1
|
Abstract
Accumulation of phosphorylated intermediates during cellular metabolism can have wide-ranging toxic effects on many organisms, including humans and the pathogens that infect them. These toxicities can be induced by feeding an upstream metabolite (a sugar, for instance) while simultaneously blocking the appropriate metabolic pathway with either a mutation or an enzyme inhibitor. Here, we survey the toxicities that can arise in the metabolism of glucose, galactose, fructose, fructose-asparagine, glycerol, trehalose, maltose, mannose, mannitol, arabinose, and rhamnose. Select enzymes in these metabolic pathways may serve as novel therapeutic targets. Some are conserved broadly among prokaryotes and eukaryotes (e.g., glucose and galactose) and are therefore unlikely to be viable drug targets. However, others are found only in bacteria (e.g., fructose-asparagine, rhamnose, and arabinose), and one is found in fungi but not in humans (trehalose). We discuss what is known about the mechanisms of toxicity and how resistance is achieved in order to identify the prospects and challenges associated with targeted exploitation of these pervasive metabolic vulnerabilities.
Collapse
|
2
|
Kim JH, Kim JW, Jo J, Straub JH, Cross M, Hofmann A, Kim JS. Characterisation of trehalose-6-phosphate phosphatases from bacterial pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140564. [PMID: 33171283 DOI: 10.1016/j.bbapap.2020.140564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022]
Abstract
The trehalose biosynthesis pathway has recently received attention for therapeutic intervention combating infectious diseases caused by bacteria, helminths or fungi. Trehalose-6-phosphate phosphatase (TPP) is a key enzyme of the most common trehalose biosynthesis pathway and a particularly attractive target owing to the toxicity of accumulated trehalose-6-phosphate in pathogens. Here, we characterised TPP-like proteins from bacterial pathogens implicated in nosocomial infections in terms of their steady-state kinetics as well as pH- and metal-dependency of their enzymatic activity. Analysis of the steady-state kinetics of recombinantly expressed enzymes from Acinetobacter baumannii, Corynebacterium diphtheriae and Pseudomonas stutzeri yielded similar kinetic parameters as those of other reported bacterial TPPs. In contrast to nematode TPPs, the divalent metal ion appears to be bound only weakly in the active site of bacterial TPPs, allowing the exchange of the resident magnesium ion with other metal ions. Enzymatic activity comparable to the wild-type enzyme was observed for the TPP from P. stutzeri with manganese, cobalt and nickel. Analysis of the enzymatic activity of S. maltophilia TPP active site mutants provides evidence for the involvement of four canonical aspartate residues as well as a strictly conserved histidine residue of TPP-like proteins from bacteria in the enzyme mechanism. That histidine residue is a member of an interconnected network of five conserved residues in the active site of bacterial TPPs which likely constitute one or more functional units, directly or indirectly cooperating to enhance different aspects of the catalytic activity.
Collapse
Affiliation(s)
- Jun-Hong Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji-Won Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiwon Jo
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jan Hendrik Straub
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia; Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Cross M, York M, Długosz E, Straub JH, Biberacher S, Herath HMPD, Logan SA, Kim JS, Gasser RB, Ryan JH, Hofmann A. A suicide inhibitor of nematode trehalose-6-phosphate phosphatases. Sci Rep 2019; 9:16165. [PMID: 31700060 PMCID: PMC6838324 DOI: 10.1038/s41598-019-52593-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 11/12/2022] Open
Abstract
Protein-based drug discovery strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors. Currently, there are no known trehalose-6-phosphate phosphatase (TPP) inhibitors that possess reasonable inhibition constants and chemical scaffolds amenable to convenient modification. In the present study, we subjected recombinant TPPs to a two-tiered screening approach to evaluate several diverse compound groups with respect to their potential as TPP inhibitors. From a total of 5452 compounds tested, N-(phenylthio)phthalimide was identified as an inhibitor of nematode TPPs with apparent Ki values of 1.0 μM and 0.56 μM against the enzymes from the zoonotic roundworms Ancylostoma ceylanicum and Toxocara canis, respectively. Using site-directed mutagenesis, we demonstrate that this compound acts as a suicide inhibitor that conjugates a strictly conserved cysteine residue in the vicinity of the active site of nematode TPPs. The anthelmintic properties of N-(phenylthio)phthalimide were assessed in whole nematode assays using larvae of the ascaroids T. canis and T. cati, as well as the barber's pole worm Haemonchus contortus. The compound was particularly effective against each of the ascaroids with an IC50 value of 9.3 μM in the survival assay of T. cati larvae, whereas no bioactivity was observed against H. contortus.
Collapse
Affiliation(s)
- Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Mark York
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Ewa Długosz
- Department of Preclinical Sciences, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| | - Jan Hendrik Straub
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Sonja Biberacher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - H M P Dilrukshi Herath
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephanie A Logan
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - John H Ryan
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia.
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
- Queensland Tropical Health Alliance, Smithfield, Queensland, 4878, Australia.
| |
Collapse
|
4
|
Cross M, Biberacher S, Park S, Rajan S, Korhonen P, Gasser RB, Kim J, Coster MJ, Hofmann A. Trehalose 6‐phosphate phosphatases of
Pseudomonas aeruginosa. FASEB J 2018; 32:5470-5482. [DOI: 10.1096/fj.201800500r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Megan Cross
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
| | - Sonja Biberacher
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
- Department of BiologyFriedrich‐Alexander University, Erlangen‐NurembergErlangenGermany
| | - Suk‐Youl Park
- Pohang Accelerator Laboratory, Pohang University of Science and TechnologyPohang GyeongbukSouth Korea
| | - Siji Rajan
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
| | - Pasi Korhonen
- Department of Veterinary BiosciencesMelbourne Veterinary School, The University of MelbourneParkville VictoriaAustralia
| | - Robin B. Gasser
- Department of Veterinary BiosciencesMelbourne Veterinary School, The University of MelbourneParkville VictoriaAustralia
| | - Jeong‐Sun Kim
- Department of ChemistryChonnam National UniversityGwangjuSouth Korea
| | - Mark J. Coster
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
- Department of Veterinary BiosciencesMelbourne Veterinary School, The University of MelbourneParkville VictoriaAustralia
- Queensland Tropical Health AllianceSmithfield QueenslandAustralia
| |
Collapse
|