1
|
Hoffnagle AM, Tezcan FA. Atomically Accurate Design of Metalloproteins with Predefined Coordination Geometries. J Am Chem Soc 2023; 145:14208-14214. [PMID: 37352018 PMCID: PMC10439731 DOI: 10.1021/jacs.3c04047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
We report a new computational protein design method for the construction of oligomeric protein assemblies around metal centers with predefined coordination geometries. We apply this method to design two homotrimeric assemblies, Tet4 and TP1, with tetrahedral and trigonal-pyramidal tris(histidine) metal coordination geometries, respectively, and demonstrate that both assemblies form the targeted metal centers with ≤0.2 Å accuracy. Although Tet4 and TP1 are constructed from the same parent protein building block, they are distinct in terms of their overall architectures, the environment surrounding the metal centers, and their metal-based reactivities, illustrating the versatility of our approach.
Collapse
Affiliation(s)
- Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
2
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
3
|
Pachisia S, Gupta R. Supramolecular catalysis: the role of H-bonding interactions in substrate orientation and activation. Dalton Trans 2021; 50:14951-14966. [PMID: 34617524 DOI: 10.1039/d1dt02131a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding plays significant roles in various biological processes during substrate orientation and binding and therefore assists in assorted organic transformations. However, replicating the intricate selection of hydrogen bonds, as observed in nature, in synthetic complexes has met with only limited success. Despite this fact, recent times have seen the emergence of several notable examples where hydrogen bonds have been introduced in synthetic complexes. A few such examples have also illustrated the substantial role played by the hydrogen bonds in influencing and often controlling the catalytic outcome. This perspective presents selected examples illustrating the significance of hydrogen bonds offered by the coordination and the organometallic complexes that aid in providing the desired orientation to a substrate adjacent to a catalytic metal center and remarkably assisting in the catalysis.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| |
Collapse
|
4
|
Pereira JM, Vieira M, Santos SM. Step-by-step design of proteins for small molecule interaction: A review on recent milestones. Protein Sci 2021; 30:1502-1520. [PMID: 33934427 PMCID: PMC8284594 DOI: 10.1002/pro.4098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023]
Abstract
Protein design is the field of synthetic biology that aims at developing de novo custom-made proteins and peptides for specific applications. Despite exploring an ambitious goal, recent computational advances in both hardware and software technologies have paved the way to high-throughput screening and detailed design of novel folds and improved functionalities. Modern advances in the field of protein design for small molecule targeting are described in this review, organized in a step-by-step fashion: from the conception of a new or upgraded active binding site, to scaffold design, sequence optimization, and experimental expression of the custom protein. In each step, contemporary examples are described, and state-of-the-art software is briefly explored.
Collapse
Affiliation(s)
- José M. Pereira
- CICECO & Departamento de QuímicaUniversidade de AveiroAveiroPortugal
| | - Maria Vieira
- CICECO & Departamento de QuímicaUniversidade de AveiroAveiroPortugal
| | - Sérgio M. Santos
- CICECO & Departamento de QuímicaUniversidade de AveiroAveiroPortugal
| |
Collapse
|
5
|
Kakkis A, Gagnon D, Esselborn J, Britt RD, Tezcan FA. Metal‐Templated Design of Chemically Switchable Protein Assemblies with High‐Affinity Coordination Sites. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Albert Kakkis
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Derek Gagnon
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Julian Esselborn
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - R. David Britt
- Department of Chemistry University of California, Davis 1 Shields Avenue Davis CA 95616 USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
6
|
Kakkis A, Gagnon D, Esselborn J, Britt RD, Tezcan FA. Metal-Templated Design of Chemically Switchable Protein Assemblies with High-Affinity Coordination Sites. Angew Chem Int Ed Engl 2020; 59:21940-21944. [PMID: 32830423 PMCID: PMC7983065 DOI: 10.1002/anie.202009226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Indexed: 11/09/2022]
Abstract
To mimic a hypothetical pathway for protein evolution, we previously tailored a monomeric protein (cyt cb562 ) for metal-mediated self-assembly, followed by re-design of the resulting oligomers for enhanced stability and metal-based functions. We show that a single hydrophobic mutation on the cyt cb562 surface drastically alters the outcome of metal-directed oligomerization to yield a new trimeric architecture, (TriCyt1)3. This nascent trimer was redesigned into second and third-generation variants (TriCyt2)3 and (TriCyt3)3 with increased structural stability and preorganization for metal coordination. The three TriCyt variants combined furnish a unique platform to 1) provide tunable coupling between protein quaternary structure and metal coordination, 2) enable the construction of metal/pH-switchable protein oligomerization motifs, and 3) generate a robust metal coordination site that can coordinate all mid-to-late first-row transition-metal ions with high affinity.
Collapse
Affiliation(s)
- Albert Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Derek Gagnon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Julian Esselborn
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
7
|
Churchfield LA, Tezcan FA. Design and Construction of Functional Supramolecular Metalloprotein Assemblies. Acc Chem Res 2019; 52:345-355. [PMID: 30698941 DOI: 10.1021/acs.accounts.8b00617] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nature puts to use only a small fraction of metal ions in the periodic table. Yet, when incorporated into protein scaffolds, this limited set of metal ions carry out innumerable cellular functions and execute essential biochemical transformations such as photochemical H2O oxidation, O2 or CO2 reduction, and N2 fixation, highlighting the outsized importance of metalloproteins in biology. Not surprisingly, elucidating the intricate interplay between metal ions and protein structures has been the focus of extensive structural and mechanistic scrutiny over the last several decades. As a result of such top-down efforts, we have gained a reasonably detailed understanding of how metal ions shape protein structures and how protein structures in turn influence metal reactivity. It is fair to say that we now have some idea-and in some cases, a good idea-about how most known metalloproteins function and we possess enough insight to quickly assess the modus operandi of newly discovered ones. However, translating this knowledge into an ability to construct functional metalloproteins from scratch represents a challenge at a whole different level: it is one thing to know how an automobile works; it is another to build one. In our quest to build new metalloproteins, we have taken an original approach in which folded, monomeric proteins are used as ligands or synthons for building supramolecular complexes through metal-mediated self-assembly (MDPSA, Metal-Directed Protein Self-Assembly). The interfaces in the resulting protein superstructures are subsequently tailored with covalent, noncovalent, or additional metal-coordination interactions for stabilization and incorporation of new functionalities (MeTIR, Metal Templated Interface Redesign). In an earlier Account, we had described the proof-of-principle studies for MDPSA and MeTIR, using a four-helix bundle, heme protein cytochrome cb562 (cyt cb562), as a model building block. By the end of those studies, we were able to demonstrate that a tetrameric, Zn-directed cyt cb562 complex (Zn4:M14) could be stabilized through computationally prescribed noncovalent interactions inserted into the nascent protein-protein interfaces. In this Account, we first describe the rationale and motivation for our particular metalloprotein engineering strategy and a brief summary of our earlier work. We then describe the next steps in the "evolution" of bioinorganic complexity on the Zn4:M14 scaffold, namely, (a) the generation of a self-standing protein assembly that can stably and selectively bind metal ions, (b) the creation of reactive metal centers within the protein assembly, and (c) the coupling of metal coordination and reactivity to external stimuli through allosteric effects.
Collapse
Affiliation(s)
- Lewis A. Churchfield
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356, United States
| |
Collapse
|
8
|
Ségaud N, Drienovská I, Chen J, Browne WR, Roelfes G. Artificial Metalloproteins for Binding and Stabilization of a Semiquinone Radical. Inorg Chem 2018; 56:13293-13299. [PMID: 29027794 PMCID: PMC5676253 DOI: 10.1021/acs.inorgchem.7b02073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The interaction of a number of first-row
transition-metal ions with a 2,2′-bipyridyl alanine (bpyA)
unit incorporated into the lactococcal multidrug resistance regulator
(LmrR) scaffold is reported. The composition of the active site is
shown to influence binding affinities. In the case of Fe(II), we demonstrate
the need of additional ligating residues, in particular those containing
carboxylate groups, in the vicinity of the binding site. Moreover,
stabilization of di-tert-butylsemiquinone radical
(DTB-SQ) in water was achieved by binding to the designed
metalloproteins, which resulted in the radical being shielded from
the aqueous environment. This allowed the first characterization of
the radical semiquinone in water by resonance Raman spectroscopy. A coordination study of first-row transition-metal ions to bipyridine
alanine (bpyA) incorporated into the lactococcal multidrug resistance
regulator (LmrR) scaffold is reported. The designed metalloproteins
were shown to bind and stabilize the di-tert-butylsemiquinone
radical (DTB-SQ) in water, allowing for the first resonance
Raman characterization of this radical species in water.
Collapse
Affiliation(s)
- Nathalie Ségaud
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivana Drienovská
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Juan Chen
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Chino M, Leone L, Maglio O, D'Alonzo D, Pirro F, Pavone V, Nastri F, Lombardi A. A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Linda Leone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Ornella Maglio
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
- IBB-National Research Council; Via Mezzocannone 16 80134 Napoli Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Fabio Pirro
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Flavia Nastri
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Angela Lombardi
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| |
Collapse
|
10
|
Chino M, Leone L, Maglio O, D'Alonzo D, Pirro F, Pavone V, Nastri F, Lombardi A. A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation. Angew Chem Int Ed Engl 2017; 56:15580-15583. [DOI: 10.1002/anie.201707637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Linda Leone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Ornella Maglio
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
- IBB-National Research Council; Via Mezzocannone 16 80134 Napoli Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Fabio Pirro
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Flavia Nastri
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| | - Angela Lombardi
- Department of Chemical Sciences; University of Napoli “Federico II”; Via Cintia 80126 Napoli Italy
| |
Collapse
|
11
|
Song WJ, Yu J, Tezcan FA. Importance of Scaffold Flexibility/Rigidity in the Design and Directed Evolution of Artificial Metallo-β-lactamases. J Am Chem Soc 2017; 139:16772-16779. [PMID: 28992705 DOI: 10.1021/jacs.7b08981] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe the design and evolution of catalytic hydrolase activity on a supramolecular protein scaffold, Zn4:C96RIDC14, which was constructed from cytochrome cb562 building blocks via a metal-templating strategy. Previously, we reported that Zn4:C96RIDC14 could be tailored with tripodal (His/His/Glu), unsaturated Zn coordination motifs in its interfaces to generate a variant termed Zn8:A104AB34, which in turn displayed catalytic activity for the hydrolysis of activated esters and β-lactam antibiotics. Zn8:A104AB34 was subsequently subjected to directed evolution via an in vivo selection strategy, leading to a variant Zn8:A104/G57AB34 which displayed enzyme-like Michaelis-Menten behavior for ampicillin hydrolysis. A criterion for the evolutionary utility or designability of a new protein structure is its ability to accommodate different active sites. With this in mind, we examined whether Zn4:C96RIDC14 could be tailored with alternative Zn coordination sites that could similarly display evolvable catalytic activities. We report here a detailed structural and functional characterization of new variant Zn8:AB54, which houses similar, unsaturated Zn coordination sites to those in Zn8:A104/G57AB34, but in completely different microenvironments. Zn8:AB54 displays Michaelis-Menten behavior for ampicillin hydrolysis without any optimization. Yet, the subsequent directed evolution of Zn8:AB54 revealed limited catalytic improvement, which we ascribed to the local protein rigidity surrounding the Zn centers and the lack of evolvable loop structures nearby. The relaxation of local rigidity via the elimination of adjacent disulfide linkages led to a considerable structural transformation with a concomitant improvement in β-lactamase activity. Our findings reaffirm previous observations that the delicate balance between protein flexibility and stability is crucial for enzyme design and evolution.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States.,Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - Jaeseung Yu
- Department of Chemistry, Seoul National University , Seoul 08826, Korea
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093-0356, United States
| |
Collapse
|