1
|
Walton CR, Hao J, Huang F, Jenner FE, Williams H, Zerkle AL, Lipp A, Hazen RM, Peters SE, Shorttle O. Evolution of the crustal phosphorus reservoir. SCIENCE ADVANCES 2023; 9:eade6923. [PMID: 37146138 PMCID: PMC10162663 DOI: 10.1126/sciadv.ade6923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The release of phosphorus (P) from crustal rocks during weathering plays a key role in determining the size of Earth's biosphere, yet the concentration of P in crustal rocks over time remains controversial. Here, we combine spatial, temporal, and chemical measurements of preserved rocks to reconstruct the lithological and chemical evolution of Earth's continental crust. We identify a threefold increase in average crustal P concentrations across the Neoproterozoic-Phanerozoic boundary (600 to 400 million years), showing that preferential biomass burial on shelves acted to progressively concentrate P within continental crust. Rapid compositional change was made possible by massive removal of ancient P-poor rock and deposition of young P-rich sediment during an episode of enhanced global erosion. Subsequent weathering of newly P-rich crust led to increased riverine P fluxes to the ocean. Our results suggest that global erosion coupled to sedimentary P-enrichment forged a markedly nutrient-rich crust at the dawn of the Phanerozoic.
Collapse
Affiliation(s)
- Craig R Walton
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Jihua Hao
- Deep Space Exploration Lab/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, 96 Jinzhai Rd., Hefei 230026, China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China
| | - Fang Huang
- CSIRO Mineral Resources, Kensington WA 6151, Australia
| | - Frances E Jenner
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Helen Williams
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Aubrey L Zerkle
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Alex Lipp
- Department of Earth Sciences and Engineering, Imperial College London, London, UK
| | - Robert M Hazen
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, DC 20015, USA
| | - Shanan E Peters
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Oliver Shorttle
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA, UK
| |
Collapse
|
2
|
Spinks SC, Sperling EA, Thorne RL, LaFountain F, White AJR, Armstrong J, Woltering M, Tyler IM. Mesoproterozoic surface oxygenation accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga. GEOBIOLOGY 2023; 21:28-43. [PMID: 36168296 PMCID: PMC10087800 DOI: 10.1111/gbi.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) oxidation in marine environments requires oxygen (O2 ) or other reactive oxygen species in the water column, and widespread Mn oxide deposition in ancient sedimentary rocks has long been used as a proxy for oxidation. The oxygenation of Earth's atmosphere and oceans across the Archean-Proterozoic boundary are associated with massive Mn deposits, whereas the interval from 1.8-1.0 Ga is generally believed to be a time of low atmospheric oxygen with an apparent hiatus in sedimentary Mn deposition. Here, we report geochemical and mineralogical analyses from 1.1 Ga manganiferous marine-shelf siltstones from the Bangemall Supergroup, Western Australia, which underlie recently discovered economically significant manganese deposits. Layers bearing Mn carbonate microspheres, comparable with major global Mn deposits, reveal that intense periods of sedimentary Mn deposition occurred in the late Mesoproterozoic. Iron geochemical data suggest anoxic-ferruginous seafloor conditions at the onset of Mn deposition, followed by oxic conditions in the water column as Mn deposition persisted and eventually ceased. These data imply there was spatially widespread surface oxygenation ~1.1 Ga with sufficiently oxic conditions in shelf environments to oxidize marine Mn(II). Comparable large stratiform Mn carbonate deposits also occur in ~1.4 Ga marine siltstones hosted in underlying sedimentary units. These deposits are greater or at least commensurate in scale (tonnage) to those that followed the major oxygenation transitions from the Neoproterozoic. Such a period of sedimentary manganogenesis is inconsistent with a model of persistently low O2 throughout the entirety of the Mesoproterozoic and provides robust evidence for dynamic redox changes in the mid to late Mesoproterozoic.
Collapse
Affiliation(s)
- Sam C. Spinks
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| | - Erik A. Sperling
- Department of Geological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Robert L. Thorne
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| | - Felicity LaFountain
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
- School of Earth and Planetary SciencesThe Institute of Geoscience Research, Curtin UniversityPerthWestern AustraliaAustralia
| | - Alistair J. R. White
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| | - Joseph Armstrong
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
- School of GeosciencesUniversity of AberdeenAberdeenScotland
| | - Martijn Woltering
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
| | - Ian M. Tyler
- CSIRO Mineral ResourcesAustralian Resources Research CentreKensingtonWestern AustraliaAustralia
- Centre for Exploration Targeting, School of Earth SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
3
|
Reconstructing Earth's atmospheric oxygenation history using machine learning. Nat Commun 2022; 13:5862. [PMID: 36195593 PMCID: PMC9532422 DOI: 10.1038/s41467-022-33388-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Reconstructing historical atmospheric oxygen (O2) levels at finer temporal resolution is a top priority for exploring the evolution of life on Earth. This goal, however, is challenged by gaps in traditionally employed sediment-hosted geochemical proxy data. Here, we propose an independent strategy-machine learning with global mafic igneous geochemistry big data to explore atmospheric oxygenation over the last 4.0 billion years. We observe an overall two-step rise of atmospheric O2 similar to the published curves derived from independent sediment-hosted paleo-oxybarometers but with a more detailed fabric of O2 fluctuations superimposed. These additional, shorter-term fluctuations are also consistent with previous but less well-established suggestions of O2 variability. We conclude from this agreement that Earth's oxygenated atmosphere may therefore be at least partly a natural consequence of mantle cooling and specifically that evolving mantle melts collectively have helped modulate the balance of early O2 sources and sinks.
Collapse
|
4
|
Sperling EA, Boag TH, Duncan MI, Endriga CR, Marquez JA, Mills DB, Monarrez PM, Sclafani JA, Stockey RG, Payne JL. Breathless through Time: Oxygen and Animals across Earth's History. THE BIOLOGICAL BULLETIN 2022; 243:184-206. [PMID: 36548971 DOI: 10.1086/721754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen levels in the atmosphere and ocean have changed dramatically over Earth history, with major impacts on marine life. Because the early part of Earth's history lacked both atmospheric oxygen and animals, a persistent co-evolutionary narrative has developed linking oxygen change with changes in animal diversity. Although it was long believed that oxygen rose to essentially modern levels around the Cambrian period, a more muted increase is now believed likely. Thus, if oxygen increase facilitated the Cambrian explosion, it did so by crossing critical ecological thresholds at low O2. Atmospheric oxygen likely remained at low or moderate levels through the early Paleozoic era, and this likely contributed to high metazoan extinction rates until oxygen finally rose to modern levels in the later Paleozoic. After this point, ocean deoxygenation (and marine mass extinctions) is increasingly linked to large igneous province eruptions-massive volcanic carbon inputs to the Earth system that caused global warming, ocean acidification, and oxygen loss. Although the timescales of these ancient events limit their utility as exact analogs for modern anthropogenic global change, the clear message from the geologic record is that large and rapid CO2 injections into the Earth system consistently cause the same deadly trio of stressors that are observed today. The next frontier in understanding the impact of oxygen changes (or, more broadly, temperature-dependent hypoxia) in deep time requires approaches from ecophysiology that will help conservation biologists better calibrate the response of the biosphere at large taxonomic, spatial, and temporal scales.
Collapse
|
5
|
Eguchi J, Diamond CW, Lyons TW. Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions. PNAS NEXUS 2022; 1:pgac036. [PMID: 36713325 PMCID: PMC9802223 DOI: 10.1093/pnasnexus/pgac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
Oxygen and carbon are 2 elements critical for life on Earth. Earth's most dramatic oxygenation events and carbon isotope excursions (CIE) occurred during the Proterozoic, including the Paleoproterozoic Great Oxidation Event and the associated Lomagundi CIE, the Neoproterozoic Oxygenation event, and the Shuram negative CIE during the late Neoproterozoic. A specific pattern of a long-lived positive CIE followed by a negative CIE is observed in association with oxygenation events during the Paleo- and Neo-proterozoic. We present results from a carbon cycle model designed to couple the surface and interior cycling of carbon that reproduce this pattern. The model assumes organic carbon resides in the mantle longer than carbonate, leading to systematic temporal variations in the δ13C of volcanic CO2 emissions. When the model is perturbed by periods of enhanced continental weathering, increased amounts of carbonate and organic carbon are buried. Increased deposition of organic carbon allows O2 accumulation, while positive CIEs are driven by rapid release of subducted carbonate-derived CO2 at arcs. The subsequent negative CIEs are driven by the delayed release of organic C-derived CO2 at ocean islands. Our model reproduces the sequences observed in the Paleo- and Neo-proterozoic, that is oxygenation accompanied by a positive CIE followed by a negative CIE. Periods of enhanced weathering correspond temporally to supercontinent break-up, suggesting an important connection between global tectonics and the evolution of oxygen and carbon on Earth.
Collapse
Affiliation(s)
| | - Charles W Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Li YP, Fekih IB, Fru EC, Moraleda-Munoz A, Li X, Rosen BP, Yoshinaga M, Rensing C. Antimicrobial Activity of Metals and Metalloids. Annu Rev Microbiol 2021; 75:175-197. [PMID: 34343021 DOI: 10.1146/annurev-micro-032921-123231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| | - Aurelio Moraleda-Munoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Xuanji Li
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| |
Collapse
|
7
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
Affiliation(s)
- Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Address correspondence to: Timothy W. Lyons, Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
8
|
Fuchsman CA, Stüeken EE. Using modern low-oxygen marine ecosystems to understand the nitrogen cycle of the Paleo- and Mesoproterozoic oceans. Environ Microbiol 2020; 23:2801-2822. [PMID: 32869502 DOI: 10.1111/1462-2920.15220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
During the productive Paleoproterozoic (2.4-1.8 Ga) and less productive Mesoproterozoic (1.8-1.0 Ga), the ocean was suboxic to anoxic and multicellular organisms had not yet evolved. Here, we link geologic information about the Proterozoic ocean to microbial processes in modern low-oxygen systems. High iron concentrations and rates of Fe cycling in the Proterozoic are the largest differences from modern oxygen-deficient zones. In anoxic waters, which composed most of the Paleoproterozoic and ~40% of the Mesoproterozoic ocean, nitrogen cycling dominated. Rates of N2 production by denitrification and anammox were likely linked to sinking organic matter fluxes and in situ primary productivity under anoxic conditions. Additionally autotrophic denitrifiers could have used reduced iron or methane. 50% of the Mesoproterozoic ocean may have been suboxic, promoting nitrification and metal oxidation in the suboxic water and N2 O and N2 production by partial and complete denitrification in anoxic zones in organic aggregates. Sulfidic conditions may have composed ~10% of the Mesoproterozoic ocean focused along continental margins. Due to low nitrate concentrations in offshore regions, anammox bacteria likely dominated N2 production immediately above sulfidic zones, but in coastal regions, higher nitrate concentrations probably promoted complete S-oxidizing autotrophic denitrification at the sulfide interface.
Collapse
Affiliation(s)
- Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| | - Eva E Stüeken
- School of Earth & Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL, Scotland, UK
| |
Collapse
|
9
|
Lenton TM. On the use of models in understanding the rise of complex life. Interface Focus 2020; 10:20200018. [PMID: 32642056 PMCID: PMC7333900 DOI: 10.1098/rsfs.2020.0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 11/12/2022] Open
Abstract
Recently, several seemingly irreconcilably different models have been proposed for relationships between Earth system processes and the rise of complex life. These models provide very different scenarios of Proterozoic atmospheric oxygen and ocean nutrient levels, whether they constrained complex life, and of how the rise of complex life affected biogeochemical conditions. For non-modellers, it can be hard to evaluate which-if any-of the models and their results have more credence-hence this article. I briefly review relevant hypotheses, how models are being used to incarnate and sometimes test those hypotheses, and key principles of biogeochemical cycling models should embody. Then I critically review the use of biogeochemical models in: inferring key variables from proxies; reconstructing ancient biogeochemical cycling; and examining how complex life affected biogeochemical cycling. Problems are found in published model results purporting to demonstrate long-term stable states of very low Proterozoic atmospheric pO2 and ocean P levels. I explain what they stem from and highlight key empirical uncertainties that need to be resolved. Then I suggest how models and data can be better combined to advance our scientific understanding of the relationship between Earth system processes and the rise of complex life.
Collapse
|
10
|
Planavsky NJ, Robbins LJ, Kamber BS, Schoenberg R. Weathering, alteration and reconstructing Earth's oxygenation. Interface Focus 2020; 10:20190140. [PMID: 32642054 DOI: 10.1098/rsfs.2019.0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 11/12/2022] Open
Abstract
Deciphering the role-if any-that free oxygen levels played in controlling the timing and tempo of the radiation of complex life is one of the most fundamental questions in Earth and life sciences. Accurately reconstructing Earth's redox history is an essential part of tackling this question. Over the past few decades, there has been a proliferation of research employing geochemical redox proxies in an effort to tell the story of Earth's oxygenation. However, many of these studies, even those considering the same geochemical proxy systems, have led to conflicting interpretations of the timing and intensity of oxygenation events. There are two potential explanations for conflicting redox reconstructions: (i) that free oxygen levels were incredibly dynamic in both time and space or (ii) that collectively, as a community-including the authors of this article-we have frequently studied rocks affected by secondary weathering and alteration (particularly secondary oxidation) while neglecting to address the impact of this alteration on the generated data. There are now multiple case studies that have documented previously overlooked secondary alteration, resolving some of the conflicting constrains regarding redox evolution. Here, an analysis of a large shale geochemistry database reveals significant differences in cerium (Ce) anomalies, a common palaeoredox proxy, between outcrop and drill core samples. This inconsistency provides support for the idea that geochemical data from altered samples are frequently published in the peer-reviewed literature. As individuals and a geochemical community, most of us have been slow to appreciate how pervasive the problem is but there are examples of other communities that have faced and met the challenges raised by such quality control crises. Further evidence of the high potential for alteration of deep-time geochemical samples, and recognition of the manner in which this may lead to spurious results and palaeoenvironmental interpretations, indicate that sample archiving, in publicly accessible collections needs to become a prerequisite for publication of new palaeoredox data. Finally, the geochemical community need to think about ways to implement additional quality control measures to increase the fidelity of palaeoredox proxy work.
Collapse
Affiliation(s)
- Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Leslie J Robbins
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Balz S Kamber
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ronny Schoenberg
- Department of Geosciences, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Cole DB, Mills DB, Erwin DH, Sperling EA, Porter SM, Reinhard CT, Planavsky NJ. On the co-evolution of surface oxygen levels and animals. GEOBIOLOGY 2020; 18:260-281. [PMID: 32175670 DOI: 10.1111/gbi.12382] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 05/22/2023]
Abstract
Few topics in geobiology have been as extensively debated as the role of Earth's oxygenation in controlling when and why animals emerged and diversified. All currently described animals require oxygen for at least a portion of their life cycle. Therefore, the transition to an oxygenated planet was a prerequisite for the emergence of animals. Yet, our understanding of Earth's oxygenation and the environmental requirements of animal habitability and ecological success is currently limited; estimates for the timing of the appearance of environments sufficiently oxygenated to support ecologically stable populations of animals span a wide range, from billions of years to only a few million years before animals appear in the fossil record. In this light, the extent to which oxygen played an important role in controlling when animals appeared remains a topic of debate. When animals originated and when they diversified are separate questions, meaning either one or both of these phenomena could have been decoupled from oxygenation. Here, we present views from across this interpretive spectrum-in a point-counterpoint format-regarding crucial aspects of the potential links between animals and surface oxygen levels. We highlight areas where the standard discourse on this topic requires a change of course and note that several traditional arguments in this "life versus environment" debate are poorly founded. We also identify a clear need for basic research across a range of fields to disentangle the relationships between oxygen availability and emergence and diversification of animal life.
Collapse
Affiliation(s)
- Devon B Cole
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel B Mills
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Douglas H Erwin
- Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia
- Santa Fe Institute, Santa Fe, New Mexico
| | - Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Susannah M Porter
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California
| | - Christopher T Reinhard
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| |
Collapse
|
12
|
Colwyn DA, Sheldon ND, Maynard JB, Gaines R, Hofmann A, Wang X, Gueguen B, Asael D, Reinhard CT, Planavsky NJ. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. GEOBIOLOGY 2019; 17:579-593. [PMID: 31436043 DOI: 10.1111/gbi.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric oxygen levels control the oxidative side of key biogeochemical cycles and place limits on the development of high-energy metabolisms. Understanding Earth's oxygenation is thus critical to developing a clearer picture of Earth's long-term evolution. However, there is currently vigorous debate about even basic aspects of the timing and pattern of the rise of oxygen. Chemical weathering in the terrestrial environment occurs in contact with the atmosphere, making paleosols potentially ideal archives to track the history of atmospheric O2 levels. Here we present stable chromium isotope data from multiple paleosols that offer snapshots of Earth surface conditions over the last three billion years. The results indicate a secular shift in the oxidative capacity of Earth's surface in the Neoproterozoic and suggest low atmospheric oxygen levels (<1% PAL pO2 ) through the majority of Earth's history. The paleosol record also shows that localized Cr oxidation may have begun as early as the Archean, but efficient, modern-like transport of hexavalent Cr under an O2 -rich atmosphere did not become common until the Neoproterozoic.
Collapse
Affiliation(s)
| | - Nathan D Sheldon
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - J Barry Maynard
- Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| | - Robert Gaines
- Geology Department, Pomona College, Claremont, CA, USA
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Xiangli Wang
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
- Department of Marine Sciences, University of South Alabama, Mobile, AL, USA
- Dauphin Island Sea Lab, Dauphin Island, AL, USA
| | - Bleuenn Gueguen
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
- Institut Universitaire Européen de la Mer, CNRS UMS 3113, Université de Brest, Plouzané, France
| | - Dan Asael
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Early Earth and the rise of complex life. Emerg Top Life Sci 2018; 2:121-124. [PMID: 32412610 DOI: 10.1042/etls20180093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
The history of life on Earth progressed in parallel with the evolving oxygen state of the atmosphere and oceans, but the details of that relationship remain poorly known and debated. There is, however, general agreement that the first appreciable and persistent accumulation of oxygen in the oceans and atmosphere occurred around 2.3 to 2.4 billion years ago. Following this Great Oxidation Event, biospheric oxygen remained at relatively stable intermediate levels for more than a billion years. Much current research focuses on the transition from the intermediate conditions of this middle chapter in Earth history to the more oxygenated periods that followed - often emphasizing whether increasing and perhaps episodic oxygenation drove fundamental steps in the evolution of complex life and, if so, when. These relationships among early organisms and their environments are the thematic threads that stitch together the papers in this collection. Expert authors bring a mix of methods and opinions to their leading-edge reviews of the earliest proliferation and ecological impacts of eukaryotic life, the subsequent emergence and ecological divergence of animals, and the corresponding causes and consequences of environmental change.
Collapse
|