1
|
Shapson-Coe A, Januszewski M, Berger DR, Pope A, Wu Y, Blakely T, Schalek RL, Li PH, Wang S, Maitin-Shepard J, Karlupia N, Dorkenwald S, Sjostedt E, Leavitt L, Lee D, Troidl J, Collman F, Bailey L, Fitzmaurice A, Kar R, Field B, Wu H, Wagner-Carena J, Aley D, Lau J, Lin Z, Wei D, Pfister H, Peleg A, Jain V, Lichtman JW. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 2024; 384:eadk4858. [PMID: 38723085 PMCID: PMC11718559 DOI: 10.1126/science.adk4858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
To fully understand how the human brain works, knowledge of its structure at high resolution is needed. Presented here is a computationally intensive reconstruction of the ultrastructure of a cubic millimeter of human temporal cortex that was surgically removed to gain access to an underlying epileptic focus. It contains about 57,000 cells, about 230 millimeters of blood vessels, and about 150 million synapses and comprises 1.4 petabytes. Our analysis showed that glia outnumber neurons 2:1, oligodendrocytes were the most common cell, deep layer excitatory neurons could be classified on the basis of dendritic orientation, and among thousands of weak connections to each neuron, there exist rare powerful axonal inputs of up to 50 synapses. Further studies using this resource may bring valuable insights into the mysteries of the human brain.
Collapse
Affiliation(s)
- Alexander Shapson-Coe
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Queen Mary, University of London; London E1 4NS, United Kingdom
| | | | - Daniel R. Berger
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Art Pope
- Google Research; Mountain View, CA 94043, United States
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Tim Blakely
- Google Research; Seattle, WA 98103, United States
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Peter H. Li
- Google Research; Mountain View, CA 94043, United States
| | - Shuohong Wang
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | | | - Neha Karlupia
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Sven Dorkenwald
- Google Research; Mountain View, CA 94043, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States
- Computer Science Department, Princeton University, Princeton, NJ 08540, United States
| | - Evelina Sjostedt
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | | | - Dongil Lee
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Dept. of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology; Daejeon 34141, Republic of Korea
| | - Jakob Troidl
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA 02138, United States
| | - Forrest Collman
- Allen Institute for Brain Science; Seattle, WA 98109, United States
| | - Luke Bailey
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Angerica Fitzmaurice
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Rohin Kar
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Benjamin Field
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Hank Wu
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Julian Wagner-Carena
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - David Aley
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Joanna Lau
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Zudi Lin
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA 02138, United States
| | - Donglai Wei
- Computer Science Department, Boston College; Chestnut Hill, MA 02467, United States
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA 02138, United States
| | - Adi Peleg
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Google; Cambridge, MA 02142, United States
| | - Viren Jain
- Google Research; Mountain View, CA 94043, United States
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| |
Collapse
|
2
|
Chen ZS, Ou M, Taylor S, Dafinca R, Peng SI, Talbot K, Chan HYE. Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD. Nat Commun 2023; 14:8420. [PMID: 38110419 PMCID: PMC10728118 DOI: 10.1038/s41467-023-44215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
The GGGGCC hexanucleotide repeat expansion mutation in the chromosome 9 open reading frame 72 (C9orf72) gene is a major genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). In this study, we demonstrate that the zinc finger (ZF) transcriptional regulator Yin Yang 1 (YY1) binds to the promoter region of the planar cell polarity gene Fuzzy to regulate its transcription. We show that YY1 interacts with GGGGCC repeat RNA via its ZF and that this interaction compromises the binding of YY1 to the FuzzyYY1 promoter sites, resulting in the downregulation of Fuzzy transcription. The decrease in Fuzzy protein expression in turn activates the canonical Wnt/β-catenin pathway and induces synaptic deficits in C9ALS/FTD neurons. Our findings demonstrate a C9orf72 GGGGCC RNA-initiated perturbation of YY1-Fuzzy transcriptional control that implicates aberrant Wnt/β-catenin signalling in C9ALS/FTD-associated neurodegeneration. This pathogenic cascade provides a potential new target for disease-modifying therapy.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Mingxi Ou
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Stephanie Taylor
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Shaohong Isaac Peng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
3
|
Xu Z, Foster JB, Lashley R, Wang X, Benson E, Kidd G, Lin CLG. Impact of a pyridazine derivative on tripartite synapse ultrastructure in hippocampus: a three-dimensional analysis. Front Cell Neurosci 2023; 17:1229731. [PMID: 37671169 PMCID: PMC10476950 DOI: 10.3389/fncel.2023.1229731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction We previously discovered a pyridazine derivative compound series that can improve cognitive functions in mouse models of Alzheimer's disease. One of the advanced compounds from this series, LDN/OSU-0215111-M3, was selected as the preclinical development candidate. This compound activates local protein translation at the perisynaptic astrocytic process (PAP) and enhances synaptic plasticity sequentially. While biochemical evidence supports the hypothesis that the compound enhances the structural plasticity of the tripartite synapse, its direct structural impact has not been investigated. Methods Volume electron microscopy was used to study the hippocampal tripartite synapse three-dimensional structure in 3-month-old wild-type FVB/NJ mice after LDN/OSU-0215111-M3 treatment. Results LDN/OSU-0215111-M3 increased the size of tertiary apical dendrites, the volume of mushroom spines, the proportion of mushroom spines containing spine apparatus, and alterations in the spine distribution across the surface area of tertiary dendrites. Compound also increased the number of the PAP interacting with the mushroom spines as well as the size of the PAP in contact with the spines. Furthermore, proteomic analysis of the isolated synaptic terminals indicated an increase in dendritic and synaptic proteins as well as suggested a possible involvement of the phospholipase D signaling pathway. To further validate that LDN/OSU-0215111-M3 altered synaptic function, electrophysiological studies showed increased long-term potentiation following compound treatment. Discussion This study provides direct evidence that pyridazine derivatives enhance the structural and functional plasticity of the tripartite synapse.
Collapse
Affiliation(s)
- Zan Xu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Joshua B. Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rashelle Lashley
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Emily Benson
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Grahame Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chien-liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Schober AL, Wicki-Stordeur LE, Murai KK, Swayne LA. Foundations and implications of astrocyte heterogeneity during brain development and disease. Trends Neurosci 2022; 45:692-703. [PMID: 35879116 DOI: 10.1016/j.tins.2022.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Astrocytes play crucial roles in regulating brain circuit formation and physiology. Recent technological advances have revealed unprecedented levels of astrocyte diversity encompassing molecular, morphological, and functional differences. This diversification is initiated during embryonic specification events and (in rodents) continues into the early postnatal period where it overlaps with peak synapse development and circuit refinement. In fact, several lines of evidence suggest astrocyte diversity both influences and is a consequence of molecular crosstalk among developing astrocytes and other cell types, notably neurons and their synapses. Neurological disease states exhibit additional layers of astrocyte heterogeneity, which could help shed light on these cells' key pathological roles. This review highlights recent advances in clarifying astrocyte heterogeneity and molecular/cellular crosstalk and identifies key outstanding questions.
Collapse
Affiliation(s)
- Alexandra L Schober
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | | | - Keith K Murai
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada; Quantitative Life Sciences Graduate Program, McGill University, Montreal, QC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|