1
|
Palomar A, Yagüe-Serrano R, Martínez-Sanchis JV, Iniesta I, Quiñonero A, Fernández-Colom PJ, Monzó A, Rubio JM, Molina I, Domínguez F. Predictive potential of combined secretomics and image-based morphometry as a non-invasive method for selecting implanting embryos. Reprod Biol Endocrinol 2025; 23:57. [PMID: 40221726 PMCID: PMC11992772 DOI: 10.1186/s12958-025-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Non-invasive selection of human embryos for in vitro fertilization purposes is still a major challenge to pursue. Therefore, this study aims to identify non-invasive morphometric and secretomic parameters that reliably select the embryos with the highest likelihood of implantation prior to embryo transfer (ET). METHODS Prospective single-centre cohort study. Thirty-two day 5 blastocysts derived from 28 couples undergoing intracytoplasmic sperm injection (ICSI) and ET between January 2023 and April 2023. Patients were split according to their implantation outcome, confirmed with serum beta-human chorionic gonadotropin (b-hCG) levels > 5 mIU/mL nine days post-SET. Ninety-two proteins involved in embryonic developmental programming were measured in spent blastocyst media (SBM) using a protein extension assay. Sparse PLS-DA (sPLS-DA) was used for principal component analysis. Forty-seven morphometric parameters related to the trophoblast, inner cell mass and blastocele dimension were evaluated in microphotographs of day 5 embryos with ImageJ software. T-test and Mann-Whitney tests were respectively used to compare morphometric measurements and normalized expression of secreted protein (NPx) levels between embryos that implanted or not. Predictive value of models of implantation based on embryo morphometric parameters and secreted proteins. RESULTS Chi-squared tests showed no significant differences in transferred blastocyst stage, quality, and state between subgroups. Implanting blastocysts (n = 14) presented significantly different morphometric shape descriptors (i.e., internal circularity, internal roundness, internal axis ratio, internal angle and trophoblast mean width) than non-implanting blastocysts (n = 13). Among the quantifiable proteins (86/92) in SBM from eleven implanting and nine non-implanting blastocysts, NPx and sPLS-DA analysis revealed three differentially expressed proteins. Matrilin-2 (MATN2) and legumain (LGMN) were significantly elevated (p < 0.01 in both cases) while thymosin beta-10 (TMSB10) was significantly decreased (p < 0.05) in implanting embryos. Predictive models based exclusively on morphometric or secreted protein profiles accurately discriminated implantation outcomes (AUC > 0.71). The model integrating the blastocysts' internal circularity, internal roundness, internal axis ratio and the NPx of MATN2 and TMSB10 in SBM had exceptional negative and positive predictive power for implantation outcomes (100% and 90.91%, respectively; AUC = 0.93). CONCLUSIONS Morphometric shape descriptors and NPx levels of MATN2 and TMSB10 in SBM emerge as promising candidate markers for non-invasive embryo selection.
Collapse
Affiliation(s)
- Andrea Palomar
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, 46026, Spain
| | - Roberto Yagüe-Serrano
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, 46026, Spain
| | | | - Ignacio Iniesta
- Unit of Assisted Reproduction, Hospital Universitario y Politécnico La Fe, Valencia, 46026, Spain
| | - Alicia Quiñonero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, 46026, Spain
| | | | - Ana Monzó
- Unit of Assisted Reproduction, Hospital Universitario y Politécnico La Fe, Valencia, 46026, Spain
| | - José María Rubio
- Unit of Assisted Reproduction, Hospital Universitario y Politécnico La Fe, Valencia, 46026, Spain
| | - Inmaculada Molina
- Unit of Assisted Reproduction, Hospital Universitario y Politécnico La Fe, Valencia, 46026, Spain
| | - Francisco Domínguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, 46026, Spain.
- Stanford Medicine School, Ob Gyn Department, Stanford University, Stanford, CA, 94304, USA.
- Fundación Instituto Valenciano de Infertilidad, Instituto de Investigación Sanitaria La Fe, Edificio Biopolo, Torre A, Planta 1, Avenida Fernando Abril Martorell, 106, Valencia, 46026, Spain.
| |
Collapse
|
2
|
Rottenstreich A, Coller BS. The potential role of the αVβ3 integrin receptor in placental biology and normal and complicated pregnancies. Br J Haematol 2025; 206:1054-1061. [PMID: 39976156 PMCID: PMC11985283 DOI: 10.1111/bjh.20019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
The αVβ3 receptor is a member of the integrin family of receptors, which includes 24 members involved in a variety of key biological processes. It is widely expressed in multiple cell types and is involved in cell adhesion and migration, angiogenesis and immune cell regulation. These processes play important roles in both normal placentation and placental progression through pregnancy. This review describes the potential roles of αVβ3 integrin receptor throughout gestation in normal and abnormal conditions, and the need for additional studies to better define its precise contributions.
Collapse
Affiliation(s)
- Amihai Rottenstreich
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, USA
| | - Barry S. Coller
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, USA
| |
Collapse
|
3
|
Cherubini M, Erickson S, Padmanaban P, Haberkant P, Stein F, Beltran-Sastre V, Haase K. Flow in fetoplacental-like microvessels in vitro enhances perfusion, barrier function, and matrix stability. SCIENCE ADVANCES 2023; 9:eadj8540. [PMID: 38134282 PMCID: PMC10745711 DOI: 10.1126/sciadv.adj8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Proper placental vascularization is vital for pregnancy outcomes, but assessing it with animal models and human explants has limitations. We introduce a 3D in vitro model of human placenta terminal villi including fetal mesenchyme and vascular endothelium. By coculturing HUVEC, placental fibroblasts, and pericytes in a macrofluidic chip with a flow reservoir, we generate fully perfusable fetal microvessels. Pressure-driven flow facilitates microvessel growth and remodeling, resulting in early formation of interconnected and lasting placental-like vascular networks. Computational fluid dynamics simulations predict shear forces, which increase microtissue stiffness, decrease diffusivity, and enhance barrier function as shear stress rises. Mass spectrometry analysis reveals enhanced protein expression with flow, including matrix stability regulators, proteins associated with actin dynamics, and cytoskeleton organization. Our model provides a powerful tool for deducing complex in vivo parameters, such as shear stress on developing vascularized placental tissue, and holds promise for unraveling gestational disorders related to the vasculature.
Collapse
Affiliation(s)
- Marta Cherubini
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Scott Erickson
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | | | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | - Kristina Haase
- European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| |
Collapse
|
4
|
Shi D, Zhou X, Cai L, Wei X, Zhang L, Sun Q, Zhou F, Sun L. Placental DNA methylation analysis of selective fetal growth restriction in monochorionic twins reveals aberrant methylated CYP11A1 gene for fetal growth restriction. FASEB J 2023; 37:e23207. [PMID: 37732623 DOI: 10.1096/fj.202300742r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Fetal growth restriction (FGR) is associated with increased susceptibility to perinatal morbidity and mortality. Evidence suggests that epigenetic changes play critical roles in the regulation of fetal growth. We sought to present a comprehensive analysis of the associations between placental DNA methylation and selective fetal growth restriction (sFGR), which is a severe complication of monochorionic twin pregnancies, characterized by one fetus experiencing restricted growth. Genome-wide methylation analysis was performed on 24 placental samples obtained from 12 monochorionic twins with sFGR (Cohort 1) using Illumina Infinium MethylationEPIC BeadChip. Integrative analysis of our EPIC data and two previous placental methylation studies of sFGR (a total of 30 placental samples from 15 sFGR twins) was used to identify convincing differential promoter methylation. Validation analysis was performed on the placentas from 15 sFGR twins (30 placental samples), 15 FGR singletons, and 14 control singletons (Cohort 2) using pyrosequencing, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry (IHC). A globe shift toward hypomethylation was identified in the placentas of growth-restricted fetuses compared with the placentas of normal fetuses in monochorionic twins, including 5625 hypomethylated CpGs and 452 hypermethylated CpGs, especially in the regions of CpG islands, gene-body and promoters. The analysis of pathways revealed dysregulation primarily in steroid hormone biosynthesis, metabolism, cell adhesion, signaling transduction, and immune response. Integrative analysis revealed a differentially methylated promoter region in the CYP11A1 gene, encoding a rate-limiting enzyme of steroidogenesis converting cholesterol to pregnenolone. The CYP11A1 gene was validated to have hypomethylation and higher mRNA expression in sFGR twins and FGR singletons. In conclusion, our findings suggested that the changes in placental DNA methylation pattern in sFGR may have functional implications for differentially methylated genes and regulatory regions. The study provides reliable evidence for identifying abnormally methylated CYP11A1 gene in the placenta of sFGR.
Collapse
Affiliation(s)
- Dayuan Shi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyao Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luyao Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xing Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luye Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianqian Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenhe Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Sayres L, Flockton AR, Ji S, Rey Diaz C, Gumina DL, Su EJ. Angiogenic Function of Human Placental Endothelial Cells in Severe Fetal Growth Restriction Is Not Rescued by Individual Extracellular Matrix Proteins. Cells 2023; 12:2339. [PMID: 37830553 PMCID: PMC10572031 DOI: 10.3390/cells12192339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Severe fetal growth restriction (FGR) is characterized by increased placental vascular resistance resulting from aberrant angiogenesis. Interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are critical to the complex process of angiogenesis. We have previously found that placental stromal abnormalities contribute to impaired angiogenesis in severe FGR. The objective of this research is to better characterize the effect of individual ECM proteins on placental angiogenic properties in the setting of severe FGR. ECs were isolated from human placentae, either control or affected by severe FGR, and subjected to a series of experiments to interrogate the role of ECM proteins on adhesion, proliferation, migration, and apoptosis. We found impaired proliferation and migration of growth-restricted ECs. Although individual substrates did not substantially impact migratory capacity, collagens I, III, and IV partially mitigated proliferative defects seen in FGR ECs. Differences in adhesion and apoptosis between control and FGR ECs were not evident. Our findings demonstrate that placental angiogenic defects that characterize severe FGR cannot be explained by a singular ECM protein, but rather, the placental stroma as a whole. Further investigation of the effects of stromal composition, architecture, stiffness, growth factor sequestration, and capacity for remodeling is essential to better understand the role of ECM in impaired angiogenesis in severe FGR.
Collapse
Affiliation(s)
- Lauren Sayres
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Amanda R. Flockton
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Shuhan Ji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Carla Rey Diaz
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Diane L. Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Emily J. Su
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| |
Collapse
|
6
|
Gumina DL, Su EJ. Mechanistic insights into the development of severe fetal growth restriction. Clin Sci (Lond) 2023; 137:679-695. [PMID: 37186255 PMCID: PMC10241202 DOI: 10.1042/cs20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Fetal growth restriction (FGR), which most commonly results from suboptimal placental function, substantially increases risks for adverse perinatal and long-term outcomes. The only "treatment" that exists is delivery, which averts stillbirth but does not improve outcomes in survivors. Furthermore, the potential long-term consequences of FGR to the fetus, including cardiometabolic disorders, predispose these individuals to developing FGR in their future pregnancies. This creates a multi-generational cascade of adverse effects stemming from a single dysfunctional placenta, and understanding the mechanisms underlying placental-mediated FGR is critically important if we are to improve outcomes and overall health. The mechanisms behind FGR remain unknown. However, placental insufficiency derived from maldevelopment of the placental vascular systems is the most common etiology. To highlight important mechanistic interactions within the placenta, we focus on placental vascular development in the setting of FGR. We delve into fetoplacental angiogenesis, a robust and ongoing process in normal pregnancies that is impaired in severe FGR. We review cellular models of FGR, with special attention to fetoplacental angiogenesis, and we highlight novel integrin-extracellular matrix interactions that regulate placental angiogenesis in severe FGR. In total, this review focuses on key developmental processes, with specific focus on the human placenta, an underexplored area of research.
Collapse
Affiliation(s)
- Diane L Gumina
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| | - Emily J Su
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| |
Collapse
|
7
|
Mice Placental ECM Components May Provide A Three-Dimensional Placental Microenvironment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010016. [PMID: 36671588 PMCID: PMC9855196 DOI: 10.3390/bioengineering10010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Bioethical limitations impair deeper studies in human placental physiology, then most studies use human term placentas or murine models. To overcome these challenges, new models have been proposed to mimetize the placental three-dimensional microenvironment. The placental extracellular matrix plays an essential role in several processes, being a part of the establishment of materno-fetal interaction. Regarding these aspects, this study aimed to investigate term mice placental ECM components, highlighting its collagenous and non-collagenous content, and proposing a potential three-dimensional model to mimetize the placental microenvironment. For that, 18.5-day-old mice placenta, both control and decellularized (n = 3 per group) were analyzed on Orbitrap Fusion Lumos spectrometer (ThermoScientific) and LFQ intensity generated on MaxQuant software. Proteomic analysis identified 2317 proteins. Using ECM and cell junction-related ontologies, 118 (5.1%) proteins were filtered. Control and decellularized conditions had no significant differential expression on 76 (64.4%) ECM and cell junction-related proteins. Enriched ontologies in the cellular component domain were related to cell junction, collagen and lipoprotein particles, biological process domain, cell adhesion, vasculature, proteolysis, ECM organization, and molecular function. Enriched pathways were clustered in cell adhesion and invasion, and labyrinthine vasculature regulation. These preserved ECM proteins are responsible for tissue stiffness and could support cell anchoring, modeling a three-dimensional structure that may allow placental microenvironment reconstruction.
Collapse
|
8
|
Gumina DL, Ji S, Flockton A, McPeak K, Stich D, Moldovan R, Su EJ. Dysregulation of integrin αvβ3 and α5β1 impedes migration of placental endothelial cells in fetal growth restriction. Development 2022; 149:dev200717. [PMID: 36193846 PMCID: PMC9641665 DOI: 10.1242/dev.200717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Placentas from pregnancies complicated by severe early-onset fetal growth restriction (FGR) exhibit diminished vascular development mediated by impaired angiogenesis, but underlying mechanisms remain unknown. In this study, we show that FGR endothelial cells demonstrate inherently reduced migratory capacity despite the presence of fibronectin, a matrix protein abundant in placental stroma that displays abnormal organization in FGR placentas. Thus, we hypothesized that aberrant endothelial-fibronectin interactions in FGR are a key mechanism underlying impaired FGR endothelial migration. Using human fetoplacental endothelial cells isolated from uncomplicated term control and FGR pregnancies, we assessed integrin α5β1 and αvβ3 regulation during cell migration. We show that endothelial integrin α5β1 and αvβ3 interactions with fibronectin are required for migration and that FGR endothelial cells responded differentially to integrin inhibition, indicating integrin dysregulation in FGR. Whole-cell expression was not different between groups. However, there were significantly more integrins in focal adhesions and reduced intracellular trafficking in FGR. These newly identified changes in FGR endothelial cellular processes represent previously unidentified mechanisms contributing to persistent angiogenic deficiencies in FGR.
Collapse
Affiliation(s)
- Diane L. Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shuhan Ji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Amanda Flockton
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn McPeak
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominik Stich
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Radu Moldovan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily J. Su
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Xiao C, Wang Y, Fan Y. Bioinformatics Analysis Identifies Potential Related Genes in the Pathogenesis of Intrauterine Fetal Growth Retardation. Evol Bioinform Online 2022; 18:11769343221112780. [PMID: 35923419 PMCID: PMC9340335 DOI: 10.1177/11769343221112780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Intrauterine growth retardation (IUGR) affects approximately 10% to 15% of
all pregnancies worldwide. IUGR is not only associated with stillbirth and
newborn death, but also the delay of cognition in childhood and the
promotion of metabolic and vascular disorders in adulthood. Figuring out the
mechanism of IUGR is rather meaningful and valuable. Methods: Datasets related to IUGR were searched in the Gene Expression Omnibus
website. Principal component analysis (PCA) was used for normalization.
Differential expressed genes (DEGs) were screened out using the ggpot2 tool.
DEGs were used to conduct Gene Ontology (GO) terms, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways enrichment analyses, and protein-protein
interaction (PPI) analysis. IUGR related genes were searched in the OMIM
website to look for the intersection with the DEGs. The DEGs were analyzed
for tissue-specific expression by the online resource BioGPS. The results
were displayed through volcano map, Venn map, box plot, heat map, and GSEA
enrichment plots drawn by R language packages. Results: Eleven DEGs were screened out of 2 datasets. One hundred ninety-five genes
related to IUGR in OMIM were retrieved. EGR2 was the only intersection gene
that was found in both groups. Genes associated with placental tissue
expression include COL17A1, HSD11B1, and LGALS14. Molecular functions of the
DEGs are related to the oxidoreductase activity. The following 4 signaling
pathways, reactome signaling by interleukins, reactome collagen degradation,
Naba secreted factors, and PID NFAT tfpathway, were enriched by GSEA. Two
critical modules comprising 5 up-regulated genes (LEP, PRL, TAC3, MMP14, and
ADAMTS4) and 4 down-regulated genes (TIMP4, FOS, CCK, and KISS1) were
identified by PPI analysis. Finally, we identified 6 genes (PRL, LGALS14,
EGR2, TAC3, LEP, and KISS1) that are potentially relevant to the
pathophysiology of IUGR. Conclusion: The candidate down-regulated genes LGALS14 and KISS1, as well as the
up-regulated genes PRL, EGR2, TAC3, and LEP, were found to be closely
related to IUGR by bioinformatics analysis. These hub genes are related to
hypoxia and oxidoreductase activities in placental development. We provide
useful and novel information to explore the potential mechanism of IUGR and
make efforts to the prevention of IUGR.
Collapse
Affiliation(s)
- Chao Xiao
- Department of Obstetrics and Gynecology, Zigong First People’s Hospital, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, Zigong First People’s Hospital, Sichuan, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|