1
|
Scott JG, Buchon N. Drosophila melanogaster as a powerful tool for studying insect toxicology. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:95-103. [PMID: 31685202 DOI: 10.1016/j.pestbp.2019.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Insecticides are valuable and widely used tools for the control of pest insects. Despite the use of synthetic insecticides for >50 years, we continue to have a limited understanding of the genes that influence the key steps of the poisoning process. Major barriers for improving our understanding of insecticide toxicity have included a narrow range of tools and/or a large number of candidate genes that could be involved in the poisoning process. Herein, we discuss the numerous tools and resources available in Drosophila melanogaster that could be brought to bear to improve our understanding of the processes determining insecticide toxicity. These include unbiased approaches such as forward genetic screens, population genetic methods and candidate gene approaches. Examples are provided to showcase how D. melanogaster has been successfully used for insecticide toxicology studies in the past, and ideas for future studies using this valuable insect are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| | - Nicolas Buchon
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Cui F, Li MX, Chang HJ, Mao Y, Zhang HY, Lu LX, Yan SG, Lang ML, Liu L, Qiao CL. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:88-96. [PMID: 26047115 DOI: 10.1016/j.pestbp.2014.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 05/27/2023]
Abstract
Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change.
Collapse
Affiliation(s)
- Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mei-Xia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Jing Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Molecular Biology and Bioinformatics, College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| | - Yun Mao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Han-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Xia Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai-Guo Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Ming-Lin Lang
- Department of Molecular Biology and Bioinformatics, College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chuan-Ling Qiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Daborn PJ, Lumb C, Harrop TWR, Blasetti A, Pasricha S, Morin S, Mitchell SN, Donnelly MJ, Müller P, Batterham P. Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:918-924. [PMID: 23023059 DOI: 10.1016/j.ibmb.2012.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
Identifying molecular mechanisms of insecticide resistance is important for preserving insecticide efficacy, developing new insecticides and implementing insect control. The metabolic detoxification of insecticides is a widespread resistance mechanism. Enzymes with the potential to detoxify insecticides are commonly encoded by members of the large cytochrome P450, glutathione S-transferase and carboxylesterase gene families, all rapidly evolving in insects. Here, we demonstrate that the model insect Drosophila melanogaster is useful for functionally validating the role of metabolic enzymes in conferring metabolism-based insecticide resistance. Alleles of three well-characterized genes from different pest insects were expressed in transgenic D. melanogaster : a carboxylesterase gene (αE7) from the Australian sheep blowfly Lucilia cuprina, a glutathione S-transferase gene (GstE2) from the mosquito Anopheles gambiae and a cytochrome P450 gene (Cyp6cm1) from the whitefly Bemisia tabaci. For all genes, expression in D. melanogaster resulted in insecticide resistance phenotypes mirroring those observed in resistant populations of the pest species. Using D. melanogaster to assess the potential for novel metabolic resistance mechanisms to evolve in pest species is discussed.
Collapse
Affiliation(s)
- Phillip J Daborn
- Department of Genetics and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc Natl Acad Sci U S A 2010; 107:8557-62. [PMID: 20410462 DOI: 10.1073/pnas.1000059107] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450-mediated detoxification is one of the most important mechanisms involved in insecticide resistance. However, the molecular basis of this mechanism and the physiological functions of P450s associated with insecticide resistance remain largely unknown. Here, we exploited the functional genomics and reverse genetic approaches to identify and characterize a P450 gene responsible for the majority of deltamethrin resistance observed in the QTC279 strain of Tribolium castaneum. We used recently completed whole-genome sequence of T. castaneum to prepare custom microarrays and identified a P450 gene, CYP6BQ9, which showed more than a 200-fold higher expression in the deltamethrin-resistant QTC279 strain when compared with its expression in the deltamethrin-susceptible Lab-S strain. Functional studies using both double-strand RNA (dsRNA)-mediated knockdown in the expression of CYP6BQ9 and transgenic expression of CYP6BQ9 in Drosophila melanogaster showed that CYP6BQ9 confers deltamethrin resistance. Furthermore, CYP6BQ9 enzyme expressed in baculovirus metabolizes deltamethrin to 4-hydroxy deltamethrin. Strikingly, we also found that unlike many P450 genes involved in insecticide resistance that were reported previously, CYP6BQ9 is predominantly expressed in the brain, a part of the central nervous system (CNS) containing voltage-gated sodium channels targeted by deltamethrin. Taken together, the current studies on the brain-specific insect P450 involved in deltamethrin resistance shed new light on the understanding of the molecular basis and evolution of insecticide resistance.
Collapse
|
5
|
Parker RS, McCormick CC. Selective accumulation of α-tocopherol in Drosophila is associated with cytochrome P450 tocopherol-ω-hydroxylase activity but not α-tocopherol transfer protein. Biochem Biophys Res Commun 2005; 338:1537-41. [PMID: 16289043 DOI: 10.1016/j.bbrc.2005.10.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 10/21/2005] [Indexed: 11/21/2022]
Abstract
Humans and other mammals actively discriminate among the various forms of vitamin E to selectively retain alpha-tocopherol, but the phylogenetic breadth of this trait is unknown. We sought to determine if the fruit fly, Drosophila melanogaster, similarly discriminates and if so by what mechanism. Larvae and adult flies fed diets containing predominantly gamma- and delta-tocopherols were enriched in alpha-tocopherol. Inclusion in the diet of piperonyl butoxide (PBO), an insect cytochrome P450 inhibitor and inhibitor of tocopherol-omega-hydroxylase activity, greatly elevated tissue levels of delta-tocopherol but not alpha-tocopherol. Drosophila microsomes exhibited tocopherol-omega-hydroxylase activity in the order of delta-T > gamma-T >> alpha-T, a pattern consistent with the effect of PBO in vivo. To determine if selectivity involved alpha-tocopherol transfer protein (alpha-TTP), adult flies were fed an equimolar mixture of d3-RRR- and d6-all-racemic alpha-tocopherol. Flies exhibited a d3/d6 ratio of 1.03, demonstrating an inability to discriminate on the basis of phytyl tail stereochemistry, a hallmark of alpha-TTP activity. We conclude that Drosophila preferentially accumulates alpha-tocopherol via a mechanism involving cytochrome P450 tocopherol-omega-hydroxylase-mediated catabolism of other tocopherols, but not a mammalian-like alpha-TTP. The selective pressure favoring this trait and its remarkable conservation from insects to humans requires elucidation.
Collapse
Affiliation(s)
- Robert S Parker
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
6
|
Jørgensen A, Rasmussen LJ, Andersen O. Characterisation of two novel CYP4 genes from the marine polychaete Nereis virens and their involvement in pyrene hydroxylase activity. Biochem Biophys Res Commun 2005; 336:890-7. [PMID: 16154110 DOI: 10.1016/j.bbrc.2005.08.189] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/24/2005] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 enzymes (CYP enzymes) catalyse the initial step in biotransformation of xenobiotics like polycyclic aromatic hydrocarbons (PAHs). The marine polychaete Nereis virens has a high capacity for biotransformation of PAHs. In the present study, the complete cDNA sequences of two novel CYP genes isolated from N. virens gut tissue are reported. One named CYP342A1, the first member of a new family and the other named CYP4BB1, the first member of a new subfamily. This is the first investigation of specific CYP enzymes from marine polychaetes in which catalytic activity has been determined. Both CYP enzymes had monooxygenase activity and catalysed hydroxylation of pyrene to 1-hydroxypyrene. Based on the present results it is likely that both CYP4BB1 and CYP342A1 are involved in xenobiotic biotransformation. Furthermore, site-directed mutagenesis of the conserved cysteine residue of the heme binding domain resulted in complete loss of monooxygenase activity of both CYP enzymes, indicating that this cysteine residue is indispensable for monooxygenase activity of invertebrate CYP enzymes, as has been well documented in vertebrates. Considering the important role of CYP enzymes in biotransformation of xenobiotics and the presence of N. virens in estuarine environments that accumulates organic xenobiotics, our results are important in understanding the molecular mechanism of biotransformation in marine polychaetes.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Life Sciences and Chemistry, Roskilde University, Denmark.
| | | | | |
Collapse
|