1
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 PMCID: PMC11971557 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Martin-Gutierrez L, Waddington KE, Maggio A, Coelewij L, Oppong AE, Yang N, Adriani M, Nytrova P, Farrell R, Pineda-Torra I, Jury EC. Dysregulated lipid metabolism networks modulate T-cell function in people with relapsing-remitting multiple sclerosis. Clin Exp Immunol 2024; 217:204-218. [PMID: 38625017 PMCID: PMC11239565 DOI: 10.1093/cei/uxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024] Open
Abstract
Altered cholesterol, oxysterol, sphingolipid, and fatty acid concentrations are reported in blood, cerebrospinal fluid, and brain tissue of people with relapsing-remitting multiple sclerosis (RRMS) and are linked to disease progression and treatment responses. CD4 + T cells are pathogenic in RRMS, and defective T-cell function could be mediated in part by liver X receptors (LXRs)-nuclear receptors that regulate lipid homeostasis and immunity. RNA-sequencing and pathway analysis identified that genes within the 'lipid metabolism' and 'signalling of nuclear receptors' pathways were dysregulated in CD4 + T cells isolated from RRMS patients compared with healthy donors. While LXRB and genes associated with cholesterol metabolism were upregulated, other T-cell LXR-target genes, including genes involved in cellular lipid uptake (inducible degrader of the LDL receptor, IDOL), and the rate-limiting enzyme for glycosphingolipid biosynthesis (UDP-glucosylceramide synthase, UGCG) were downregulated in T cells from patients with RRMS compared to healthy donors. Correspondingly, plasma membrane glycosphingolipids were reduced, and cholesterol levels increased in RRMS CD4 + T cells, an effect partially recapitulated in healthy T cells by in vitro culture with T-cell receptor stimulation in the presence of serum from RRMS patients. Notably, stimulation with LXR-agonist GW3965 normalized membrane cholesterol levels, and reduced proliferation and IL17 cytokine production in RRMS CD4 + T-cells. Thus, LXR-mediated lipid metabolism pathways were dysregulated in T cells from patients with RRMS and could contribute to RRMS pathogenesis. Therapies that modify lipid metabolism could help restore immune cell function.
Collapse
Affiliation(s)
| | - Kirsty E Waddington
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Annalisa Maggio
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Leda Coelewij
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Alexandra E Oppong
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Nina Yang
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Marsilio Adriani
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical, Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London and Institute of Neurology and National Hospital of Neurology and Neurosurgery, UK
| | - Inés Pineda-Torra
- Centre for Experimental & Translational Medicine, Division of Medicine, University College London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology, Division of Medicine, University College London, UK
| |
Collapse
|
3
|
Ladakis DC, Pedrini E, Reyes-Mantilla MI, Sanjayan M, Smith MD, Fitzgerald KC, Pardo CA, Reich DS, Absinta M, Bhargava P. Metabolomics of Multiple Sclerosis Lesions Demonstrates Lipid Changes Linked to Alterations in Transcriptomics-Based Cellular Profiles. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200219. [PMID: 38547430 DOI: 10.1212/nxi.0000000000200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND OBJECTIVES People with multiple sclerosis (MS) have a dysregulated circulating metabolome, but the metabolome of MS brain lesions has not been studied. The aims of this study were to identify differences in the brain tissue metabolome in MS compared with controls and to assess its association with the cellular profile of corresponding tissue. METHODS MS tissues included samples from the edge and core of chronic active or inactive lesions and periplaque white matter (WM). Control specimens were obtained from normal WM. Metabolomic analysis was performed using mass-spectrometry coupled with liquid/gas chromatography and subsequently integrated with single-nucleus RNA-sequencing data by correlating metabolite abundances with relative cell counts, as well as individual genes using Multiomics Factor Analysis (MOFA). RESULTS Seventeen samples from 5 people with secondary progressive MS and 8 samples from 6 controls underwent metabolomic profiling identifying 783 metabolites. MS lesions had higher levels of sphingosines (false discovery rate-adjusted p-value[q] = 2.88E-05) and sphingomyelins and ceramides (q = 2.15E-07), but lower nucleotide (q = 0.05), energy (q = 0.001), lysophospholipid (q = 1.86E-07), and monoacylglycerol (q = 0.04) metabolite levels compared with control WM. Periplaque WM had elevated sphingomyelins and ceramides (q = 0.05) and decreased energy metabolites (q = 0.01) and lysophospholipids (q = 0.05) compared with control WM. Sphingolipids and membrane lipid metabolites were positively correlated with astrocyte and immune cell abundances and negatively correlated with oligodendrocytes. On the other hand, long-chain fatty acid, endocannabinoid, and monoacylglycerol pathways were negatively correlated with astrocyte and immune cell populations and positively correlated with oligodendrocytes. MOFA demonstrated associations between differentially expressed metabolites and genes involved in myelination and lipid biosynthesis. DISCUSSION MS lesions and perilesional WM demonstrated a significantly altered metabolome compared with control WM. Many of the altered metabolites were associated with altered cellular composition and gene expression, indicating an important role of lipid metabolism in chronic neuroinflammation in MS.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Edoardo Pedrini
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Maria I Reyes-Mantilla
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Muraleetharan Sanjayan
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew D Smith
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Kathryn C Fitzgerald
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Carlos A Pardo
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Daniel S Reich
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Martina Absinta
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Pavan Bhargava
- From the Department of Neurology (D.C.L., M.I.R.-M., M.S., M.D.S., K.C.F., C.A.P., D.S.R., M.A., P.B.), Johns Hopkins University School of Medicine, Baltimore, MD; Translational Neuropathology Unit (E.P., M.A.), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy and Translational Neuroradiology Section (D.S.R., M.A.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Morita Y, Sakai E, Isago H, Ono Y, Yatomi Y, Kurano M. Alterations in urinary ceramides, sphingoid bases, and their phosphates among patients with kidney disease. FRONTIERS IN NEPHROLOGY 2024; 4:1343181. [PMID: 38504855 PMCID: PMC10949895 DOI: 10.3389/fneph.2024.1343181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Background To avoid an invasive renal biopsy, noninvasive laboratory testing for the differential diagnosis of kidney diseases is a desirable goal. As sphingolipids are demonstrated to be involved in the pathogenesis of various kidney diseases, we investigated the possible usefulness of the simultaneous measurement of urinary sphingolipids for differentiating kidney diseases. Materials and methods Residual urine specimens were collected from patients who had been clinically diagnosed with chronic glomerulonephritis (CGN), diabetic mellitus (DM), systemic lupus erythematosus (SLE), and arterial hypertension (AH). The urinary sphingolipids-CERs C16:0, C18:0, C18:1, C20:0, C22:0, and C24:0; sphingosine [Sph]; dihydrosphingosine; sphingosine 1-phosphate [S1P]; and dihydroS1P [dhS1P]-were measured by liquid chromatography-tandem mass spectrometry. Based on the results, machine learning models were constructed to differentiate the various kidney diseases. Results The urinary S1P was higher in patients with DM than in other participants (P < 0.05), whereas dhS1P was lower in the CGN and AH groups compared with control participants (P < 0.05). Sph and dhSph were higher in patients with CGN, AH, and SLE than in those with control participants (P < 0.05). The urinary CERs were significantly higher in patients with CGN, AH, and SLE than in those with control participants (P < 0.05). As a results of constructing a machine learning model discriminating kidney diseases, the resulting diagnostic accuracy and precision were improved from 94.03% and 66.96% to 96.10% and 78.26% respectively, when the urinary CERs, Sph, dhSph, S1P, dhS1P, and their ratios were added to the models. Conclusion The urinary CERs, sphingoid bases, and their phosphates show alterations among kidney diseases, suggesting their potential involvement in the development of kidney injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ono
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Luque-Córdoba D, Calderón-Santiago M, Rangel-Zúñiga OA, Camargo A, López-Miranda J, Priego-Capote F. Comprehensive profiling of ceramides in human serum by liquid chromatography coupled to tandem mass spectrometry combining data independent/dependent acquisition modes. Anal Chim Acta 2024; 1287:342115. [PMID: 38182388 DOI: 10.1016/j.aca.2023.342115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Ceramides are sphingolipids with a structural function in the cell membrane and are involved in cell differentiation, proliferation and apoptosis. Recently, these chemical species have been pointed out as potential biomarkers in different diseases, due to their abnormal levels in blood. In this research, we present an overall strategy combining data-independent and dependent acquisitions (DIA and DDA, respectively) for identification, confirmation, and quantitative determination of ceramides in human serum. By application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in DIA mode we identified 49 ceramides including d18:1, d18:0, d18:2, d16:1, d17:1 and t18:0 species. Complementary, quantitative determination of ceramides was based on a high-throughput and fully automated method consisting of solid-phase extraction on-line coupled to LC-MS/MS in DDA to improve analytical features avoiding the errors associated to sample processing. Quantitation limits were at pg mL-1 level, the intra-day and between-days variability were below 20 and 25 %, respectively; and the accuracy, expressed as bias, was always within ±25 %. The proposed method was tested with the CORDIOPREV cohort in order to obtain a qualitative and quantitative profiling of ceramides in human serum. This characterization allowed identifying d18:1 ceramides as the most concentrated with 70.8% of total concentration followed by d18:2 and d18:0 with 13.0 % and 8.8 %, respectively. Less concentrated ceramides, d16:1, d17:1 and t18:0, reported a 7.1 % of the total content. Combination of DIA and DDA LC-MS/MS analysis enabled to profile qualitative and quantitatively ceramides in human serum.
Collapse
Affiliation(s)
- D Luque-Córdoba
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain
| | - O A Rangel-Zúñiga
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - A Camargo
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - J López-Miranda
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Chemical Institute for Energy and Environment (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain.
| |
Collapse
|
6
|
Virupakshaiah A, Ladakis DC, Nourbakhsh B, Bhargava P, Dilwali S, Schoeps V, Borkowski K, Newman JW, Waubant E. Several serum lipid metabolites are associated with relapse risk in pediatric-onset multiple sclerosis. Mult Scler 2023; 29:936-944. [PMID: 37199529 PMCID: PMC10524330 DOI: 10.1177/13524585231171517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND The circulating metabolome is altered in multiple sclerosis (MS), but its prognostic capabilities have not been extensively explored. Lipid metabolites might be of particular interest due to their multiple roles in the brain, as they can serve as structural components, energy sources, and bioactive molecules. Gaining a deeper understanding of the disease may be possible by examining the lipid metabolism in the periphery, which serves as the primary source of lipids for the brain. OBJECTIVE To determine if altered serum lipid metabolites are associated with the risk of relapse and disability in children with MS. METHODS We collected serum samples from 61 participants with pediatric-onset MS within 4 years of disease onset. Prospective longitudinal relapse data and cross-sectional disability measures (Expanded Disability Status Scale [EDSS]) were collected. Serum metabolomics was performed using untargeted liquid chromatography and mass spectrometry. Individual lipid metabolites were clustered into pre-defined pathways. The associations between clusters of metabolites and relapse rate and EDSS score were estimated utilizing negative binomial and linear regression models, respectively. RESULTS We found that serum acylcarnitines (relapse rate: normalized enrichment score [NES] = 2.1, q = 1.03E-04; EDSS: NES = 1.7, q = 0.02) and poly-unsaturated fatty acids (relapse rate: NES = 1.6, q = 0.047; EDSS: NES = 1.9, q = 0.005) were associated with higher relapse rates and EDSS, while serum phosphatidylethanolamines (relapse rate: NES = -2.3, q = 0.002; EDSS: NES = -2.1, q = 0.004), plasmalogens (relapse rate: NES = -2.5, q = 5.81E-04; EDSS: NES = -2.1, q = 0.004), and primary bile acid metabolites (relapse rate: NES = -2.0, q = 0.02; EDSS: NES = -1.9, q = 0.02) were associated with lower relapse rates and lower EDSS. CONCLUSION This study supports the role of some lipid metabolites in pediatric MS relapses and disability.
Collapse
Affiliation(s)
- Akash Virupakshaiah
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dimitrios C Ladakis
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Bardia Nourbakhsh
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Pavan Bhargava
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Sonam Dilwali
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Vinicius Schoeps
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA
| | - John W Newman
- West Coast Metabolomics Center, University of California Davis, Davis, CA, USA United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Zhang Z, Huang X, Du X, Wang Z, Wang Y, Xu M, Chen X, Yao Q, Yan L, Zhang Y. Plasma C18:0-ceramide is a novel potential biomarker for disease severity in myasthenia gravis. J Neurochem 2023; 165:907-919. [PMID: 37158660 DOI: 10.1111/jnc.15837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by fluctuation of fatigue and weakness of muscle. Due to the heterogeneity of the course of MG, available biomarkers for prognostic prediction are urgently needed. Ceramide (Cer) was reported to participate in immune regulation and many autoimmune diseases, but its effects on MG remain undefined. This study aimed to investigate the ceramides expression levels in MG patients and their potential as novel biomarkers of disease severity. Levels of plasma ceramides were determined by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Severity of disease was assessed by quantitative MG scores (QMGs), MG-specific activities of daily living scale (MG-ADLs) and 15-item MG quality of Life (MG-QOL15). The concentrations of serum interleukin-1β (IL-1β), IL-6, IL-17A, and IL-21 were determined by enzyme-linked immunosorbent assay (ELISA), and the proportions of circulating memory B cells and plasmablasts were detected by flow-cytometry assay. Four plasma ceramides levels we studied were detected higher in MG patients. And three of them (C16:0-Cer, C18:0-Cer, and C24:0-Cer) were positively associated with QMGs. In addition, receiver operating characteristic (ROC) analysis suggested that plasma ceramides have a good ability of differentiating MG from HCs. Importantly, only C18:0-Cer was shown to be positively associated with the concentration of serum IL and circulating memory B cells, and the decrease in plasma C18:0-Cer paralleled the clinical improvement of patients with MG. All together, our data suggest that ceramides may play an important role in the immunopathological mechanism of MG, and C18:0-Cer has the potential to be a novel biomarker for disease severity in MG.
Collapse
Affiliation(s)
- Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhouyi Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingying Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingming Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Yao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lisha Yan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Zhang Q, Liu W, Bulek K, Wang H, McMullen MR, Wu X, Welch N, Zhang R, Dasarathy J, Dasarathy S, Nagy LE, Li X. Mincle-GSDMD-mediated release of IL-1β small extracellular vesicles from hepatic macrophages in ethanol-induced liver injury. Hepatol Commun 2023; 7:e0114. [PMID: 37185170 PMCID: PMC10146535 DOI: 10.1097/hc9.0000000000000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Macrophage-inducible C-type lectin (Mincle) is expressed on hepatic macrophages and senses ethanol (EtOH)-induced danger signals released from dying hepatocytes and promotes IL-1β production. However, it remains unclear what and how EtOH-induced Mincle ligands activate downstream signaling events to mediate IL-1β release and contribute to alcohol-associated liver disease (ALD). In this study, we investigated the association of circulating β-glucosylceramide (β-GluCer), an endogenous Mincle ligand, with severity of ALD and examined the mechanism by which β-GluCer engages Mincle on hepatic macrophages to release IL-1β in the absence of cell death and exacerbates ALD. METHOD AND RESULTS Concentrations of β-GluCer were increased in serum of patients with severe AH and correlated with disease severity. Challenge of hepatic macrophages with lipopolysaccharide and β-GluCer induced formation of a Mincle and Gsdmd-dependent secretory complex containing chaperoned full-length gasdermin D (Hsp90-CDC37-NEDD4) with polyubiquitinated pro-IL-1β and components of the Caspase 8-NLRP3 inflammasome loaded as cargo in small extracellular vesicles (sEVs). Gao-binge EtOH exposure to wild-type, but not Mincle-/- and Gsdmd-/-, mice increased release of IL-1β-containing sEVs from liver explant cultures. Myeloid-specific deletion of Gsdmd similarly decreased the formation of sEVs by liver explant cultures and protected mice from EtOH-induced liver injury. sEVs collected from EtOH-fed wild-type, but not Gsdmd-/-, mice promoted injury of cultured hepatocytes and, when injected into wild-type mice, aggravated Gao-binge EtOH-induced liver injury. CONCLUSION β-GluCer functions as a danger-associated molecular pattern activating Mincle-dependent gasdermin D-mediated formation and release of IL-1β-containing sEVs, which in turn exacerbate hepatocyte cell death and contribute to the pathogenesis of ALD.
Collapse
Affiliation(s)
- Quanri Zhang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Weiwei Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Han Wang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Megan R. McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiaoqin Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Department of Research Core Services, Lerner Research Institute, Cleveland, Ohio, USA
| | | | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Podbielska M, Macala J, Jakubiak-Augustyn A, Szulc ZM, Fortuna W, Budrewicz S, Jaskiewicz E, Bilinska M, Hogan EL, Pokryszko-Dragan A. Ceramide is implicated in humoral peripheral and intrathecal autoimmune response in MS patients. Mult Scler Relat Disord 2023; 71:104565. [PMID: 36821978 DOI: 10.1016/j.msard.2023.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND The disturbed metabolism of ceramide (Cer) is supposed to evoke the autoimmune response, contributing to MS pathology. OBJECTIVES To determine levels of anti-Cer immunoglobulins G (IgGs) in the CSF and serum of subjects with various phenotypes of MS, and to investigate relationships between levels of anti-Cer antibodies and MS-related variables. METHODS IgGs isolated from serum and the CSF of 68 MS patients and appropriate controls were examined for their reactivity to Cer subspecies. Their levels were compared between the studied groups and compartments, and analyzed with regard to clinical variables. RESULTS Increased levels of anti-C16:0-, C18:0-, C18:1-, C24:0- and C24:1-Cer IgGs were detected in the CSF and serum of MS patients in comparison with controls. For IgGs against particular Cer subspecies, correlations were found between their CSF and serum level, as well as with the Link index. Serum and the CSF anti-Cer IgGs differed between patients with clinically isolated syndrome (CIS) and relapsing-remitting MS from those with progressive MS. No correlations were found between anti-Cer IgGs and other MS-related clinical variables. CONCLUSION Patients with MS have shown altered panels of anti-Cer IgGs in the CSF and serum, which might suggest a relevant, though limited role of Cer as a target for autoimmune humoral response. Utility of antibodies against Cer subspecies as potential markers for MS activity and progression deserves further investigations.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2620, USA; Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland.
| | - Jozefa Macala
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Anna Jakubiak-Augustyn
- Department of Lipids and Liposomes, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Zdzislaw M Szulc
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2503, USA
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Slawomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Ewa Jaskiewicz
- Laboratory of Glycobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Malgorzata Bilinska
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Edward L Hogan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2620, USA; Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425-8900, USA
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Martynova E, Khaibullin T, Salafutdinov I, Markelova M, Laikov A, Lopukhov L, Liu R, Sahay K, Goyal M, Baranwal M, Rizvanov AA, Khaiboullina S. Seasonal Changes in Serum Metabolites in Multiple Sclerosis Relapse. Int J Mol Sci 2023; 24:3542. [PMID: 36834957 PMCID: PMC9959388 DOI: 10.3390/ijms24043542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple sclerosis (MS) is a debilitating chronic disease of unknown etiology. There are limited treatment options due to an incomplete understanding of disease pathology. The disease is shown to have seasonal exacerbation of clinical symptoms. The mechanisms of such seasonal worsening of symptoms remains unknown. In this study, we applied targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites throughout the four seasons. We also analyzed seasonal serum cytokine alterations in patients with relapsed MS. For the first time, we can demonstrate seasonal changes in various metabolites in MS compared to the control. More metabolites were affected in MS in the fall season followed by spring, while summer MS was characterized by the smallest number of affected metabolites. Ceramides were activated in all seasons, suggesting their central role in the disease pathogenesis. Substantial changes in glucose metabolite levels were found in MS, indicating a potential shift to glycolysis. An increased serum level of quinolinic acid was demonstrated in winter MS. Histidine pathways were affected, suggesting their role in relapse of MS in the spring and fall. We also found that spring and fall seasons had a higher number of overlapping metabolites affected in MS. This could be explained by patients having a relapse of symptoms during these two seasons.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Timur Khaibullin
- Republican Clinical Neurological Center, Republic of Tatarstan, 420021 Kazan, Russia
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetic, Kazan State Medical University, 420088 Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Alexander Laikov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Leonid Lopukhov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Mehendi Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|
11
|
Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023; 14:1076421. [PMID: 36793897 PMCID: PMC9922720 DOI: 10.3389/fgene.2023.1076421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- *Correspondence: Lorena Lorefice,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Federica Murgia
- Dpt of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Luigi Atzori
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
13
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
14
|
Zhang Q, Liu W, Wang H, Zhou H, Bulek K, Chen X, Zhang CJ, Zhao J, Zhang R, Liu C, Kang Z, Bermel RA, Dubyak G, Abbott DW, Xiao TS, Nagy LE, Li X. TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nat Commun 2022; 13:2406. [PMID: 35504893 PMCID: PMC9064974 DOI: 10.1038/s41467-022-30174-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/20/2022] [Indexed: 01/21/2023] Open
Abstract
The C-type lectin receptor Mincle is known for its important role in innate immune cells in recognizing pathogen and damage associated molecular patterns. Here we report a T cell-intrinsic role for Mincle in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Genomic deletion of Mincle in T cells impairs TH17, but not TH1 cell-mediated EAE, in alignment with significantly higher expression of Mincle in TH17 cells than in TH1 cells. Mechanistically, dying cells release β-glucosylceramide during inflammation, which serves as natural ligand for Mincle. Ligand engagement induces activation of the ASC-NLRP3 inflammasome, which leads to Caspase8-dependent IL-1β production and consequentially TH17 cell proliferation via an autocrine regulatory loop. Chemical inhibition of β-glucosylceramide synthesis greatly reduces inflammatory CD4+ T cells in the central nervous system and inhibits EAE progression in mice. Taken together, this study indicates that sensing of danger signals by Mincle on TH17 cells plays a critical role in promoting CNS inflammation.
Collapse
Affiliation(s)
- Quanri Zhang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Weiwei Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Han Wang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Hao Zhou
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Cun-Jin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Department of Research Core Services, Lerner Research Institute, Cleveland, OH, USA
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa, IA, USA
| | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - George Dubyak
- Department of Physiology and Biophysics, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States.
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States.
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
15
|
Bhargava P, Haughey N, Calabresi PA. Response to— Tracking the role of sphingolipids in MS: The dynamic nature of ceramide synthases. Mult Scler 2022; 28:2148-2149. [DOI: 10.1177/13524585221084094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman Haughey
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Medina T, Reyes S. Tracking the role of sphingolipids in MS: The dynamic nature of ceramide synthases. Mult Scler 2022; 28:2147-2148. [DOI: 10.1177/13524585221084092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas Medina
- School of medicine, Universidad de los Andes, Bogotá, Colombia
| | - Saúl Reyes
- School of medicine, Universidad de los Andes, Bogotá, Colombia
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Neurology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
17
|
Podbielska M, O’Keeffe J, Pokryszko-Dragan A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22147319. [PMID: 34298940 PMCID: PMC8303889 DOI: 10.3390/ijms22147319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system disease with complex pathogenesis, including two main processes: immune-mediated inflammatory demyelination and progressive degeneration with axonal loss. Despite recent progress in our understanding and management of MS, availability of sensitive and specific biomarkers for these both processes, as well as neuroprotective therapeutic options targeted at progressive phase of disease, are still being sought. Given their abundance in the myelin sheath, lipids are believed to play a central role in underlying immunopathogenesis in MS and seem to be a promising subject of investigation in this field. On the basis of our previous research and a review of the literature, we discuss the current understanding of lipid-related mechanisms involved in active relapse, remission, and progression of MS. These insights highlight potential usefulness of lipid markers in prediction or monitoring the course of MS, particularly in its progressive stage, still insufficiently addressed. Furthermore, they raise hope for new, effective, and stage-specific treatment options, involving lipids as targets or carriers of therapeutic agents.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-9912
| | - Joan O’Keeffe
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland;
| | | |
Collapse
|
18
|
Schmitz K, Trautmann S, Hahnefeld L, Fischer C, Schreiber Y, Wilken-Schmitz A, Gurke R, Brunkhorst R, Werner ER, Watschinger K, Wicker S, Thomas D, Geisslinger G, Tegeder I. Sapropterin (BH4) Aggravates Autoimmune Encephalomyelitis in Mice. Neurotherapeutics 2021; 18:1862-1879. [PMID: 33844153 PMCID: PMC8609075 DOI: 10.1007/s13311-021-01043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Depletion of the enzyme cofactor, tetrahydrobiopterin (BH4), in T-cells was shown to prevent their proliferation upon receptor stimulation in models of allergic inflammation in mice, suggesting that BH4 drives autoimmunity. Hence, the clinically available BH4 drug (sapropterin) might increase the risk of autoimmune diseases. The present study assessed the implications for multiple sclerosis (MS) as an exemplary CNS autoimmune disease. Plasma levels of biopterin were persistently low in MS patients and tended to be lower with high Expanded Disability Status Scale (EDSS). Instead, the bypass product, neopterin, was increased. The deregulation suggested that BH4 replenishment might further drive the immune response or beneficially restore the BH4 balances. To answer this question, mice were treated with sapropterin in immunization-evoked autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Sapropterin-treated mice had higher EAE disease scores associated with higher numbers of T-cells infiltrating the spinal cord, but normal T-cell subpopulations in spleen and blood. Mechanistically, sapropterin treatment was associated with increased plasma levels of long-chain ceramides and low levels of the poly-unsaturated fatty acid, linolenic acid (FA18:3). These lipid changes are known to contribute to disruptions of the blood-brain barrier in EAE mice. Indeed, RNA data analyses revealed upregulations of genes involved in ceramide synthesis in brain endothelial cells of EAE mice (LASS6/CERS6, LASS3/CERS3, UGCG, ELOVL6, and ELOVL4). The results support the view that BH4 fortifies autoimmune CNS disease, mechanistically involving lipid deregulations that are known to contribute to the EAE pathology.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Caroline Fischer
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Brunkhorst
- Department of Clinical Neurology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Ernst R Werner
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, Austria
| | - Sabine Wicker
- Occupational Health Services, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
19
|
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021; 11:945. [PMID: 34202192 PMCID: PMC8301871 DOI: 10.3390/biom11070945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a bioactive sphingolipid involved in numerous cellular processes. In addition to being the precursor of complex sphingolipids, ceramides can act as second messengers, especially when they are generated at the plasma membrane of cells. Its metabolic dysfunction may lead to or be a consequence of an underlying disease. Recent reports on transcriptomics and electrospray ionization mass spectrometry analysis have demonstrated the variation of specific levels of sphingolipids and enzymes involved in their metabolism in different neurodegenerative diseases. In the present review, we highlight the most relevant discoveries related to ceramide and neurodegeneration, with a special focus on Parkinson's disease.
Collapse
Affiliation(s)
- Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Marta Aramburu-Núñez
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Adrián Posado-Fernández
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Ana Gómez-Larrauri
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
- Respiratory Department, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| |
Collapse
|
20
|
Castellanos DB, Martín-Jiménez CA, Rojas-Rodríguez F, Barreto GE, González J. Brain lipidomics as a rising field in neurodegenerative contexts: Perspectives with Machine Learning approaches. Front Neuroendocrinol 2021; 61:100899. [PMID: 33450200 DOI: 10.1016/j.yfrne.2021.100899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimeŕs, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Cynthia A Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E Barreto
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
21
|
Pineda-Torra I, Siddique S, Waddington KE, Farrell R, Jury EC. Disrupted Lipid Metabolism in Multiple Sclerosis: A Role for Liver X Receptors? Front Endocrinol (Lausanne) 2021; 12:639757. [PMID: 33927692 PMCID: PMC8076792 DOI: 10.3389/fendo.2021.639757] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease driven by autoimmune, inflammatory and neurodegenerative processes leading to neuronal demyelination and subsequent degeneration. Systemic lipid metabolism is disturbed in people with MS, and lipid metabolic pathways are crucial to the protective process of remyelination. The lipid-activated transcription factors liver X receptors (LXRs) are important integrators of lipid metabolism and immunity. Consequently, there is a strong interest in targeting these receptors in a number of metabolic and inflammatory diseases, including MS. We have reviewed the evidence for involvement of LXR-driven lipid metabolism in the dysfunction of peripheral and brain-resident immune cells in MS, focusing on human studies, both the relapsing remitting and progressive phases of the disease are discussed. Finally, we discuss the therapeutic potential of modulating the activity of these receptors with existing pharmacological agents and highlight important areas of future research.
Collapse
Affiliation(s)
- Inés Pineda-Torra
- Centre for Cardiometabolic and Vascular Medicine, Department of Medicine, University College London, London, United Kingdom
- *Correspondence: Elizabeth C. Jury, ; Inés Pineda-Torra,
| | - Sherrice Siddique
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
| | - Kirsty E. Waddington
- Centre for Cardiometabolic and Vascular Medicine, Department of Medicine, University College London, London, United Kingdom
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
| | - Rachel Farrell
- Department of Neuroinflammation, Institute of Neurology and National Hospital of Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre for Rheumatology, Department of Medicine, University College London, London, United Kingdom
- *Correspondence: Elizabeth C. Jury, ; Inés Pineda-Torra,
| |
Collapse
|
22
|
Filippatou AG, Moniruzzaman M, Sotirchos ES, Fitzgerald KC, Kalaitzidis G, Lambe J, Vasileiou E, Saidha S, Prince JL, Haughey N, Calabresi PA, Bhargava P. Serum ceramide levels are altered in multiple sclerosis. Mult Scler 2020; 27:1506-1519. [PMID: 33307993 DOI: 10.1177/1352458520971816] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Sphingolipids are myelin components and inflammatory signaling intermediates. Sphingolipid metabolism may be altered in people with multiple sclerosis (PwMS), but existing studies are limited by small sample sizes. OBJECTIVES To compare the levels of serum ceramides between PwMS and healthy controls (HCs) and to determine whether ceramide levels correlate with disability status, as well as optical coherence tomography (OCT)-derived rates of retinal layer atrophy. METHODS We performed targeted lipidomics analyses for 45 ceramides in PwMS (n = 251) and HCs (n = 68). For a subset of PwMS, baseline and 5-year Expanded Disability Status Scale (EDSS) assessments (n = 185), or baseline and serial spectral-domain OCT (n = 180) were assessed. RESULTS Several ceramides, including hexosylceramides, lactosylceramides, and dihydroceramides, were altered in PwMS compared with HCs. Higher levels of Cer16:0 were associated with higher odds of EDSS worsening at 5 years in univariable (odds ratio (OR) = 3.84, 95% confidence interval (CI) = 1.41-10.43) and multivariable analyses accounting for age, sex, and race (OR = 2.97, 95% CI = 1.03-8.59). Each 1 ng/mL higher concentration of Hex-Cer22:0 and DH-HexCer22:0 was associated with accelerated rates (μm/year) of ganglion cell + inner plexiform layer (-0.138 ± 0.053, p = 0.01; -0.158 ± 0.053, p = 0.003, respectively) and peripapillary retinal nerve fiber layer thinning (-0.305 ± 0.107, p = 0.004; -0.358 ± 0.106, p = 0.001, respectively). CONCLUSION Ceramide levels are altered in PwMS and may be associated with retinal neurodegeneration and physical disability.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Moniruzzaman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grigorios Kalaitzidis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleni Vasileiou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Ferreira HB, Melo T, Monteiro A, Paiva A, Domingues P, Domingues MR. Serum phospholipidomics reveals altered lipid profile and promising biomarkers in multiple sclerosis. Arch Biochem Biophys 2020; 697:108672. [PMID: 33189653 DOI: 10.1016/j.abb.2020.108672] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis is a neurodegenerative disease causing disability in young adults. Alterations in metabolism and lipid profile have been associated with this disease. Several studies have reported changes in the metabolism of arachidonic acid and the profile of fatty acids, ceramides, phospholipids and lipid peroxidation products. Nevertheless, the understanding of the modulation of circulating lipids at the molecular level in multiple sclerosis remains unclear. In the present study, we sought to assess the existence of a distinctive lipid signature of multiple sclerosis using an untargeted lipidomics approach. It also aimed to assess the differences in lipid profile between disease status (relapse and remission). For this, we used hydrophilic interaction liquid chromatography coupled with mass spectrometry for phospholipidomic profiling of serum samples from patients with multiple sclerosis. Our results demonstrated that multiple sclerosis has a phospholipidomic signature different from that of healthy controls, especially the PE, PC, LPE, ether-linked PE and ether-linked PC species. Plasmalogen PC and PE species, which are natural endogenous antioxidants, as well as PC and PE polyunsaturated fatty acid esterified species showed significantly lower levels in patients with multiple sclerosis and patients in both remission and relapse of multiple sclerosis. Our results show for the first time that the serum phospholipidome of multiple sclerosis is significantly different from that of healthy controls and that few phospholipids, with the lowest p-value, such as PC(34:3), PC(36:6), PE(40:10) and PC(38:1) may be suitable as biomarkers for clinical applications in multiple sclerosis.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center, QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andreia Monteiro
- Health Sciences Research Centre, Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal; Serviço Patologia Clínica, Centro Hospitalar Cova da Beira, Quinta do Alvito, 6200-251 Covilhã, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra CHUC, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
24
|
Podbielska M, Szulc ZM, Ariga T, Pokryszko-Dragan A, Fortuna W, Bilinska M, Podemski R, Jaskiewicz E, Kurowska E, Yu RK, Hogan EL. Distinctive sphingolipid patterns in chronic multiple sclerosis lesions. J Lipid Res 2020; 61:1464-1479. [PMID: 32769146 PMCID: PMC7604719 DOI: 10.1194/jlr.ra120001022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is a CNS disease characterized by immune-mediated demyelination and progressive axonal loss. MS-related CNS damage and its clinical course have two main phases: active and inactive/progressive. Reliable biomarkers are being sought to allow identification of MS pathomechanisms and prediction of its course. The purpose of this study was to identify sphingolipid (SL) species as candidate biomarkers of inflammatory and neurodegenerative processes underlying MS pathology. We performed sphingolipidomic analysis by HPLC-tandem mass spectrometry to determine the lipid profiles in post mortem specimens from the normal-appearing white matter (NAWM) of the normal CNS (nCNS) from subjects with chronic MS (active and inactive lesions) as well as from patients with other neurological diseases. Distinctive SL modification patterns occurred in specimens from MS patients with chronic inactive plaques with respect to NAWM from the nCNS and active MS (Ac-MS) lesions. Chronic inactive MS (In-MS) lesions were characterized by decreased levels of dihydroceramide (dhCer), ceramide (Cer), and SM subspecies, whereas levels of hexosylceramide and Cer 1-phosphate (C1P) subspecies were significantly increased in comparison to NAWM of the nCNS as well as Ac-MS plaques. In contrast, Ac-MS lesions were characterized by a significant increase of major dhCer subspecies in comparison to NAWM of the nCNS. These results suggest the existence of different SL metabolic pathways in the active versus inactive phase within progressive stages of MS. Moreover, they suggest that C1P could be a new biomarker of the In-MS progressive phase, and its detection may help to develop future prognostic and therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | | | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Wroclaw, Poland.,Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | - Ryszard Podemski
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Jaskiewicz
- Laboratory of Glycobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Ewa Kurowska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Edward L Hogan
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
25
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
26
|
Zhang X, Gu S, You L, Xu Y, Zhou D, Chen Y, Yan R, Jiang H, Li Y, Lv L, Qian W. Gut Microbiome and Metabolome Were Altered and Strongly Associated With Platelet Count in Adult Patients With Primary Immune Thrombocytopenia. Front Microbiol 2020; 11:1550. [PMID: 32733424 PMCID: PMC7360729 DOI: 10.3389/fmicb.2020.01550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been implicated in the pathogenesis of many autoimmune diseases. This is still an area of active research given that the role of gut microbiota on the primary immune thrombocytopenia (ITP) remains unclear. In this study, fecal samples of 30 untreated adult primary ITP patients and 29 healthy controls (HCs) were used to investigate the gut microbial community and metabolite profiles. Our results show that fecal bacteria such as Blautia, Streptococcus, and Lactobacillus are enriched, whereas bacteria such as Bacteroides are depleted in ITP patients. Notably, fecal metabolites such as fatty acyls and glycerophospholipids are enriched and strongly correlate with discrepant gut microbiota. Furthermore, combinations of Weissella and Streptococcus anginosus, or Cer (t18:0/16:0), Cer (d18:1/17:0), and 13-hydroxyoctadecanoic acid could provide good diagnostic markers for ITP. Moreover, a strong negative correlation was found between platelet count and altered gut microbiota such as S. anginosus and gut metabolites such as Cer (t18:0/16:0) in ITP. In conclusion, dysbiosis of both gut microbiota and metabolome develops in ITP patients compared to HCs. Several ITP-altered gut bacteria and metabolites can be diagnostic biomarkers for ITP, and are highly correlated with platelet count, suggesting that they may also play a role in ITP pathogenesis.
Collapse
Affiliation(s)
- Xuewu Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - De Zhou
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies in Zhejiang Province, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbin Qian
- Institute of Hematology, Zhejiang University, Hangzhou, China.,Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|
28
|
Morita Y, Kurano M, Sakai E, Nishikawa T, Nishikawa M, Sawabe M, Aoki J, Yatomi Y. Analysis of urinary sphingolipids using liquid chromatography-tandem mass spectrometry in diabetic nephropathy. J Diabetes Investig 2020; 11:441-449. [PMID: 31580528 PMCID: PMC7078086 DOI: 10.1111/jdi.13154] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Sphingolipids, such as ceramides and sphingosine, are involved in the pathogenesis of diabetes; however, the modulation of urinary sphingolipids in diabetic nephropathy has not been fully elucidated. Therefore, we aimed to develop a simultaneous measurement system for urinary sphingolipids using liquid chromatography-tandem mass spectrometry and to elucidate the modulation of urinary sphingolipids in diabetic nephropathy. MATERIALS AND METHODS We established a simultaneous measurement system for the urinary sphingosine, dihydrosphingosine, and six ceramide species (Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/18:1, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0), and we examined the urinary sphingolipids in 64 type 2 diabetes patients and 15 control participants. RESULTS The established measurement system for the urinary sphingolipids showed good precision for Cer d18:1/16:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0. We observed that the urinary levels of Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0 were elevated in patients with stage 3 of diabetic nephropathy, and were correlated with urinary biomarkers, such as albumin and N-acetyl-β-d-glucosaminidase, and sediment score. CONCLUSIONS Our method is useful for the measurement of ceramide in urine specimens, and urinary ceramides might be associated with the pathological condition of diabetic nephropathy, such as renal tubular injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Molecular PathologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Makoto Kurano
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Eri Sakai
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
| | - Takako Nishikawa
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
| | - Masako Nishikawa
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Motoji Sawabe
- Department of Molecular PathologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Junken Aoki
- Laboratory of Molecular and Cellular BiochemistryGraduate School of Pharmaceutical SciencesTohoku UniversityMiyagiJapan
| | - Yutaka Yatomi
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
29
|
Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int J Mol Sci 2019; 20:ijms20215500. [PMID: 31694154 PMCID: PMC6862663 DOI: 10.3390/ijms20215500] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Recent data highlight the important roles of the gut microbiome, gut permeability, and alterations in mitochondria functioning in the pathophysiology of multiple sclerosis (MS). This article reviews such data, indicating two important aspects of alterations in the gut in the modulation of mitochondria: (1) Gut permeability increases toll-like receptor (TLR) activators, viz circulating lipopolysaccharide (LPS), and exosomal high-mobility group box (HMGB)1. LPS and HMGB1 increase inducible nitric oxide synthase and superoxide, leading to peroxynitrite-driven acidic sphingomyelinase and ceramide. Ceramide is a major driver of MS pathophysiology via its impacts on glia mitochondria functioning; (2) Gut dysbiosis lowers production of the short-chain fatty acid, butyrate. Butyrate is a significant positive regulator of mitochondrial function, as well as suppressing the levels and effects of ceramide. Ceramide acts to suppress the circadian optimizers of mitochondria functioning, viz daytime orexin and night-time melatonin. Orexin, melatonin, and butyrate increase mitochondria oxidative phosphorylation partly via the disinhibition of the pyruvate dehydrogenase complex, leading to an increase in acetyl-coenzyme A (CoA). Acetyl-CoA is a necessary co-substrate for activation of the mitochondria melatonergic pathway, allowing melatonin to optimize mitochondrial function. Data would indicate that gut-driven alterations in ceramide and mitochondrial function, particularly in glia and immune cells, underpin MS pathophysiology. Aryl hydrocarbon receptor (AhR) activators, such as stress-induced kynurenine and air pollutants, may interact with the mitochondrial melatonergic pathway via AhR-induced cytochrome P450 (CYP)1b1, which backward converts melatonin to N-acetylserotonin (NAS). The loss of mitochnodria melatonin coupled with increased NAS has implications for altered mitochondrial function in many cell types that are relevant to MS pathophysiology. NAS is increased in secondary progressive MS, indicating a role for changes in the mitochondria melatonergic pathway in the progression of MS symptomatology. This provides a framework for the integration of diverse bodies of data on MS pathophysiology, with a number of readily applicable treatment interventions, including the utilization of sodium butyrate.
Collapse
|
30
|
The Lipid Status in Patients with Ulcerative Colitis: Sphingolipids are Disease-Dependent Regulated. J Clin Med 2019; 8:jcm8070971. [PMID: 31277430 PMCID: PMC6678307 DOI: 10.3390/jcm8070971] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
The factors that contribute to the development of ulcerative colitis (UC), are still not fully identified. Disruption of the colon barrier is one of the first events leading to invasion of bacteria and activation of the immune system. The colon barrier is strongly influenced by sphingolipids. Sphingolipids impact cell-cell contacts and function as second messengers. We collected blood and colon tissue samples from UC patients and healthy controls and investigated the sphingolipids and other lipids by LC-MS/MS or LC-QTOFMS. The expression of enzymes of the sphingolipid pathway were determined by RT-PCR and immunohistochemistry. In inflamed colon tissue, the de novo-synthesis of sphingolipids is reduced, whereas lactosylceramides are increased. Reduction of dihydroceramides was due to posttranslational inhibition rather than altered serine palmitoyl transferase or ceramide synthase expression in inflamed colon tissue. Furthermore, in human plasma from UC-patients, several sphinglipids change significantly in comparison to healthy controls. Beside sphingolipids free fatty acids, lysophosphatidylcholines and triglycerides changed significantly in the blood of colitis patients dependent on the disease severity. Our data indicate that detraction of the sphingolipid de novo synthesis in colon tissue might be an important trigger for UC. Several lipids changed significantly in the blood, which might be used as biomarkers for disease control; however, diet-related variabilities need to be considered.
Collapse
|
31
|
Castro K, Ntranos A, Amatruda M, Petracca M, Kosa P, Chen EY, Morstein J, Trauner D, Watson CT, Kiebish MA, Bielekova B, Inglese M, Katz Sand I, Casaccia P. Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course. EBioMedicine 2019; 43:392-410. [PMID: 30981648 PMCID: PMC6557766 DOI: 10.1016/j.ebiom.2019.03.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS. METHODS Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-naïve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS. FINDINGS Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS. INTERPRETATION High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. FUND: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society.
Collapse
Affiliation(s)
- Kamilah Castro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Achilles Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Mario Amatruda
- Advanced Science Research Center at The Graduate Center of The City University of New York and Inter-Institutional Center for Glial Biology at Icahn School of Medicine New York, New York, United States of America
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Peter Kosa
- Neuroimmunological Disease Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Emily Y Chen
- BERG, LLC. Framingham, MA, United States of America
| | - Johannes Morstein
- Department of Chemistry, New York University, NY, New York, United States of America
| | - Dirk Trauner
- Department of Chemistry, New York University, NY, New York, United States of America
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States of America
| | | | - Bibiana Bielekova
- Neuroimmunological Disease Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, New York, United States of America; Advanced Science Research Center at The Graduate Center of The City University of New York and Inter-Institutional Center for Glial Biology at Icahn School of Medicine New York, New York, United States of America.
| |
Collapse
|
32
|
Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease. J Lipid Res 2019; 60:913-918. [PMID: 30846529 PMCID: PMC6495170 DOI: 10.1194/jlr.s092874] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a critical bioactive lipid involved in diverse cellular processes. It has been proposed to regulate cellular processes by influencing membrane properties and by directly interacting with effector proteins. Advances over the past decade have improved our understanding of ceramide as a bioactive lipid. Generation and characterization of ceramide-metabolizing enzyme KO mice, development of specific inhibitors and ceramide-specific antibodies, use of advanced microscopy and mass spectrometry, and design of synthetic ceramide derivatives have all provided insight into the signaling mechanisms of ceramide and its implications in disease. As a result, the role of ceramide in biological functions and disease are now better understood, with promise for development of therapeutic strategies to treat ceramide-regulated diseases.
Collapse
Affiliation(s)
- Jeffrey L Stith
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794
| | - Fabiola N Velazquez
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794; Northport Veterans Affairs Medical Center Northport, NY 11768.
| |
Collapse
|
33
|
Kurz J, Parnham MJ, Geisslinger G, Schiffmann S. Ceramides as Novel Disease Biomarkers. Trends Mol Med 2019; 25:20-32. [DOI: 10.1016/j.molmed.2018.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
|