1
|
Peixoto Pinheiro B, Müller M, Bös M, Guezguez J, Burnet M, Tornincasa M, Rizzetto R, Rolland JF, Liberati C, Lohmer S, Adel Y, Löwenheim H. A potassium channel agonist protects hearing function and promotes outer hair cell survival in a mouse model for age-related hearing loss. Cell Death Dis 2022; 13:595. [PMID: 35817766 PMCID: PMC9273644 DOI: 10.1038/s41419-022-04915-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023]
Abstract
Age-related hearing loss (ARHL) is the most common sensory impairment mainly caused by degeneration of sensory hair cells in the cochlea with no causal medical treatment available. Auditory function and sensory hair cell survival critically depend on the Kv7.4 (KCNQ4) channel, a voltage-gated potassium channel expressed in outer hair cells (OHCs), with its impaired function or reduced activity previously associated with ARHL. Here, we investigated the effect of a potent small-molecule Kv7.4 agonist on ARHL in the senescence-accelerated mouse prone 8 (SAMP8) model. For the first time in vivo, we show that Kv7.4 activation can significantly reduce age-related threshold shifts of auditory brainstem responses as well as OHC loss in the SAMP8 model. Pharmacological activation of Kv7.4 thus holds great potential as a therapeutic approach for ARHL as well as other hearing impairments related to Kv7.4 function.
Collapse
Affiliation(s)
- Barbara Peixoto Pinheiro
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| | - Marcus Müller
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Bös
- Acousia Therapeutics, 72070 Tübingen, Germany
| | | | | | - Mara Tornincasa
- grid.427692.c0000 0004 1794 5078Axxam, Bresso, 20091 Milan, Italy
| | | | | | - Chiara Liberati
- grid.427692.c0000 0004 1794 5078Axxam, Bresso, 20091 Milan, Italy
| | - Stefan Lohmer
- grid.427692.c0000 0004 1794 5078Axxam, Bresso, 20091 Milan, Italy
| | - Youssef Adel
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| | - Hubert Löwenheim
- grid.10392.390000 0001 2190 1447Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Marchetta P, Rüttiger L, Hobbs AJ, Singer W, Knipper M. The role of cGMP signalling in auditory processing in health and disease. Br J Pharmacol 2021; 179:2378-2393. [PMID: 33768519 DOI: 10.1111/bph.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
cGMP is generated by the cGMP-forming guanylyl cyclases (GCs), the intracellular nitric oxide (NO)-sensitive (soluble) guanylyl cyclase (sGC) and transmembrane GC (e.g. GC-A and GC-B). In summarizing the particular role of cGMP signalling for hearing, we show that GC generally do not interfere significantly with basic hearing function but rather sustain a healthy state for proper temporal coding, fast discrimination and adjustments during injury. sGC is critical for the integrity of the first synapse in the ascending auditory pathway, the inner hair cell synapse. GC-A promotes hair cell stability under stressful conditions such as acoustic trauma or ageing. GC-B plays a role in the development of efferent feed-back and gain control. Regarding the crucial role hearing has for language development, speech discrimination and cognitive brain functions, differential pharmaceutical targeting of GCs offers therapeutic promise for the restoration of hearing.
Collapse
Affiliation(s)
- Philine Marchetta
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Wibke Singer
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Manibalan S, Thirukumaran K, Varshni M, Shobana A, Achary A. Report on biopharmaceutical profile of recent biotherapeutics and insilco docking studies on target bindings of known aptamer biotherapeutics. Biotechnol Genet Eng Rev 2021; 36:57-80. [PMID: 33393433 DOI: 10.1080/02648725.2020.1858395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Accumulated Toxicity, disease recurrence and drug resistivity problems have been observed due to the synthetic and semisynthetic therapeutic practices, which alternatively led to focus on Bio-therapeutics production than xenobiotics. Quick plasma clearance and high potency are the reasons for trending research with huge pharma market of numerous Bio-therapeutics than ever before. Researchers proved that most of the nano and micro Bio-therapeutics have multiple beneficial therapeutic effects. We have analyzed the past, and present scenario of some notable clinically approved Bio-therapeutics to identify the future formulation needs with advanced techniques. Protein-related drugs are the foremost Bio-therapeutics such as antibodies, enzymes, and short, fragmented polypeptides show aggregation properties during storage, naked peptide moieties are resisted by the polar cell membrane, and also the antidrug antibodies were reported. Even though Nucleic acid nano-bodies are excellent target binders than proteins, they had only a few minutes of half-life. Maintaining homogeneousness upon storage of Bio-therapeutics is still a significant challenge in industrial-scale formulation. Notably, plant systems are identified as most useful cost-effective hosts to produce human enzymes than animal systems without any possible viral loads. Irrespective of numerous advancements in routes of administration and additives, subcutaneous is still a golden one to achieve better dynamics. Additionally, the interactions and effective bonds made by each class of well-known aptamer biotherapeutics which are considered as future drugs were studied.
Collapse
Affiliation(s)
- Subramaniyan Manibalan
- Center for Research, Department of Biotechnology, Kamaraj College of Engineering and Technology , Madurai, India
| | - Kandasamy Thirukumaran
- Center for Research, Department of Biotechnology, Kamaraj College of Engineering and Technology , Madurai, India
| | - Mathimaran Varshni
- Center for Research, Department of Biotechnology, Kamaraj College of Engineering and Technology , Madurai, India
| | - Ayyasamy Shobana
- Center for Research, Department of Biotechnology, Kamaraj College of Engineering and Technology , Madurai, India
| | - Anant Achary
- Center for Research, Department of Biotechnology, Kamaraj College of Engineering and Technology , Madurai, India
| |
Collapse
|
4
|
Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2020; 473:823-840. [PMID: 33336302 PMCID: PMC8076138 DOI: 10.1007/s00424-020-02496-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.
Collapse
|
5
|
Antioxidant Therapy against Oxidative Damage of the Inner Ear: Protection and Preconditioning. Antioxidants (Basel) 2020; 9:antiox9111076. [PMID: 33147893 PMCID: PMC7693733 DOI: 10.3390/antiox9111076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is an important mechanism underlying cellular damage of the inner ear, resulting in hearing loss. In order to prevent hearing loss, several types of antioxidants have been investigated; several experiments have shown their ability to effectively prevent noise-induced hearing loss, age-related hearing loss, and ototoxicity in animal models. Exogenous antioxidants has been used as single therapeutic agents or in combination. Antioxidant therapy is generally administered before the production of reactive oxygen species. However, post-exposure treatment could also be effective. Preconditioning refers to the phenomenon of pre-inducing a preventative pathway by subtle stimuli that do not cause permanent damage in the inner ear. This renders the inner ear more resistant to actual stimuli that cause permanent hearing damage. The preconditioning mechanism is also related to the induction of antioxidant enzymes. In this review, we discuss the mechanisms underlying antioxidant-associated therapeutic effects and preconditioning in the inner ear.
Collapse
|
6
|
Bazard P, Ding B, Chittam HK, Zhu X, Parks TA, Taylor-Clark TE, Bhethanabotla VR, Frisina RD, Walton JP. Aldosterone up-regulates voltage-gated potassium currents and NKCC1 protein membrane fractions. Sci Rep 2020; 10:15604. [PMID: 32973172 PMCID: PMC7515911 DOI: 10.1038/s41598-020-72450-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/12/2020] [Indexed: 02/02/2023] Open
Abstract
Na+-K+-2Cl- Cotransporter (NKCC1) is a protein that aids in the active transport of sodium, potassium, and chloride ions across cell membranes. It has been shown that long-term systemic treatment with aldosterone (ALD) can enhance NKCC1 protein expression and activity in the aging cochlea resulting in improved hearing. In the present work, we used a cell line with confirmed NKCC1 expression to demonstrate that in vitro application of ALD increased outward voltage-gated potassium currents significantly, and simultaneously upregulated whole lysate and membrane portion NKCC1 protein expression. These ALD-induced changes were blocked by applying the mineralocorticoid receptor antagonist eplerenone. However, application of the NKCC1 inhibitor bumetanide or the potassium channel antagonist Tetraethyl ammonium had no effect. In addition, NKKC1 mRNA levels remained stable, indicating that ALD modulates NKCC1 protein expression via the activation of mineralocorticoid receptors and post-transcriptional modifications. Further, in vitro electrophysiology experiments, with ALD in the presence of NKCC1, K+ channel and mineralocorticoid receptor inhibitors, revealed interactions between NKCC1 and outward K+ channels, mediated by a mineralocorticoid receptor-ALD complex. These results provide evidence of the therapeutic potential of ALD for the prevention/treatment of inner ear disorders such as age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Harish K Chittam
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Thomas A Parks
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33620, USA
| | - Venkat R Bhethanabotla
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Robert D Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Department Communication Sciences and Disorders, College of Behavioral and Communication Sciences, Tampa, FL, 33620, USA
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA
| | - Joseph P Walton
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA.
- Department Communication Sciences and Disorders, College of Behavioral and Communication Sciences, Tampa, FL, 33620, USA.
- Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa, FL, 33620, USA.
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Van Rompaey V. Making the Case for Research on Disease-Modifying Treatments to Tackle Post-lingual Progressive Sensorineural Hearing Loss. Front Neurol 2020; 11:290. [PMID: 32373054 PMCID: PMC7186466 DOI: 10.3389/fneur.2020.00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 01/10/2023] Open
Abstract
Hearing loss not only has a significant impact on the quality of life of patients and society, but its correlation with cognitive decline in an aging population will also increase the risk of incident dementia. While current management of hearing loss is focused on hearing rehabilitation (and essentially symptomatic), patients are suffering from the burden of progressive hearing loss before hearing aids or cochlear implants are fitted. Although these devices have a significant effect on speech understanding, they do not always lead to normal speech understanding, especially in noisy environments. A significant number of patients suffer from autosomal dominantly inherited disorders that can produce progressive sensorineural hearing loss. This includes DFNA9, a disorder caused by pathologic variants in the COCH gene that leads to post-lingual profound sensorineural hearing loss and bilateral vestibulopathy. Carriers of a pathogenic variant leading to DFNA9 can be diagnosed at the pre-symptomatic or early symptomatic stage which creates a window of opportunity for treatment. Preventing hearing loss from occurring or stabilizing progression would provide the opportunity to avoid hearing aids or cochlear implants and would be able to reduce the increased incidence of dementia. While innovative therapies for restoration of hearing have been studied for restoration of hearing in case of severe-to-profound sensorineural hearing loss and congenital hearing loss, further research is needed to study how we can modify disease progression in late-onset autosomal dominant hereditary sensorineural hearing loss. Recently, gene editing strategies have been explored in autosomal dominant disorders to disrupt dominant mutations selectively without affecting wild-type alleles.
Collapse
Affiliation(s)
- Vincent Van Rompaey
- Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Marchetta P, Möhrle D, Eckert P, Reimann K, Wolter S, Tolone A, Lang I, Wolters M, Feil R, Engel J, Paquet-Durand F, Kuhn M, Knipper M, Rüttiger L. Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. Front Aging Neurosci 2020; 12:83. [PMID: 32327991 PMCID: PMC7160671 DOI: 10.3389/fnagi.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
In the inner ear, cyclic guanosine monophosphate (cGMP) signaling has been described as facilitating otoprotection, which was previously observed through elevated cGMP levels achieved by phosphodiesterase 5 inhibition. However, to date, the upstream guanylyl cyclase (GC) subtype eliciting cGMP production is unknown. Here, we show that mice with a genetic disruption of the gene encoding the cGMP generator GC-A, the receptor for atrial and B-type natriuretic peptides, display a greater vulnerability of hair cells to hidden hearing loss and noise- and age-dependent hearing loss. This vulnerability was associated with GC-A expression in spiral ganglia and outer hair cells (OHCs) but not in inner hair cells (IHCs). GC-A knockout mice exhibited elevated hearing thresholds, most pronounced for the detection of high-frequency tones. Deficits in OHC input–output functions in high-frequency regions were already present in young GC-A-deficient mice, with no signs of an accelerated progression of age-related hearing loss or higher vulnerability to acoustic trauma. OHCs in these frequency regions in young GC-A knockout mice exhibited diminished levels of KCNQ4 expression, which is the dominant K+ channel in OHCs, and decreased activation of poly (ADP-ribose) polymerase-1, an enzyme involved in DNA repair. Further, GC-A knockout mice had IHC synapse impairments and reduced amplitudes of auditory brainstem responses that progressed with age and with acoustic trauma, in contrast to OHCs, when compared to GC-A wild-type littermates. We conclude that GC-A/cGMP-dependent signaling pathways have otoprotective functions and GC-A gene disruption differentially contributes to hair-cell damage in a healthy, aged, or injured system. Thus, augmentation of natriuretic peptide GC-A signaling likely has potential to overcome hidden and noise-induced hearing loss, as well as presbycusis.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Philipp Eckert
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Katrin Reimann
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabelle Lang
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - Markus Wolters
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Knipper M, Hofmeier B, Singer W, Wolpert S, Klose U, Rüttiger L. [Differentiating cochlear synaptopathies into different hearing disorders]. HNO 2019; 67:406-416. [PMID: 30963221 DOI: 10.1007/s00106-019-0660-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to demographic change and altered recreational behavior, a rapid increase in hearing deficits is expected in the next 20-30 years. Consequently, the risk of age-related loss of speech discrimination, tinnitus, hyperacusis, or-as recently shown-dementia, will also increase. There are increasing indications that the loss of specific hearing fibers in humans and animals is involved in various hearing disorders. This fiber loss can be caused by cochlear synaptopathy or deafferentation and does not necessarily lead to clinically measurable threshold changes. Animal experiments have shown that reduced auditory nerve activity due to acoustic trauma or aging can be centrally compensated by disproportionately elevated and faster auditory brainstem responses (ABR). The analysis of the suprathreshold amplitudes of auditory evoked brain stem potentials and their latency in combination with non-invasive imaging techniques such as magnetic resonance imaging can help to identify the central compensatory ability of subjects and to assign defined hearing deficits.
Collapse
Affiliation(s)
- M Knipper
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland.
| | - B Hofmeier
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| | - W Singer
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| | - S Wolpert
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| | - U Klose
- MR-Forschung, Abteilung für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - L Rüttiger
- Universitätsklinik für Hals-Nasen-Ohren-Heilkunde, Plastische Operationen, Sektion Molekulare Hörphysiologie, Hörforschungszentrum Tübingen (THRC), Elfriede-Aulhorn-Straße 5, 72076, Tübingen, Deutschland
| |
Collapse
|
10
|
Williamson TT, Ding B, Zhu X, Frisina RD. Hormone replacement therapy attenuates hearing loss: Mechanisms involving estrogen and the IGF-1 pathway. Aging Cell 2019; 18:e12939. [PMID: 30845368 PMCID: PMC6516159 DOI: 10.1111/acel.12939] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 12/18/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022] Open
Abstract
Estradiol (E) is a multitasking hormone that plays a prominent role in the reproductive system, and also contributes to physiological and growth mechanisms throughout the body. Frisina and colleagues have previously demonstrated the beneficial effects of this hormone, with E‐treated subjects maintaining low auditory brainstem response (ABR) thresholds relative to control subjects (Proceedings of the National Academy of Sciences of the United States of America, 2006;103:14246; Hearing Research, 2009;252:29). In the present study, we evaluated the functionality of the peripheral and central auditory systems in female CBA/CaJ middle‐aged mice during and after long‐term hormone replacement therapy (HRT) via electrophysiological and molecular techniques. Surprisingly, there are very few investigations about the side effects of HRT in the auditory system after it has been discontinued. Our results show that the long‐term effects of HRT are permanent on ABR thresholds and ABR gap‐in‐noise (GIN) amplitude levels. E‐treated animals had lower thresholds and higher amplitude values compared to other hormone treatment subject groups. Interestingly, progesterone (P)‐treated animals had ABR thresholds that increased but amplitude levels that remained relatively the same throughout treatment. These results were consistent with qPCR experiments that displayed high levels of IGF‐1R in the stria vascularis (SV) of both E and P animal groups compared to combination treatment (E + P) animals. IGF‐1R plays a vital role in mediating anti‐apoptotic responses via the PI3K/AKT pathway. Overall, our findings gain insights into the neuro‐protective properties of E hormone treatments as well as expand the scientific knowledge base to help women decide whether HRT is the right choice for them.
Collapse
Affiliation(s)
- Tanika T. Williamson
- Departments of Chemical & Biomedical and Medical Engineering, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| | - Bo Ding
- Departments of Communication Sciences & Disorders, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| | - Xiaoxia Zhu
- Departments of Chemical & Biomedical and Medical Engineering, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| | - Robert D. Frisina
- Departments of Chemical & Biomedical and Medical Engineering, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
- Departments of Communication Sciences & Disorders, Global Center for Hearing & Speech Research University of South Florida Tampa Florida
| |
Collapse
|
11
|
Hearing Performance in the Follicular-Luteal Phase of the Menstrual Cycle. Int J Otolaryngol 2018; 2018:7276359. [PMID: 30210546 PMCID: PMC6120271 DOI: 10.1155/2018/7276359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction Estrogen has a protective role on auditory function. It may have an excitatory action on auditory nerve fibers and can have a neuroprotective effect. Progesterone has a mainly inhibitory action on the central nervous system, which may balance the mainly excitatory action of estrogen. Objective To determine changes in hearing performance with pure tone audiometry (PTA), tympanometry, distortion product otoacoustic emissions (DPOAEs), and auditory brainstem responses (ABR) as hormonal changes occur from follicular to luteal phase. Materials and Methods Twenty healthy female volunteers (age 19 ± 30 years) with normal menstrual cycle and without any hearing problems are included in this case-control study. Hearing evaluation was performed on the 13th day of the menstrual cycle (follicular phase) and then on the 22nd day (luteal phase). Results All of the participants had normal results in follicular phase. In luteal phase, four cases showed abnormalities as follows: reduced hearing thresholds 250 Hz (mean= 15 dBHL), increased amplitudes of DPOAE (mean= 3 dBspl), decreased middle ear pressure (mean= -110 dapa), and delayed ABR interpeak latencies (mean of IPLs I-III= 0.4 and mean of IPLs III-V= 0.6 ms). Conclusions In some women, changing of ovarian hormones may induce fluctuating hearing and increased progesterone in luteal phase can lead to abnormal outcomes in auditory function. However, elevated estrogen modifies its consequences in follicular phase.
Collapse
|
12
|
Lee SS, Han KD, Joo YH. Association between low bone mineral density and hearing impairment in postmenopausal women: the Korean National Health and Nutrition Examination Survey. BMJ Open 2018; 8:e018763. [PMID: 29371277 PMCID: PMC5786079 DOI: 10.1136/bmjopen-2017-018763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To investigate the relationship between bone mineral density (BMD) and hearing impairment using a nationally demonstrative sample of Korean female adults. STUDY DESIGN Cross-sectional study of a national health survey. METHODS Data from the 2009-2010 Korean National Health and Nutrition Examination Surveys (KNHANES) with 19 491 participants were analysed, and 8773 of these participants were enrolled in this study. BMD was measured using dual-energy X-ray absorptiometry. Auditory functioning was evaluated by pure-tone audiometric testing according to established KNHANES protocols. We deliberated auditory impairment as pure-tone averages at frequencies of 0.5, 1.0, 2.0 and 3.0 kHz at a threshold of ≥40 decibels hearing level in the auricle with better hearing status. RESULTS Among women aged 19 years and older, prevalences of bilateral hearing impairment in premenopausal and postmenopausal women were 0.1%±0.1% and 11.5%±1.1% (mean±SE), respectively. Hearing impairment was meaningfully associated with low BMD in postmenopausal women. Logistic regression models indicated that lower BMDs of the total femur (OR=0.779; 95% CI 0.641 to 0.946, P=0.0118) and femur neck (OR=0.746; 95% CI 0.576 to 0.966, P=0.0265) were significantly associated with hearing impairment among postmenopausal women. CONCLUSIONS Postmenopausal Korean women with low BMD of the total femur and femoral neck showed an increased risk for developing hearing impairment. Further epidemiological and investigational studies are needed to elucidate this association.
Collapse
Affiliation(s)
- Seong-Su Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-do Han
- Department of Biostatistics, Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Hoon Joo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
13
|
Möhrle D, Ni K, Varakina K, Bing D, Lee SC, Zimmermann U, Knipper M, Rüttiger L. Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 2016; 44:173-184. [DOI: 10.1016/j.neurobiolaging.2016.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 11/30/2022]
|
14
|
|