1
|
Qi F, Liu Y, Zhang K, Zhang Y, Xu K, Zhou M, Zhao H, Zhu S, Chen J, Li P, Du J. Artificial Intelligence Uncovers Natural MMP Inhibitor Crocin as a Potential Treatment of Thoracic Aortic Aneurysm and Dissection. Front Cardiovasc Med 2022; 9:871486. [PMID: 35463768 PMCID: PMC9019136 DOI: 10.3389/fcvm.2022.871486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a lethal cardiovascular condition without effective pharmaceutical therapy. Identifying novel drugs that target the key pathogenetic components is an urgent need. Bioinformatics analysis of pathological studies indicated “extracellular matrix organization” as the most significant functional pathway related to TAAD, in which matrix metallopeptidase (MMP) 2 and MMP9 ranked above other proteases. MMP1-14 were designated as the prototype molecules for docking against PubChem Compound Database using Surflex-Dock, and nine natural compounds were identified. Using a generic MMP activity assay and an aminopropionitrile (BAPN)-induced TAAD mouse model, we identified crocin as an effective MMP inhibitor, suppressing the occurrence and rupture of TAAD. Biolayer interferometry and AI/bioinformatics analyses indicated that crocin may inhibit MMP2 activity by direct binding. Possible binding sites were investigated. Overall, the integration of artificial intelligence and functional experiments identified crocin as an MMP inhibitor with strong therapeutic potential.
Collapse
Affiliation(s)
- Feiran Qi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Kunlin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhenzi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ke Xu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Mei Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huinan Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jianxin Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jianxin Chen
| | - Ping Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Ping Li
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Jie Du
| |
Collapse
|
2
|
Wang L, Zhou S, Liu Y, Li Y, Sun X. Bibliometric analysis of the inflammatory mechanism in aortic disease. Rev Cardiovasc Med 2022; 23:67. [PMID: 35229558 DOI: 10.31083/j.rcm2302067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND In view of the key role of inflammation in the pathogenesis of aortic disease, we visually analyzed the research hotspots of inflammatory mechanism in aortic disease in this work through the method of bibliometrics from the Web of Science (WOS) Core database over the past three decades. METHODS A visual bibliometric network of research articles on inflammatory mechanisms in aortic disease was obtained from VOSviewer and Citespace based on the WOS Core Collection. RESULTS A total of 1278 documents from January 1990 to February 2021 were selected for analysis. The United States and China had the highest percentage of articles, comprising 34.01% and 24.92% of articles worldwide, respectively. Harvard University has published the most articles in this field, followed by the University of Michigan and Huazhong University of Science and Technology. The top 3 research hotspots were atherosclerosis, oxidative stress, and macrophages. The journal with the most articles in this area was Arteriosclerosis Thrombosis and Vascular Biology, followed by Atherosclerosis and PLOS One. The research trend on inflammatory mechanisms in the aortic system has 5 distinct directions: (1) atherosclerosis, NF-κB, expression, smooth muscle cell, and oxidative stress; (2) coronary artery disease, C-reactive protein, risk factors, endothelial dysfunction, and aortic stenosis; (3) abdominal aortic aneurysm, matrix metalloproteinases, macrophage, and pathogenesis; (4) cholesterol, metabolism, low-density lipoprotein, gene expression, and a therosclerotic lesions; and (5) calcific aortic valve disease, interstitial cells, calcification, and stenosis. CONCLUSIONS Inflammatory mechanism research has shown a tendency to rise gradually in the aortic field. Numerous studies have explored the role of inflammatory responses in aortic disease, which may increase the risk of endothelial dysfunction (aortic fibrosis and stiffness) and induce plaque formation. Among them, NFκB activation, nitric-oxide synthase expression, and oxidative stress are particularly essential.
Collapse
Affiliation(s)
- Luchen Wang
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Sangyu Zhou
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yanxiang Liu
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yunfeng Li
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
- Shandong University, Qilu Hospital, 250012 Jinan, Shandong, China
| | - Xiaogang Sun
- Aortic and Vascular Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| |
Collapse
|
3
|
Zeng T, Shi L, Ji Q, Shi Y, Huang Y, Liu Y, Gan J, Yuan J, Lu Z, Xue Y, Hu H, Liu L, Lin Y. Cytokines in aortic dissection. Clin Chim Acta 2018; 486:177-182. [PMID: 30086263 DOI: 10.1016/j.cca.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023]
Abstract
Aortic dissection (AD) is one of the most dangerous forms of vascular disease, characterized by endometrial rupture and intramural hematoma formation. Generally, the pathological process is complicated and closely related to the infiltration of inflammatory cells into the aortic wall and apoptosis of vascular smooth muscle cells. Currently, multiple cytokines, including interleukins, interferon, the tumor necrosis factor superfamily, colony stimulating factor, chemotactic factor, growth factor and so on, have all been demonstrated to play a critical role in AD. Additionally, studies of the link between cytokines and AD could deepen our understanding of the disease and may guide future treatment therapies; therefore, this review focuses on the role of cytokines in AD.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Shi
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Ying Shi
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Huang
- Department of Ultrasound, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianting Gan
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Yuan
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yan Xue
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiying Hu
- Department of Cardiology, Handan First Hospital, Handan 056002, China
| | - Ling Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|