1
|
Bachmann MP, Bartsch T, Bippes CC, Bachmann D, Puentes-Cala E, Bachmann J, Bartsch H, Arndt C, Koristka S, Loureiro LR, Kegler A, Laube M, Gross JK, Gross T, Kurien BT, Scofield RH, Farris AD, James JA, Schmitz M, Feldmann A. T Cell Mediated Conversion of a Non-Anti-La Reactive B Cell to an Autoreactive Anti-La B Cell by Somatic Hypermutation. Int J Mol Sci 2021; 22:1198. [PMID: 33530489 PMCID: PMC7865296 DOI: 10.3390/ijms22031198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Since the first description of nuclear autoantigens in the late 1960s and early 1970s, researchers, including ourselves, have found it difficult to establish monoclonal antibodies (mabs) against nuclear antigens, including the La/SS-B (Sjögrens' syndrome associated antigen B) autoantigen. To date, only a few anti-La mabs have been derived by conventional hybridoma technology; however, those anti-La mabs were not bona fide autoantibodies as they recognize either human La specific, cryptic, or post-translationally modified epitopes which are not accessible on native mouse La protein. Herein, we present a series of novel murine anti-La mabs including truly autoreactive ones. These mabs were elicited from a human La transgenic animal through adoptive transfer of T cells from non-transgenic mice immunized with human La antigen. Detailed epitope and paratope analyses experimentally confirm the hypothesis that somatic hypermutations that occur during T cell dependent maturation can lead to autoreactivity to the nuclear La/SS-B autoantigen.
Collapse
Affiliation(s)
- Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Claudia C. Bippes
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (H.B.); (M.S.)
| | - Dominik Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, Santander 681011, Colombia
| | - Jennifer Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (D.B.); (J.B.)
| | - Holger Bartsch
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (H.B.); (M.S.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Markus Laube
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| | - Joanne K. Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Tim Gross
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - R. Hal Scofield
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - A. Darise Farris
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Judith A. James
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.K.G.); (T.G.); (B.T.K.); (R.H.S.); (A.D.F.); (J.A.J.)
| | - Marc Schmitz
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany; (C.C.B.); (H.B.); (M.S.)
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 03128 Dresden, Germany; (T.B.); (E.P.-C.); (C.A.); (S.K.); (L.R.L.); (A.K.); (M.L.); (A.F.)
| |
Collapse
|
2
|
El-Kased RF, Koy C, Deierling T, Lorenz P, Qian Z, Li Y, Thiesen HJ, Glocker MO. Mass spectrometric and peptide chip epitope mapping of rheumatoid arthritis autoantigen RA33. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:747-759. [PMID: 19940341 DOI: 10.1255/ejms.1040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The protein termed RA33 was determined to be one major autoantigen in rheumatoid arthritis (RA) patients and antiRA33 auto-antibodies were found to appear shortly after onset of RA. They are often detectable before a final diagnosis can be made in the clinic. The aim of our study is to characterise the epitope of a monoclonal antiRA33 antibody on recombinant RA33 using mass spectrometric epitope mapping. Recombinant RA33 has been subjected to BrCN cleavage and fragments were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Subsequent in-gel proteolytic digestion and mass spectrometric analysis determined the partial sequences in the protein bands. Western blotting of SDS-PAGE-separated protein fragments revealed immuno-positive, i.e. epitope-containing bands. BrCN-derived RA33 fragments were also separated by high- performance liquid chromatography (HPLC) and immuno-reactivity of peptides was measured by dot-blot analysis with the individual HPLC fractions after partial amino acid sequences were determined. The epitope region identified herewith was compared to data from peptide chip analysis with 15-meric synthetic peptides attached to a glass surface. Results from all three analyses consistently showed that the epitope of the monoclonal antiRA33 antibody is located in the aa79-84 region on recombinant RA33; the epitope sequence is MAARPHSIDGRVVEP. Sequence comparisons of the 15 best scoring peptides from the peptide chip analysis revealed that the epitope can be separated into two adjacent binding parts. The N-terminal binding parts comprise the amino acid residues "DGR", resembling the general physico-chemical properties "acidic/polar-small-basic". The C-terminal binding parts contain the amino acid residues "VVE", with the motif "hydrophobic-gap-acidic". The matching epitope region that emerged from our analysis on both the full-length protein and the 15-meric surface bound peptides suggests that peptide chips are indeed suitable tools for screening patterns of autoantibodies in patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- R F El-Kased
- Proteome Center Rostock, University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Mattoon D, Michaud G, Merkel J, Schweitzer B. Biomarker discovery using protein microarray technology platforms: antibody-antigen complex profiling. Expert Rev Proteomics 2007; 2:879-89. [PMID: 16307517 DOI: 10.1586/14789450.2.6.879] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein microarrays represent an important new tool in proteomic systems biology. This review focuses on the contributions of protein microarrays to the discovery of novel disease biomarkers through antibody-based assays. Of particular interest is the use of protein microarrays for immune response profiling, through which a disease-specific antibody repertoire may be defined. The antigens and antibodies revealed by these studies are useful for clinical assay development, with enormous potential to aid in diagnosis, prognosis, disease staging and treatment selection. The discovery and characterization of novel biomarkers specifically tailored to disease type and stage are expected to enable personalized medicine by facilitating preventative medicine, predictive diagnostics and individualized curative therapies.
Collapse
Affiliation(s)
- Dawn Mattoon
- Invitrogen Corporation, ProtoArray Services, ProtoArray Center, 688 East Main Street, Branford, CT 06405, USA.
| | | | | | | |
Collapse
|
4
|
Fouraux MA, Deneka M, Ivan V, van der Heijden A, Raymackers J, van Suylekom D, van Venrooij WJ, van der Sluijs P, Pruijn GJM. Rabip4' is an effector of rab5 and rab4 and regulates transport through early endosomes. Mol Biol Cell 2003; 15:611-24. [PMID: 14617813 PMCID: PMC329268 DOI: 10.1091/mbc.e03-05-0343] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We describe the characterization of an 80-kDa protein cross-reacting with a monoclonal antibody against the human La autoantigen. The 80-kDa protein is a variant of rabip4 with an N-terminal extension of 108 amino acids and is expressed in the same cells. For this reason, we named it rabip4'. rabip4' is a peripheral membrane protein, which colocalized with internalized transferrin and EEA1 on early endosomes. Membrane association required the presence of the FYVE domain and was perturbed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Expression of a dominant negative rabip4' mutant reduced internalization and recycling of transferrin from early endosomes, suggesting that it may be functionally linked to rab4 and rab5. In agreement with this, we found that rabip4' colocalized with the two GTPases on early endosomes and bound specifically and simultaneously to the GTP form of both rab4 and rab5. We conclude that rabip4' may coordinate the activities of rab4 and rab5, regulating membrane dynamics in the early endosomal system.
Collapse
Affiliation(s)
- Michael A Fouraux
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fouraux MA, Kolkman MJM, Van der Heijden A, De Jong AS, Van Venrooij WJ, Pruijn GJM. The human La (SS-B) autoantigen interacts with DDX15/hPrp43, a putative DEAH-box RNA helicase. RNA (NEW YORK, N.Y.) 2002; 8:1428-43. [PMID: 12458796 PMCID: PMC1370349 DOI: 10.1017/s1355838202021076] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human La (SS-B) autoantigen is an abundantly expressed putative RNA chaperone, functioning in various intracellular processes involving RNA. To further explore the molecular mechanisms by which La functions in these processes, we performed large-scale immunoprecipitations of La from HeLa S100 extracts using the anti-La monoclonal antibody SW5. La-associated proteins were subsequently identified by sequence analysis. This approach allowed the identification of DDX15 as a protein interacting with La. DDX15, the human ortholog of yeast Prp43, is a member of the superfamily of DEAH-box RNA helicases that appeared to interact with La both in vivo and in vitro. The region needed for the interaction with La partly overlaps the DEAH-box domain of DDX15. Immunofluorescence data indicated that endogenous DDX15 accumulates in U snRNP containing nuclear speckles in HEp-2 cells. Surprisingly DDX15 also accumulates in the nucleoli of HEp-2 cells. Moreover, DDX15 and La seem to colocalize in the nucleoli. Regions of DDX15 involved in nuclear, nuclear speckle, and nucleolar localization are located within the N- and C-terminal regions flanking the DEAH-box. RNA coprecipitation experiments indicated that DDX15 is associated with spliceosomal U small nuclear RNAs in HeLa cell extracts. The possible functional implications of the interaction between La and DDX15 are discussed.
Collapse
Affiliation(s)
- Michael A Fouraux
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|