with a faster disruption of white matter microstructural integrity, presented by increased mean diffusivity and radial diffusion (β=0.0001 and SE=0.0001 for both, P=0.04 and 0.03, respectively), in extensive deep white matter (threshold-free cluster enhancement P<0.05, adjusted for age and sex). Of particular interest, we found a bidirectional trend association between DMVs number and change in brain volumes. Specifically, participants with mild DMVs disruption showed greater cortical enlargement, whereas those with severe disruption exhibited more significant brain atrophy, primarily involving clusters in the frontal and parietal lobes (multiple comparison corrected P<0.05, adjusted for age, sex, and total intracranial volume). CONCLUSIONS Our findings posed the dynamic pattern of brain parenchymal lesions related to DMVs injury, shedding light on the interactions and chronological roles of various pathological mechanisms.
Collapse
Affiliation(s)
- Zi-Yue Liu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Pei Wang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Fei-Fei Zhai
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Dong-Hui Ao
- Department of Neurology Wu Han Tong Ji Hospital Wuhan China
| | - Fei Han
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ming-Li Li
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Li-Xin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ming Yao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Shu-Yang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Li-Ying Cui
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Zheng-Yu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yi-Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
18
|
Shajahan S, Peters R, Carcel C, Woodward M, Harris K, Anderson CS. Hypertension and Mild Cognitive Impairment: State-of-the-Art Review. Am J Hypertens 2024; 37:385-393. [PMID: 38214550 DOI: 10.1093/ajh/hpae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Mid-life hypertension is associated with cognitive decline and dementia in later life. Reducing high blood pressure (BP) with antihypertensive agents is a well-researched strategy to prevent dementia and mild cognitive impairment (MCI). However, there is still limited direct evidence to support the approach, and particularly for the treatment of the very old and those with existing MCI. METHODS This review presents an overview of the current evidence for the relationship between MCI and hypertension, and of the potential pathophysiological mechanisms related to cognitive decline and incidence dementia in relation to aging. RESULTS Although observational data are near consistent in showing an association between mid-life hypertension and MCI and/or dementia, the evidence in relation to hypertension in younger adults and the very old (age >80 years) is much more limited. Most of the commonly available antihypertensive agents appear to provide beneficial effects in reducing the risk dementia, but there is limited evidence to support such treatment in those with existing MCI. CONCLUSIONS Further studies are needed to determine the optimal levels of BP control across different age groups, especially in adults with MCI, and which class(es) of antihypertensive agents and duration of treatment best preserve cognitive function in those at risk of, or with established, MCI.
Collapse
Affiliation(s)
- Sultana Shajahan
- Brain Health Program, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Ruth Peters
- Brain Health Program, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Cheryl Carcel
- Brain Health Program, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Woodward
- Brain Health Program, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Professorial Unit, The George Institute for Global Health, School of Public Health, Imperial College London, London, UK
| | - Katie Harris
- Brain Health Program, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Craig S Anderson
- Brain Health Program, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Neurology Department, Royal Prince Alfred Hospital, Sydney Health Partners, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Pacholko A, Iadecola C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024; 81:991-1007. [PMID: 38426329 PMCID: PMC11023809 DOI: 10.1161/hypertensionaha.123.21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
20
|
Wu Y, Zhang Z, Li Q, Yuan X, Ren J, Chen Y, Zhu H. Clinical study on the efficacy of postural control combined with electroacupuncture in treating dysphagia after stroke. Front Neurol 2024; 15:1296758. [PMID: 38689882 PMCID: PMC11060152 DOI: 10.3389/fneur.2024.1296758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Objective To evaluate the clinical effectiveness of combining postural control with electroacupuncture in the treatment of dysphagia following stroke, with the goal of establishing a solid clinical foundation for this therapeutic approach and investigating potential mechanisms to stimulate additional research and progress in post-stroke dysphagia management. Methods 138 patients who met the diagnostic and inclusion criteria were enrolled and divided into control group and observation group. Both groups received conventional rehabilitation training. Additionally, the control group received swallowing training and diet optimize, while the observation group received swallowing training, diet optimize, posture control as well as electroacupuncture therapy. After four weeks, swallowing function was assessed and compared between the two groups using the Standardized Swallowing Assessment (SSA) score and water swallowing test (WST). Results Patients who underwent postural control therapy in combination with electroacupuncture demonstrated significantly higher treatment efficacy compared to the control group. Notably, The SSA score and WST score in both groups decreased significantly, and the observation group showed more improvements in aspiration compared to the control group. Conclusion The integration of posture control, electroacupuncture, and conventional rehabilitation training can effectively lower the degree of post-stroke swallowing disorders, restore swallowing function, and significantly reduce the occurrence of complications such as aspiration, fever, and nutritional disorders. Moreover, this approach significantly improves the quality of life of patients and is more effective than conventional rehabilitation training in treating post-stroke swallowing disorders. Clinical trial registration https://www.chictr.org.cn/, Identifier ChiCTR2300075870.
Collapse
Affiliation(s)
- Yanli Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Gezhouba Central Hospital of Sinopharm, Yichang, China
| | | | - Qing Li
- Macheng Hospital of Traditional Chinese Medicine, Macheng, China
| | - Xiu Yuan
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiange Ren
- Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Yulin Chen
- Caidian District People’s Hospital of Wuhan, Wuhan, China
| | - He Zhu
- Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
21
|
Matsui Y, Muramatsu F, Nakamura H, Noda Y, Matsumoto K, Kishima H, Takakura N. Brain-derived endothelial cells are neuroprotective in a chronic cerebral hypoperfusion mouse model. Commun Biol 2024; 7:338. [PMID: 38499610 PMCID: PMC10948829 DOI: 10.1038/s42003-024-06030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Whether organ-specific regeneration is induced by organ-specific endothelial cells (ECs) remains unelucidated. The formation of white matter lesions due to chronic cerebral hypoperfusion causes cognitive decline, depression, motor dysfunction, and even acute ischemic stroke. Vascular ECs are an important target for treating chronic cerebral hypoperfusion. Brain-derived ECs transplanted into a mouse chronic cerebral hypoperfusion model showed excellent angiogenic potential. They were also associated with reducing both white matter lesions and brain dysfunction possibly due to the high expression of neuroprotective humoral factors. The in vitro coculture of brain cells with ECs from several diverse organs suggested the function of brain-derived endothelium is affected within a brain environment due to netrin-1 and Unc 5B systems. We found brain CD157-positive ECs were more proliferative and beneficial in a mouse model of chronic cerebral hypoperfusion than CD157-negative ECs upon inoculation. We propose novel methods to improve the symptoms of chronic cerebral hypoperfusion using CD157-positive ECs.
Collapse
Affiliation(s)
- Yuichi Matsui
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshimi Noda
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kinnosuke Matsumoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
22
|
Fu X, Sun P, Zhang X, Zhu D, Qin Q, Lu J, Wang J. GABA in the anterior cingulate cortex mediates the association of white matter hyperintensities with executive function: a magnetic resonance spectroscopy study. Aging (Albany NY) 2024; 16:4282-4298. [PMID: 38441529 PMCID: PMC10968699 DOI: 10.18632/aging.205585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
White matter hyperintensities (WMH) and gamma-aminobutyric acid (GABA) are associated with executive function. Multiple studies suggested cortical alterations mediate WMH-related cognitive decline. The aim of this study was to investigate the crucial role of cortical GABA in the WMH patients. In the 87 WMH patients (46 mild and 41 moderate to severe) examined in this study, GABA levels in the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) assessed by the Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence, WMH volume and executive function were compared between the two groups. Partial correlation and mediation analyses were carried out to examine the GABA levels in mediating the association between WMH volume and executive function. Patients with moderate to severe WMH had lower GABA+/Cr in the ACC (p = 0.034) and worse executive function (p = 0.004) than mild WMH patients. In all WMH cases, the GABA+/Cr levels in the ACC mediated the negative correlation between WMH and executive function (ab: effect = -0.020, BootSE = 0.010, 95% CI: -0.042 to -0.004). This finding suggested GABA+/Cr levels in the ACC might serve as a protective factor or potential target for preventing the occurrence and progression of executive function decline in WMH people.
Collapse
Affiliation(s)
- Xiaona Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Peng Sun
- Clinical and Technical Support, Philips Healthcare, Beijing 100600, China
| | - Xinli Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Dongyong Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Qian Qin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Jue Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| |
Collapse
|
23
|
Zhao HY, Zhang ZQ, Huang YH, Li H, Wei FY. Performance of the walking trail making test in older adults with white matter hyperintensities. World J Psychiatry 2024; 14:102-110. [PMID: 38327891 PMCID: PMC10845218 DOI: 10.5498/wjp.v14.i1.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Several studies have reported that the walking trail making test (WTMT) completion time is significantly higher in patients with developmental coordination disorders and mild cognitive impairments. We hypothesized that WTMT performance would be altered in older adults with white matter hyperintensities (WMH). AIM To explore the performance in the WTMT in older people with WMH. METHODS In this single-center, observational study, 25 elderly WMH patients admitted to our hospital from June 2019 to June 2020 served as the WMH group and 20 participants matched for age, gender, and educational level who were undergoing physical examination in our hospital during the same period served as the control group. The participants completed the WTMT-A and WTMT-B to obtain their gait parameters, including WTMT-A completion time, WTMT-B completion time, speed, step length, cadence, and stance phase percent. White matter lesions were scored according to the Fazekas scale. Multiple neuropsychological assessments were carried out to assess cognitive function. The relationships between WTMT performance and cognition and motion in elderly patients with WMH were analyzed by partial Pearson correlation analysis. RESULTS Patients with WMH performed significantly worse on the choice reaction test (CRT) (0.51 ± 0.09 s vs 0.44 ± 0.06 s, P = 0.007), verbal fluency test (VFT, 14.2 ± 2.75 vs 16.65 ± 3.54, P = 0.012), and digit symbol substitution test (16.00 ± 2.75 vs 18.40 ± 3.27, P = 0.010) than participants in the control group. The WMH group also required significantly more time to complete the WTMT-A (93.00 ± 10.76 s vs 70.55 ± 11.28 s, P < 0.001) and WTMT-B (109.72 ± 12.26 s vs 82.85 ± 7.90 s, P < 0.001). WTMT-A completion time was positively correlated with CRT time (r = 0.460, P = 0.001), while WTMT-B completion time was negatively correlated with VFT (r = -0.391, P = 0.008). On the WTMT-A, only speed was found to statistically differ between the WMH and control groups (0.803 ± 0.096 vs 0.975 ± 0.050 m/s, P < 0.001), whereas on the WTMT-B, the WMH group exhibited a significantly lower speed (0.778 ± 0.111 vs 0.970 ± 0.053 m/s, P < 0.001) and cadence (82.600 ± 4.140 vs 85.500 ± 5.020 steps/m, P = 0.039), as well as a higher stance phase percentage (65.061 ± 1.813% vs 63.513 ± 2.465%, P = 0.019) relative to controls. CONCLUSION Older adults with WMH showed obviously poorer WTMT performance. WTMT could be a potential indicator for cognitive and motor deficits in patients with WMH.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Neurology, No. 984 Hospital of PLA, Beijing 100094, China
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Zhi-Qiang Zhang
- Mental Health Institute of Inner Mongolia Autonomous Region, The Third Hospital of Inner Mongolia Autonomous Region, Hohhot 010010, Inner Mongolia Autonomous Region, China
| | - Yong-Hua Huang
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Hong Li
- Department of Neurosurgery, No. 984 Hospital of PLA, Beijing 100094, China
| | - Fang-Yuan Wei
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing 100029, China
| |
Collapse
|
24
|
Yang X, Chang L, Liu Z, Geng X, Wang R, Yin X, Fan W, Zhao BQ. Neddylation in the chronically hypoperfused corpus callosum: MLN4924 reduces blood-brain barrier injury via ERK5/KLF2 signaling. Exp Neurol 2024; 371:114587. [PMID: 37914067 DOI: 10.1016/j.expneurol.2023.114587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Blood-brain barrier (BBB) breakdown and cerebrovascular dysfunction may contribute to the pathology in white matter lesions and consequent cognitive decline caused by cerebral hypoperfusion. Neddylation is the process of attaching a ubiquitin-like molecule NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8) to specific targets. By modifying protein substrates, neddylation plays critical roles in various important biological processes. However, whether neddylation influences the pathogenesis of hypoperfused brain remains unclear. In the present study, cerebral hypoperfusion-induced white matter lesions were produced by bilateral common carotid artery stenosis in mice. The function of the neddylation pathway, BBB integrity, cerebrovascular dysfunction, myelin density in the corpus callosum and cognitive function were determined. We show that NEDD8 conjugation aberrantly amplified in microvascular endothelium in the corpus callosum following cerebral hypoperfusion. MLN4924, a small-molecule inhibitor of NEDD8-activating enzyme currently in clinical trials, preserved BBB integrity, attenuated glial activation and enhanced oligodendrocyte differentiation, and reduced hypoperfusion-induced white matter lesions in the corpus callosum and thus improved cognitive performance via inactivating cullin-RING E3 ligase (CRL). Administration of MLN4924 caused the accumulation of ERK5 and KLF2. The ERK5 inhibitor BIX 02189, down-regulated MLN4924-induced activation of KLF2 and reversed MLN4924-mediated increase in pericyte coverage and junctional proteins. Furthermore, BIX 02189 blocked MLN4924-afforded protection against BBB disruption and white matter lesions in the corpus callosum. Collectively, our results revealed that neddylation impairs vascular function and thus exacerbated the pathology of hypoperfused brain and that inhibition of neddylation with MLN4924 may offer novel therapeutic opportunities for cerebral hypoperfusion-associated cognitive impairment.
Collapse
Affiliation(s)
- Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xue Geng
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xuhui Yin
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Zúñiga Salazar G, Zúñiga D, Balasubramanian S, Mehmood KT, Al-Baldawi S. The Relation Between Arterial Hypertension and Cognitive Impairment: A Literature Review. Cureus 2024; 16:e52782. [PMID: 38389623 PMCID: PMC10882260 DOI: 10.7759/cureus.52782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The global increase in dementia cases, driven by improved life expectancy and reduced elderly mortality rates, presents a significant public health challenge. Dementia, characterized by a gradual and irreversible decline in cognitive abilities, affects individuals aged 65 and older, disrupting lives and straining healthcare systems. Hypertension significantly influences dementia development. Research consistently links midlife hypertension to cognitive decline, mild cognitive impairment (MCI), and dementia, but findings in older adults vary. While some studies suggest that late-life hypertension accelerates cognitive decline and dementia risk, others propose a protective effect. The impact of hypertension on cognition varies across age groups, spanning from childhood to late life. High blood pressure during midlife and earlier life stages consistently predicts poorer cognitive outcomes. Executive function, attention, and motor speed are the cognitive domains most affected by hypertension, particularly in subcortical diseases. Memory impairments in hypertension-related dementias are complex, often overlapping with other causes. Understanding the inconsistent findings in older adults regarding hypertension, cognitive decline, and dementia risk requires comprehensive exploration of methodological and biological factors. Addressing hypertension and its management may hold the key to reducing the risk of cognitive decline and dementia, especially in midlife and earlier life stages.
Collapse
Affiliation(s)
| | - Diego Zúñiga
- Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | | | | | | |
Collapse
|
26
|
Wu B, Huang D, Yi Z, Yu F, Liu L, Tang X, Jing K, Fan J, Pan C. Correlation between body composition and white matter hyperintensity in patients with acute ischemic stroke. Medicine (Baltimore) 2023; 102:e36497. [PMID: 38115357 PMCID: PMC10727575 DOI: 10.1097/md.0000000000036497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
White matter hyperintensity (WMH) burden is associated with a higher risk of ischemic stroke. The relationship between WMH and obesity is somewhat controversial which might be interfered by different body composition such as skeletal muscle, fat and bone density. However, few researchers have evaluated the relationship between WMH burden and disaggregated body constituents in acute ischemic stroke (AIS) patients systematically. A total of 352 AIS patients were enrolled in this study. The subcutaneous adipose tissue, erector spinae muscle area and bone density were evaluated on the computed tomography scanning. The burden of WMH was evaluated using the Fazekas scale based on the fluid-attenuated inversion recovery sequence. The severity of overall WMH was defined as none-mild WMH (total Fazekas score 0-2) or moderate-severe WMH (total Fazekas score 3-6). Based on the severity of periventricular WMH (P-WMH) and deep WMH, patients were categorized into either a none-mild (Fazekas score 0-1) group or a moderate-severe (Fazekas score 2-3) group. We found that patients with moderate-severe WMH showed lower bone density and smaller erector spinae muscle area and subcutaneous adipose tissue than none-mild. The logistic regression analysis showed that the bone density was independently associated with moderate-severe overall WMH (odds radio = 0.98, 95% confidence interval, 0.972-0.992, P < .001) and similar results were found in the analyses according to P-WMH (odds radio = 0.98, 95% confidence interval, 0.972-0.992, P < .001). These findings suggest that among the AIS body composition, the bone density is independently associated with the severity of overall WMH and P-WMH.
Collapse
Affiliation(s)
- Bin Wu
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
| | - Dong Huang
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
- Jishou University, Jishou, People’s Republic of China
| | - Ziwei Yi
- The Forth People’s Hospital of Huaihua, Huaihua, People’s Republic of China
| | - Fang Yu
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
| | - Li Liu
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
| | - Xianbi Tang
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
| | - Kaiquan Jing
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
| | - Jiangli Fan
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
| | - Chuzheng Pan
- Department of Neurology, Hunan University of Medicine General Hospital, Huaihua, People’s Republic of China
- The Advanced Stroke Center of China, Huaihua, People’s Republic of China
| |
Collapse
|
27
|
Del Brutto OH, Rumbea DA, Mera RM. Incompleteness of the Circle of Willis and progression of white matter hyperintensities of presumed vascular origin. A longitudinal prospective study in community-dwelling older adults. J Stroke Cerebrovasc Dis 2023; 32:107298. [PMID: 37562179 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Evidence on the association between anatomical variants of the circle of Willis (CoW) and severity of white matter hyperintensities (WMH) of presumed vascular origin is inconclusive, and no study has evaluated the role of incompleteness of CoW on WMH progression in the follow-up. This study aims to assess the impact of incomplete configurations of the CoW on WMH progression in community-dwelling older adults. METHODS Following a prospective longitudinal study design, individuals aged ≥60 years enrolled in the Atahualpa Project Cohort from 2012 to 2019 were invited to receive baseline brain MRI and MRA of intracranial vessels, and those who also had brain MRIs at the end of the study (May 2021) were included in the analysis. Poisson regression models, adjusted for demographics and cardiovascular risk factors, were fitted to assess the incidence rate ratio (IRR) of WMH progression according to incompleteness of CoW. RESULTS This study included 254 individuals (mean age: 65.4±5.9 years; 55% women). An incomplete CoW was detected in 99 (39%) subjects. Follow-up MRIs showed WMH progression in 103 (41%) individuals after a median follow-up of 6.5±1.4 years. WMH progression was observed in 58/155 subjects with complete and in 45/99 with incomplete CoW (37% versus 45%; p=0.203). There was no association between incomplete CoW and WMH progression in a multivariate Poisson regression model (IRR: 1.21; 95% C.I.: 0.81 - 1.82). CONCLUSIONS Study results show that incompleteness of CoW is not involved in WMH progression.
Collapse
Affiliation(s)
- Oscar H Del Brutto
- School of Medicine and Research Center, Km 2.5 Puntilla-Sambortondón, Universidad Espiritu Santo, Samborondón 092301, Ecuador.
| | - Denisse A Rumbea
- School of Medicine and Research Center, Km 2.5 Puntilla-Sambortondón, Universidad Espiritu Santo, Samborondón 092301, Ecuador
| | - Robertino M Mera
- Biostatistics/Epidemiology, Freenome, Inc., South San Francisco, CA, USA
| |
Collapse
|
28
|
Jian X, Xu F, Yang M, Zhang M, Yun W. Correlation between enlarged perivascular space and brain white matter hyperintensities in patients with recent small subcortical infarct. Brain Behav 2023; 13:e3168. [PMID: 37464257 PMCID: PMC10498058 DOI: 10.1002/brb3.3168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND This study aimed to investigate the correlation between enlarged perivascular space (EPVS) and white matter hyperintensities (WMH) at different locations in patients with recent small subcortical infarct (RSSI). METHODS Data were collected from patients with RSSI who were hospitalized at Changzhou Second People's Hospital between October 2020 and December 2021. All patients underwent cranial magnetic resonance imaging, and the grades of EPVS and WMH were assessed, including basal ganglia EPVS (BG-EPVS), centrum semiovale EPVS (CSO-EPVS), deep WMH (DWMH), and periventricular WMH (PWMH). The volumes of EPVS and WMH at different locations were quantified using 3D Slicer software. Patients were grouped according to the severity of BG-EPVS and CSO-EPVS. Univariate and multivariate analyses were used to analyze the relationship between EPVS and WMH. RESULTS A total of 215 patients with RSSI were included in the analysis. Patients with moderate-to-severe BG-EPVS had higher DWMH and PWMH severity than those with mild BG-EPVS, both in terms of volume and grade. There was no significant difference in WMH severity between patients with mild CSO-EPVS and those with moderate-to-severe CSO-EPVS. Multivariate analysis indicated that after adjustments were made for confounding factors, DWMH volume (β = 0.311; 95% CI, 0.089-0.400; p = .002) and PWMH volume (β = 0.296; 95% CI, 0.083-0.424; p = .004) were independently associated with BG-EPVS. Pearson correlation showed that PWMH volume (r = .589; p < .001) and DWMH volume (r = .596; p < .001) were positively related to BG-EPVS volume. CONCLUSION DWMH and PWMH are closely related to BG-EPVS in patients with RSSI.
Collapse
Affiliation(s)
- Xiuli Jian
- Department of NeurologyChangzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Fubiao Xu
- Department of CardiologyHeze Municipal HospitalHezeChina
| | - Mi Yang
- Department of NeurologyChangzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Min Zhang
- Department of NeurologyChangzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Wenwei Yun
- Department of NeurologyChangzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
29
|
Su Y, Wu W, Qin Z, Li C, Zhao J, Kang J, Wang Y, Zheng C, Haacke EM, Wang L. Deep gray matters iron deposition is positively associated with white matter hyperintensity in hypertension. J Clin Hypertens (Greenwich) 2023; 25:768-777. [PMID: 37491795 PMCID: PMC10423754 DOI: 10.1111/jch.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
The association and underlying mechanisms between iron deposition and white matter hyperintensity (WMH) remain unclear. In this study, quantitative susceptibility mapping (QSM) was used to quantify deep gray matters iron deposition and to explore the association from both global and regional perspectives. A total of 84 patients with hypertension and 26 healthy controls underwent a strategically acquired gradient echo (STAGE) protocol, and the multi-echo data were used to reconstruct QSM images. The susceptibilities were used to describe iron content. Global region (RI) susceptibilities were measured in regions of interest, and age-related thresholds were used to determine high-iron content region (RII) susceptibilities. Compared with healthy controls, hypertension had higher total WMH scores and regional scores (all p = .001) and higher susceptibilities using the RI or RII analysis (all p < .05). In healthy controls, there was no significant association between susceptibilities and WMH scores. In hypertension, the susceptibilities of deep gray matters were positively correlated with WMH scores (RI analysis: right putamen; RII analysis: bilateral caudate nucleus head, putamen, red nucleus, substantia nigra, and dentate nucleus; age and education corrected p < .05). These findings suggest that iron deposition in deep gray matters was positively associated with WMH in hypertension, especially using the RII analysis.
Collapse
Affiliation(s)
- Yu Su
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Wenjun Wu
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Ziji Qin
- Department of RadiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Chungao Li
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Jie Zhao
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Jiamin Kang
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Youzhi Wang
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Chuansheng Zheng
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| | - Ewart Mark Haacke
- Magnetic Resonance InnovationsBingham FarmsMichiganUSA
- Department of RadiologyWayne State UniversityDetroitMichiganUSA
| | - Lixia Wang
- Department of RadiologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Molecular ImagingWuhanChina
| |
Collapse
|
30
|
Wang JY, Sonico GJ, Salcedo-Arellano MJ, Hagerman RJ, Martinez-Cerdeno V. A Postmortem MRI Study of Cerebrovascular Disease and Iron Content at End-Stage of Fragile X-Associated Tremor/Ataxia Syndrome. Cells 2023; 12:1898. [PMID: 37508562 PMCID: PMC10377990 DOI: 10.3390/cells12141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Brain changes at the end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy and iron content, and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases, among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus and frontoparietal white matter, and significant atrophy in the cerebellar white matter, red nucleus and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus and amygdala, that were independent from a highly correlated number of regions with ICH and iron content in subcortical nuclei. Post-hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus and amygdala in FXTAS cases compared to controls, after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former being marked by demyelination/iron depletion and atrophy, and the latter by ICH and iron accumulation in basal ganglia.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA
| | - Gerard J. Sonico
- Imaging Research Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Maria Jimena Salcedo-Arellano
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA;
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Randi J. Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA;
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA;
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| |
Collapse
|
31
|
He Y, Li Z, Shi X, Ding J, Wang X. Roles of NG2 Glia in Cerebral Small Vessel Disease. Neurosci Bull 2023; 39:519-530. [PMID: 36401147 PMCID: PMC10043141 DOI: 10.1007/s12264-022-00976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.
Collapse
Affiliation(s)
- Yixi He
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenghao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, NMU, Shanghai, 200433, China
| | - Xiaoyu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
32
|
Abstract
Cerebral small vessel disease (CSVD) has emerged as a common factor driving age-dependent diseases, including stroke and dementia. CSVD-related dementia will affect a growing fraction of the aging population, requiring improved recognition, understanding, and treatments. This review describes evolving criteria and imaging biomarkers for the diagnosis of CSVD-related dementia. We describe diagnostic challenges, particularly in the context of mixed pathologies and the absence of highly effective biomarkers for CSVD-related dementia. We review evidence regarding CSVD as a risk factor for developing neurodegenerative disease and potential mechanisms by which CSVD leads to progressive brain injury. Finally, we summarize recent studies on the effects of major classes of cardiovascular medicines relevant to CSVD-related cognitive impairment. Although many key questions remain, the increased attention to CSVD has resulted in a sharper vision for what will be needed to meet the upcoming challenges imposed by this disease.
Collapse
Affiliation(s)
- Fanny M. Elahi
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- Neurology Service, VA Bronx Healthcare System, Bronx, NY
| | - Michael M. Wang
- Departments of Neurology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI
| | | |
Collapse
|
33
|
Lee SJ, Kondepudi A, Young KZ, Zhang X, Cartee NMP, Chen J, Jang KY, Xu G, Borjigin J, Wang MM. Concentration of non-myocyte proteins in arterial media of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. PLoS One 2023; 18:e0281094. [PMID: 36753487 PMCID: PMC9907840 DOI: 10.1371/journal.pone.0281094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The most common inherited cause of vascular dementia and stroke, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), is caused by mutations in NOTCH3. Post-translationally altered NOTCH3 accumulates in the vascular media of CADASIL arteries in areas of the vessels that exhibit profound cellular degeneration. The identification of molecules that concentrate in the same location as pathological NOTCH3 may shed light on processes that drive cytopathology in CADASIL. We performed a two phase immunohistochemical screen of markers identified in the Human Protein Atlas to identify new proteins that accumulate in the vascular media in a pattern similar to pathological NOTCH3. In phase one, none of 16 smooth muscle cell (SMC) localized antigens exhibited NOTCH3-like patterns of expression; however, several exhibited disease-dependent patterns of expression, with antibodies directed against FAM124A, GZMM, MTFR1, and ST6GAL demonstrating higher expression in controls than CADASIL. In contrast, in phase two of the study that included 56 non-SMC markers, two proteins, CD63 and CTSH, localized to the same regions as pathological NOTCH3, which was verified by VesSeg, a customized algorithm that assigns relative location of antigens within the layers of the vessel. Proximity ligation assays support complex formation between NOTCH3 fragments and CD63 in degenerating CADASIL media. Interestingly, in normal mouse brain, the two novel CADASIL markers, CD63 and CTSH, are expressed in non-SMC vascular cells. The identification of new proteins that concentrate in CADASIL vascular media demonstrates the utility of querying publicly available protein databases in specific neurological diseases and uncovers unexpected, non-SMC origins of pathological antigens in small vessel disease.
Collapse
Affiliation(s)
- Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Akhil Kondepudi
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Kelly Z. Young
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Naw May Pearl Cartee
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Jijun Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Krystal Yujin Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Gang Xu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jimo Borjigin
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wang JY, Sonico GJ, Salcedo-Arellano MJ, Hagerman RJ, Martínez-Cerdeño V. A postmortem MRI study of cerebrovascular disease and iron content at end-stage of fragile X-associated tremor/ataxia syndrome. RESEARCH SQUARE 2023:rs.3.rs-2440612. [PMID: 36711694 PMCID: PMC9882645 DOI: 10.21203/rs.3.rs-2440612/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Brain changes at end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy, and iron content and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus, and frontoparietal white matter and significant atrophy in cerebellar white matter, red nucleus, and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus, and amygdala, that were independent from highly correlated number of regions with ICH and iron content in subcortical nuclei. Post hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus, and amygdala in FXTAS cases than controls after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former marked by demyelination/iron depletion and atrophy and the latter, ICH and iron accumulation in basal ganglia.
Collapse
|
35
|
Fu X, Zhang W, Li X, Liu H, Zhang Y, Gao Q. Critical closing pressure as a new hemodynamic marker of cerebral small vessel diseases burden. Front Neurol 2023; 14:1091075. [PMID: 37025201 PMCID: PMC10071665 DOI: 10.3389/fneur.2023.1091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To investigate cerebrovascular hemodynamics, including critical closing pressure (CrCP) and pulsatility index (PI), and their independent relationship with cerebral small vessel disease (CSVD) burden in patients with small-vessel occlusion (SVO). Methods We recruited consecutive patients with SVO of acute cerebral infarction who underwent brain magnetic resonance imaging (MRI), transcranial Doppler (TCD) and CrCP during admission. Cerebrovascular hemodynamics were assessed using TCD. We used the CSVD score to rate the total MRI burden of CSVD. Multiple regression analysis was used to determine parameters related to CSVD burden or CrCP. Results Ninety-seven of 120 patients (mean age, 64.51 ± 9.99 years; 76% male) completed the full evaluations in this study. We observed that CrCP was an independent determinant of CSVD burden in four models [odds ratio, 1.41; 95% confidence interval (CI), 1.17-1.71; P < 0.001] and correlated with CSVD burden [β (95% CI): 0.05 (0.04-0.06); P < 0.001]. In ROC analysis, CrCP was considered as a predictor of CSVD burden, and AUC was 86.2% (95% CI, 78.6-93.9%; P < 0.001). Multiple linear regression analysis showed that CrCP was significantly correlated with age [β (95% CI): 0.27 (0.06 to 0.47); P = 0.012], BMI [β (95% CI): 0.61 (0.00-1.22)] and systolic BP [β (95% CI): 0.16 (0.09-0.23); P < 0.001]. Conclusions CrCP representing cerebrovascular tension is an independent determinant and predictor of CSVD burden. It was significantly correlated with age, BMI and systolic blood pressure. These results provide new insights in the mechanism of CSVD development.
Collapse
Affiliation(s)
- Xian Fu
- Department of Neurology, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China
- Xian Fu
| | - Weijin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianliang Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongying Liu
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingchun Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qingchun Gao
| |
Collapse
|
36
|
Hong H, Wang S, Yu X, Jiaerken Y, Guan X, Zeng Q, Yin X, Zhang R, Zhang Y, Zhu Z, Huang P, Zhang M. White Matter Tract Injury by MRI in CADASIL Patients is Associated With Iron Accumulation. J Magn Reson Imaging 2023; 57:238-245. [PMID: 35735742 DOI: 10.1002/jmri.28301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Widespread white matter (WM) injury is a hallmark feature of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, controversies about the mechanism of WM tract injury exist persistently. Excessive iron accumulation, frequently reported in CADASIL patients, might cause WM tract injury. PURPOSE To test the association between iron accumulation and WM tract injury in CADASIL patients. STUDY TYPE Retrospective. POPULATION A total of 35 CADASIL patients (age = 50.4 ± 6.4, 62.9% female) and 48 healthy controls (age = 55.7 ± 8.0, 68.8% female). FIELD STRENGTH/SEQUENCE Diffusion-weighted spin-echo echo-planar sequence; enhanced susceptibility-weighted angiography (ESWAN) gradient echo sequence on a 3 T scanner. ASSESSMENT The phase images acquired by ESWAN were used to calculate quantitative susceptibility mapping (QSM). Iron accumulation was evaluated in deep gray matters using QSM. WM tract injury was quantified by diffusion metrics based on WM major tracts skeleton. We compared iron deposition between groups and analyzed the correlation between WM tract injury and iron deposition in regions showing significant differences from healthy controls. Exploratory analysis was carried out to investigate whether WM tract injury mediated the relationship between iron deposition and cognitive impairment evaluated by Mini-Mental State Examination (MMSE). STATISTICAL TESTS General linear model (GLM), partial correlation, stepwise linear regression and mediation analysis were used. The threshold of statistical significance was set as p < 0.05. RESULTS Compared with healthy controls, CADASIL patients had significantly increased iron deposition in the caudate and putamen. Aberrant iron deposition in these two regions was significantly associated with decreased WM fractional anisotropy (FA) (caudate, r = -0.373; putamen, r = - 0.421), and increased radial diffusivity (RD) (caudate, r = 0.372; putamen, r = 0.386). Furthermore, WM tract injury mediated the relationship between iron deposition and cognitive impairment. DATA CONCLUSION Patients with CADASIL show increased iron deposition in the caudate and putamen that is correlated to WM tract injury, which may in turn mediate the association with cognitive impairment. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zili Zhu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Cheon SY, Song J. Novel insights into non-alcoholic fatty liver disease and dementia: insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and inflammation. Cell Biosci 2022; 12:99. [PMID: 35765060 PMCID: PMC9237975 DOI: 10.1186/s13578-022-00836-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023] Open
Abstract
AbstractNon-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by multiple pathologies. The progression of dementia with NAFLD may be affected by various risk factors, including brain insulin resistance, cerebrovascular dysfunction, gut dysbiosis, and neuroinflammation. Many recent studies have focused on the increasing prevalence of dementia in patients with NAFLD. Dementia is characterized by cognitive and memory deficits and has diverse subtypes, including vascular dementia, Alzheimer’s dementia, and diabetes mellitus-induced dementia. Considering the common pathological features of NAFLD and dementia, further studies on the association between them are needed to find appropriate therapeutic solutions for diseases. This review summarizes the common pathological characteristics and mechanisms of NAFLD and dementia. Additionally, it describes recent evidence on association between NAFLD and dementia progression and provides novel perspectives with regard to the treatment of patients with dementia secondary to NAFLD.
Collapse
|
38
|
Yu W, Li Y, Hu J, Wu J, Huang Y. A Study on the Pathogenesis of Vascular Cognitive Impairment and Dementia: The Chronic Cerebral Hypoperfusion Hypothesis. J Clin Med 2022; 11:jcm11164742. [PMID: 36012981 PMCID: PMC9409771 DOI: 10.3390/jcm11164742] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The pathogenic mechanisms underlying vascular cognitive impairment and dementia (VCID) remain controversial due to the heterogeneity of vascular causes and complexity of disease neuropathology. However, one common feature shared among all these vascular causes is cerebral blood flow (CBF) dysregulation, and chronic cerebral hypoperfusion (CCH) is the universal consequence of CBF dysregulation, which subsequently results in an insufficient blood supply to the brain, ultimately contributing to VCID. The purpose of this comprehensive review is to emphasize the important contributions of CCH to VCID and illustrate the current findings about the mechanisms involved in CCH-induced VCID pathological changes. Specifically, evidence is mainly provided to support the molecular mechanisms, including Aβ accumulation, inflammation, oxidative stress, blood-brain barrier (BBB) disruption, trophic uncoupling and white matter lesions (WMLs). Notably, there are close interactions among these multiple mechanisms, and further research is necessary to elucidate the hitherto unsolved questions regarding these interactions. An enhanced understanding of the pathological features in preclinical models could provide a theoretical basis, ultimately achieving the shift from treatment to prevention.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Yao Li
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen 518036, China
- Correspondence: (J.W.); (Y.H.); Tel.: +86-0755-8392-2833 (J.W.); +86-010-83572857 (Y.H.)
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street Xicheng District, Beijing 100034, China
- Correspondence: (J.W.); (Y.H.); Tel.: +86-0755-8392-2833 (J.W.); +86-010-83572857 (Y.H.)
| |
Collapse
|
39
|
Liu ZY, Zhai FF, Han F, Li ML, Zhou L, Ni J, Yao M, Zhang SY, Cui LY, Jin ZY, Zhu YC. Regional Disruption of White Matter Integrity and Network Connectivity Are Related to Cognition. J Alzheimers Dis 2022; 89:593-603. [PMID: 35912739 DOI: 10.3233/jad-220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cognitive impairment is common in the elderly population. Exploring patterns of white matter damage at the microstructural level would give important indications for the underlying mechanisms. OBJECTIVE To investigate the spatial patterns of white matter microstructure and structural network alternations in relation to different cognition domainsMethods:Participants from the community-based Shunyi Study were included to investigate the association between white matter measurements and cognition cross-sectionally, via both global and local analysis. Cognitive functions were assessed using digit span, trail making test (TMT)-A/B, Fuld object Memory, and 12-Word Philadelphia Verbal Learning Test (PVLT). White matter measurements including fractional anisotropy (FA), mean diffusivity (MD), and structural network parameters were calculated based on diffusion tensor imaging. RESULTS Of the 943 participants included, the mean (SD) age was 55.8 (9.1) years, and the mean (SD) education level was 6.7 (3.2) years. We found the whole set of cognitive measurements was related to diffused white matter microstructural integrity damage and lower global efficiency. Poor executive functions (TMTA/B complete time) were related to lower FA and higher MD predominantly on the anterior white matter skeleton, while verbal memory loss (PVLT test scores) was related to sub-network dysconnectivity in the midline and the right temporal lobe. CONCLUSION The anterior brain is dominantly involved in executive dysfunction, while midline and right temporal brain disconnection are more prominent in verbal memory loss. Global and regional disruption of white matter integrity and network connectivity is the anatomical basis of the cognitive impairment in the aging population.
Collapse
Affiliation(s)
- Zi-Yue Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei-Fei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Li Li
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixin Zhou
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Pani J, Eikenes L, Reitlo LS, Stensvold D, Wisløff U, Håberg AK. Effects of a 5-Year Exercise Intervention on White Matter Microstructural Organization in Older Adults. A Generation 100 Substudy. Front Aging Neurosci 2022; 14:859383. [PMID: 35847676 PMCID: PMC9278017 DOI: 10.3389/fnagi.2022.859383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Aerobic fitness and exercise could preserve white matter (WM) integrity in older adults. This study investigated the effect on WM microstructural organization of 5 years of exercise intervention with either supervised moderate-intensity continuous training (MICT), high-intensity interval training (HIIT), or following the national physical activity guidelines. A total of 105 participants (70-77 years at baseline), participating in the randomized controlled trial Generation 100 Study, volunteered to take part in this longitudinal 3T magnetic resonance imaging (MRI) study. The HIIT group (n = 33) exercised for four intervals of 4 min at 90% of peak heart rate two times a week, the MICT group (n = 24) exercised continuously for 50 min at 70% peak heart rate two times a week, and the control group (n = 48) followed the national guidelines of ≥30 min of physical activity almost every day. At baseline and at 1-, 3-, and 5-year follow-ups, diffusion tensor imaging (DTI) scans were performed, cardiorespiratory fitness (CRF) was measured as peak oxygen uptake (VO2peak) with ergospirometry, and information on exercise habits was collected. There was no group*time or group effect on any of the DTI indices at any time point during the intervention. Across all groups, CRF was positively associated with fractional anisotropy (FA) and axial diffusivity (AxD) at the follow-ups, and the effect became smaller with time. Exercise intensity was associated with mean diffusivity (MD)/FA, with the greatest effect at 1-year and no effect at 5-year follow-up. There was an association between exercise duration and FA and radial diffusivity (RD) only after 1 year. Despite the lack of group*time interaction or group effect, both higher CRF and exercise intensity was associated with better WM microstructural organization throughout the intervention, but the effect became attenuated over time. Different aspects of exercising affected the WM metrics and WM tracts differently with the greatest and most overlapping effects in the corpus callosum. The current study indicates not only that high CRF and exercise intensity are associated with WM microstructural organization in aging but also that exercise's positive effects on WM may decline with increasing age.
Collapse
Affiliation(s)
- Jasmine Pani
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St Olav’s University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Line S. Reitlo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- School of Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
41
|
Del Cuore A, Pacinella G, Riolo R, Tuttolomondo A. The Role of Immunosenescence in Cerebral Small Vessel Disease: A Review. Int J Mol Sci 2022; 23:7136. [PMID: 35806140 PMCID: PMC9266569 DOI: 10.3390/ijms23137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of vascular dementia. Immunosenescence and inflammatory response, with the involvement of the cerebrovascular system, constitute the basis of this disease. Immunosenescence identifies a condition of deterioration of the immune organs and consequent dysregulation of the immune response caused by cellular senescence, which exposes older adults to a greater vulnerability. A low-grade chronic inflammation status also accompanies it without overt infections, an "inflammaging" condition. The correlation between immunosenescence and inflammaging is fundamental in understanding the pathogenesis of age-related CSVD (ArCSVD). The production of inflammatory mediators caused by inflammaging promotes cellular senescence and the decrease of the adaptive immune response. Vice versa, the depletion of the adaptive immune mechanisms favours the stimulation of the innate immune system and the production of inflammatory mediators leading to inflammaging. Furthermore, endothelial dysfunction, chronic inflammation promoted by senescent innate immune cells, oxidative stress and impairment of microglia functions constitute, therefore, the framework within which small vessel disease develops: it is a concatenation of molecular events that promotes the decline of the central nervous system and cognitive functions slowly and progressively. Because the causative molecular mechanisms have not yet been fully elucidated, the road of scientific research is stretched in this direction, seeking to discover other aberrant processes and ensure therapeutic tools able to enhance the life expectancy of people affected by ArCSVD. Although the concept of CSVD is broader, this manuscript focuses on describing the neurobiological basis and immune system alterations behind cerebral aging. Furthermore, the purpose of our work is to detect patients with CSVD at an early stage, through the evaluation of precocious MRI changes and serum markers of inflammation, to treat untimely risk factors that influence the burden and the worsening of the cerebral disease.
Collapse
Affiliation(s)
- Alessandro Del Cuore
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Renata Riolo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
42
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
43
|
Wang J, Chen S, Liang H, Zhao Y, Xu Z, Xiao W, Zhang T, Ji R, Chen T, Xiong B, Chen F, Yang J, Lou H. Fully Automatic Classification of Brain Atrophy on NCCT Images in Cerebral Small Vessel Disease: A Pilot Study Using Deep Learning Models. Front Neurol 2022; 13:846348. [PMID: 35401411 PMCID: PMC8989434 DOI: 10.3389/fneur.2022.846348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Brain atrophy is an important imaging characteristic of cerebral small vascular disease (CSVD). Our study explores the linear measurement application on CT images of CSVD patients and develops a fully automatic brain atrophy classification model. The second aim was to compare it with the end-to-end Convolutional Neural Networks (CNNs) model. Methods A total of 385 subjects such as 107 no-atrophy brain, 185 mild atrophy, and 93 severe atrophy were collected and randomly separated into training set (n = 308) and test set (n = 77). Key slices for linear measurement were manually identified and used to annotate nine linear measurements and a binary classification of cerebral sulci widening. A linear-measurement-based pipeline (2D model) was constructed for two-types (existence/non-existence brain atrophy) or three-types classification (no/mild atrophy/severe atrophy). For comparison, an end-to-end CNN model (3D-deep learning model) for brain atrophy classification was also developed. Furthermore, age and gender were integrated to the 2D and 3D models. The sensitivity, specificity, accuracy, average F1 score, receiver operating characteristics (ROC) curves for two-type classification and weighed kappa for three-type classification of the two models were compared. Results Automated measurement of linear measurements and cerebral sulci widening achieved moderate to almost perfect agreement with manual annotation. In two-type atrophy classification, area under the curves (AUCs) of the 2D model and 3D model were 0.953 and 0.941 with no significant difference (p = 0.250). The Weighted kappa of the 2D model and 3D model were 0.727 and 0.607 according to standard classification they displayed, mild atrophy and severe atrophy, respectively. Applying patient age and gender information improved classification performances of both 2D and 3D models in two-type and three-type classification of brain atrophy. Conclusion We provide a model composed of different modules that can classify CSVD-related brain atrophy on CT images automatically, using linear measurement. It has similar performance and better interpretability than the end-to-end CNNs model and may prove advantageous in the clinical setting.
Collapse
Affiliation(s)
- Jincheng Wang
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sijie Chen
- State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Liang
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Zhao
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziqi Xu
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting Zhang
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renjie Ji
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Xiong
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Chen
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Yang
- Taimei Medical Technology, Shanghai, China
| | - Haiyan Lou
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Haiyan Lou
| |
Collapse
|
44
|
You Q, Yang Y, Hu H. White Matter Hyperintensities and Functional Outcomes in Patients With Cerebral Hemorrhage: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:820012. [PMID: 35386407 PMCID: PMC8978301 DOI: 10.3389/fneur.2022.820012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives There are controversies about white matter hyperintensities (WMH) and the prognosis of spontaneous intracerebral hemorrhage. Our objective is to investigate the relationship between WMH and functional outcomes after intracerebral hemorrhage (ICH). Methods We systematically searched PubMed, EMBASE, and Cochrane Library databases from inception through August 10, 2021 without any restriction of countries. Articles investigating the relationship of WMH and functional outcomes as well as mortality of patients with spontaneous ICH were included. We extracted relevant data and evaluated the study quality with the Newcastle-Ottawa Scale. We pooled odds ratio (OR) for the presence and different severities of WMH with random effects models using STATA. Results A total of 10,584 patients with ICH in 18 studies were included in the analysis. Moderate/severe WMH were related to poor functional outcome [OR, 1.805, 95% confidence interval (CI), 1.320–2.469] and all-cause mortality (OR, 3.27, 95% CI, 2.07–5.18) after ICH. Besides, the increasing severity of WMH was also related to poor functional outcome (OR, 1.34, 95% CI, 1.17–1.53) and all-cause mortality (OR, 1.62, 95% CI, 1.39–1.90). The pooled data did not find the relationship between the presence of WMH and poor functional outcome (OR, 2.54, 95% CI, 0.91–7.05) after ICH. The results remained stable after adjusting for age, hematoma volume, stroke, and intraventricular hemorrhage. Conclusion We found moderate and severe WMH were related to poor functional outcomes and all-cause mortality after ICH. High-quality prospective studies are still needed. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021278409.
Collapse
Affiliation(s)
- Qian You
- Department of Neurology, Beijing Jishuitan Hospital, Beijing, China
| | - Yi Yang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongtao Hu
- Department of Neurology, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Hongtao Hu
| |
Collapse
|
45
|
Badji A, Pereira JB, Shams S, Skoog J, Marseglia A, Poulakis K, Rydén L, Blennow K, Zetterberg H, Kern S, Zettergren A, Wahlund LO, Girouard H, Skoog I, Westman E. Cerebrospinal Fluid Biomarkers, Brain Structural and Cognitive Performances Between Normotensive and Hypertensive Controlled, Uncontrolled and Untreated 70-Year-Old Adults. Front Aging Neurosci 2022; 13:777475. [PMID: 35095467 PMCID: PMC8791781 DOI: 10.3389/fnagi.2021.777475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Hypertension is an important risk factor for Alzheimer's disease (AD). The pathophysiological mechanisms underlying the relationship between AD and hypertension are not fully understood, but they most likely involve microvascular dysfunction and cerebrovascular pathology. Although previous studies have assessed the impact of hypertension on different markers of brain integrity, no study has yet provided a comprehensive comparison of cerebrospinal fluid (CSF) biomarkers and structural brain differences between normotensive and hypertensive groups in a single and large cohort of older adults in relationship to cognitive performances. Objective: The aim of the present work was to investigate the differences in cognitive performances, CSF biomarkers and magnetic resonance imaging (MRI) of brain structure between normotensive, controlled hypertensive, uncontrolled hypertensive, and untreated hypertensive older adults from the Gothenburg H70 Birth Cohort Studies. Methods: As an indicator of vascular brain pathology, we measured white matter hyperintensities (WMHs), lacunes, cerebral microbleeds, enlarged perivascular space (epvs), and fractional anisotropy (FA). To assess markers of AD pathology/neurodegeneration, we measured hippocampal volume, temporal cortical thickness on MRI, and amyloid-β42, phosphorylated tau, and neurofilament light protein (NfL) in cerebrospinal fluid. Various neuropsychological tests were used to assess performances in memory, attention/processing speed, executive function, verbal fluency, and visuospatial abilities. Results: We found more white matter pathology in hypertensive compared to normotensive participants, with the highest vascular burden in uncontrolled participants (e.g., lower FA, more WMHs, and epvs). No significant difference was found in any MRI or CSF markers of AD pathology/neurodegeneration when comparing normotensive and hypertensive participants, nor among hypertensive groups. No significant difference was found in most cognitive functions between groups. Conclusion: Our results suggest that good blood pressure control may help prevent cerebrovascular pathology. In addition, hypertension may contribute to cognitive decline through its effect on cerebrovascular pathology rather than AD-related pathology. These findings suggest that hypertension is associated with MRI markers of vascular pathology in the absence of a significant decline in cognitive functions.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Joana B. Pereira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sara Shams
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Stanford Medicine, Stanford, CA, United States
| | - Johan Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Poulakis
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lina Rydén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Groupe de Recherche sur le Systéme Nerveux Central (GRSNC), Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Different patterns of white matter lesions among patent foramen ovale, atherosclerotic cerebral small vessel disease and cerebral venous thrombosis. J Thromb Thrombolysis 2022; 53:911-925. [PMID: 34985685 DOI: 10.1007/s11239-021-02624-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 01/10/2023]
Abstract
None of studies are available on the predictive ability of white matter lesions (WMLs) among patent foramen ovale (PFO), atherosclerotic cerebral small vessel disease (aCSVD) and cerebral venous thrombosis (CVT). Herein, we aimed to uncover the difference of the WML patterns among the three disease entities in a real-world setting to provide clinical references for predicting probable WML etiologies. We retrospectively reviewed data from consecutive patients with imaging-confirmed PFO, aCSVD, or CVT enrolled from 2014 through 2020. WMLs presented on fluid-attenuated inversion recovery (FLAIR) maps were compared among the three groups based on visual evaluation, Fazekas and modified Scheltens scales. Propensity score matching (PSM) was implemented to correct age and hypertension differences among groups. A total of 401 patients were entered into final analysis, including PFO (n = 112, 46.5 ± 12.8 years), aCSVD (n = 177, 61.6 ± 11.8 years) and CVT (n = 112, 37.4 ± 11.4 years) groups. In this study, WMLs occurred in all of the involved patients in the three groups (100%), which were independent to age, symptom onset and disease durations. On visual evaluation, PFO-WMLs were multiple spots distributed asymmetrically around bilateral subcortex and peri-ventricles. aCSVD-WMLs were dots or sheets distributed symmetrically in subcortex and peri-ventricles, and often coexisted with lacunar infarctions. CVT-WMLs were cloud-like around bilateral peri-ventricles, and enabled to attenuate after recanalization. Fazekas and modified Scheltens scores of PFO-WML vs. aCSVD-WML were significantly different even after being matched by 1:2 PSM (all p < 0.05), meaning that the WML burden in aCSVD was considerably heavier than that in PFO. WML patterns induced by PFO, aCSVD and CVT were obviously different, and were therefore of great clinical significance to preliminarily predict and differentiate the three diseases entities.
Collapse
|
47
|
Rundek T, Tolea M, Ariko T, Fagerli EA, Camargo CJ. Vascular Cognitive Impairment (VCI). Neurotherapeutics 2022; 19:68-88. [PMID: 34939171 PMCID: PMC9130444 DOI: 10.1007/s13311-021-01170-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular cognitive impairment (VCI) is predominately caused by vascular risk factors and cerebrovascular disease. VCI includes a broad spectrum of cognitive disorders, from mild cognitive impairment to vascular dementia caused by ischemic or hemorrhagic stroke, and vascular factors alone or in a combination with neurodegeneration including Alzheimer's disease (AD) and AD-related dementia. VCI accounts for at least 20-40% of all dementia diagnosis. Growing evidence indicates that cerebrovascular pathology is the most important contributor to dementia, with additive or synergistic interactions with neurodegenerative pathology. The most common underlying mechanism of VCI is chronic age-related dysregulation of CBF, although other factors such as inflammation and cardiovascular dysfunction play a role. Vascular risk factors are prevalent in VCI and if measured in midlife they predict cognitive impairment and dementia in later life. Particularly, hypertension, high cholesterol, diabetes, and smoking at midlife are each associated with a 20 to 40% increased risk of dementia. Control of these risk factors including multimodality strategies with an inclusion of lifestyle modification is the most promising strategy for treatment and prevention of VCI. In this review, we present recent developments in age-related VCI, its mechanisms, diagnostic criteria, neuroimaging correlates, vascular risk determinants, and current intervention strategies for prevention and treatment of VCI. We have also summarized the most recent and relevant literature in the field of VCI.
Collapse
Affiliation(s)
- Tatjana Rundek
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Magdalena Tolea
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Taylor Ariko
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric A Fagerli
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian J Camargo
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
48
|
Shan W, Duan Y, Zheng Y, Wu Z, Chan SW, Wang Q, Gao P, Liu Y, He K, Wang Y. Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System. Front Med (Lausanne) 2021; 8:681183. [PMID: 34901045 PMCID: PMC8656685 DOI: 10.3389/fmed.2021.681183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Reliable quantification of white matter hyperintensities (WHMs) resulting from cerebral small vessel diseases (CSVD) is essential for understanding their clinical impact. We aim to develop and clinically validate a deep learning system for automatic segmentation of CSVD-WMH from fluid-attenuated inversion recovery (FLAIR) imaging using large multicenter data. Method: A FLAIR imaging dataset of 1,156 patients diagnosed with CSVD associated WMH (median age, 54 years; 653 males) obtained between September 2018 and September 2019 from Beijing Tiantan Hospital was retrospectively analyzed in this study. Locations of CSVD-WMH on the FLAIR scans were manually marked by two experienced neurologists. Using the manually labeled data of 996 patients (development set), a U-shaped novel 2D convolutional neural network (CNN) architecture was trained for automatic segmentation of CSVD-WMH. The segmentation performance of the network was evaluated with per pixel and lesion level dice scores using an independent internal test set (n = 160) and a multi-center external test set (n = 90, three medical centers). The clinical suitability of the segmentation results, classified as acceptable, acceptable with minor revision, acceptable with major revision, and not acceptable, was analyzed by three independent neuroradiologists. The inter-neuroradiologists agreement rate was assessed by the Kendall-W test. Results: On the internal and external test sets, the proposed CNN architecture achieved per pixel and lesion level dice scores of 0.72 (external test set), and they were significantly better than the state-of-the-art deep learning architectures proposed for WMH segmentation. In the clinical evaluation, neuroradiologists observed the segmentation results for 95% of the patients were acceptable or acceptable with a minor revision. Conclusions: A deep learning system can be used for automated, objective, and clinically meaningful segmentation of CSVD-WMH with high accuracy.
Collapse
Affiliation(s)
- Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Yunyun Duan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Zheng
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Zhenzhou Wu
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Shang Wei Chan
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| | - Peiyi Gao
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Yaou Liu
- National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Ministry of Industry and Information Technology of Biomedical Engineering and Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| |
Collapse
|
49
|
Kang P, Ying C, Chen Y, Ford AL, An H, Lee JM. Oxygen Metabolic Stress and White Matter Injury in Patients With Cerebral Small Vessel Disease. Stroke 2021; 53:1570-1579. [PMID: 34886686 PMCID: PMC9038643 DOI: 10.1161/strokeaha.121.035674] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Chronic hypoxia-ischemia is a putative mechanism underlying the development of white matter hyperintensities (WMH) and microstructural disruption in cerebral small vessel disease. WMH fall primarily within deep white matter (WM) watershed regions. We hypothesized that elevated oxygen extraction fraction (OEF), a signature of hypoxia-ischemia, would be detected in the watershed where WMH density is highest. We further hypothesized that OEF would be elevated in regions immediately surrounding WMH, at the leading edge of growth. METHODS In this cross-sectional study conducted from 2016 to 2019 at an academic medical center in St Louis, MO, participants (age >50) with a range of cerebrovascular risk factors underwent brain magnetic resonance imaging using pseudocontinuous arterial spin labeling, asymmetric spin echo, fluid-attenuated inversion recovery and diffusion tensor imaging to measure cerebral blood flow (CBF), OEF, WMH, and WM integrity, respectively. We defined the physiologic watershed as a region where CBF was below the 10th percentile of mean WM CBF in a young healthy cohort. We conducted linear regression to evaluate the relationship between CBF and OEF with structural and microstructural WM injury defined by fluid-attenuated inversion recovery WMH and diffusion tensor imaging, respectively. We conducted ANOVA to determine if OEF was increased in proximity to WMH lesions. RESULTS In a cohort of 42 participants (age 50-80), the physiologic watershed region spatially overlapped with regions of highest WMH lesion density. As CBF decreased and OEF increased, WMH density increased. Elevated watershed OEF was associated with greater WMH burden and microstructural disruption, after adjusting for vascular risk factors. In contrast, WM and watershed CBF were not associated with WMH burden or microstructural disruption. Moreover, OEF progressively increased while CBF decreased, in concentric contours approaching WMH lesions. CONCLUSIONS Chronic hypoxia-ischemia in the watershed region may contribute to cerebral small vessel disease pathogenesis and development of WMH. Watershed OEF may hold promise as an imaging biomarker to identify individuals at risk for cerebral small vessel disease progression.
Collapse
Affiliation(s)
- Peter Kang
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.)
| | - Chunwei Ying
- Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.)
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.)
| | - Hongyu An
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.).,Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine. (P.K., Y.C., A.L.F., H.A., J.-M.L.).,Mallinckrodt Institute of Radiology, Washington University School of Medicine. (A.L.F., H.A., J.-M.L.).,Department of Biomedical Engineering, Washington University (C.Y., H.A., J.-M.L.)
| |
Collapse
|
50
|
Wu X, Ya J, Zhou D, Ding Y, Ji X, Meng R. Pathogeneses and Imaging Features of Cerebral White Matter Lesions of Vascular Origins. Aging Dis 2021; 12:2031-2051. [PMID: 34881084 PMCID: PMC8612616 DOI: 10.14336/ad.2021.0414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/14/2021] [Indexed: 01/10/2023] Open
Abstract
White matter lesion (WML), also known as white matter hyperintensities or leukoaraiosis, was first termed in 1986 to describe the hyperintense signals on T2-weighted imaging (T2WI) and fluid-attenuated inversion recovery (FLAIR) maps. Over the past decades, a growing body of pathophysiological findings regarding WMLs have been discovered and discussed. Currently, the generally accepted WML pathogeneses mainly include hypoxia-ischemia, endothelial dysfunction, blood-brain barrier disruption, and infiltration of inflammatory mediators or cytokines. However, none of them can explain the whole dynamics of WML formation. Herein, we primarily focus on the pathogeneses and neuroimaging features of vascular WMLs. To achieve this goal, we searched papers with any type published in PubMed from 1950 to 2020 and cross-referenced the keywords including "leukoencephalopathy", "leukoaraiosis", "white matter hyperintensity", "white matter lesion", "pathogenesis", "pathology", "pathophysiology", and "neuroimaging". Moreover, references of the selected articles were browsed and searched for additional pertinent articles. We believe this work will supply the robust references for clinicians to further understand the different WML patterns of varying vascular etiologies and thus make customized treatment.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Division of Clinical Neuroscience, Queen's Medical Center School of Medicine, the University of Nottingham, Nottingham NG7 2UH, UK.
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuchuan Ding
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|