1
|
Behera S, Tanuku NRS, Moturi SRK, Loganathan J, Modali S, Tadi SR, Rachuri V. Huge anthropogenic microbial load during southwest monsoon season in coastal waters of Kakinada, Bay of Bengal. MARINE POLLUTION BULLETIN 2023; 192:114977. [PMID: 37167663 DOI: 10.1016/j.marpolbul.2023.114977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
To examine the influence of anthropogenic activities on the marine ecosystem near the coastal waters of the port city, Kakinada, a study was conducted to investigate the abundance of heterotrophic, indicator and pathogenic bacteria during the spring inter monsoon (SIM) and southwest monsoon (SWM) seasons. A drastic change in the marine bacteria due to the input of allochthonous bacteria during SWM was noticed. An order of magnitude higher abundance of indicators (Escherichia coli and Enterococcus faecalis) and bacterial pathogens (Proteus mirabilis and Pseudomonas aeruginosa) was observed during SWM. In contrast, Chlorophyll-a, heterotrophic bacterial abundance, Aeromonas hydrophila and Klebsiella pneumoniae were higher during SIM. A significant increase in some of the indicator and pathogenic bacterial abundance due to moderate rainfall suggests that the improper drainage system in the city could spread these bacteria, posing a considerable threat to both environment and human health.
Collapse
Affiliation(s)
- Swarnaprava Behera
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naga Radha Srinivas Tanuku
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sri Rama Krishna Moturi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Jagadeesan Loganathan
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Sravani Modali
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Satyanarayana Reddy Tadi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Vivek Rachuri
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| |
Collapse
|
2
|
Chromophoric Dissolved Organic Matter as a Tracer of Fecal Contamination for Bathing Water Quality Monitoring in the Northern Tyrrhenian Sea (Latium, Italy). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8060430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dissolved organic matter present in natural aquatic environments is a heterogeneous mixture of allochthonous and autochthonous materials. In coastal areas vulnerable to sewage waste, its biologically active component, the chromophoric dissolved organic matter (CDOM), is expected to change its composition and distribution in relation to anthropogenic activities, suggesting the possible use of CDOM as a proxy of fecal contamination. This study aimed at testing such hypothesis by investigating and relating the optical properties of CDOM with Escherichia coli abundance, physiological state, and enzymatic activities in a bathing area of the Northern Tyrrhenian Sea (Latium, Italy) affected by urban wastewaters. The parallel factor analysis (PARAFAC) applied to the excitation–emission matrices (EEMs) of CDOM allowed us to distinguish three main components: C1 (λEx/λEm = 342 nm/435 nm), C2 (λEx/λEm = 281–373 nm/460 nm), and C3 (λEx/λEm = 286 nm/360 nm). C1 and C2 corresponded to humic acids of terrestrial origin, while C3 to tryptophan, whose fluorescence peak was detected close to sewage sites, strongly related to active E. coli cells. The comparison between spectral and microbiological methods is suggested as a suitable approach to monitor bathing water quality for the implementation of coastal observing system capability.
Collapse
|
3
|
Liu L, Liu C, Zhang H, He J, Zhai J, Yu D, Dong S. How to Identify the "LIVE/DEAD" States of Microbes Related to Biosensing. ACS Sens 2020; 5:258-264. [PMID: 31876407 DOI: 10.1021/acssensors.9b02138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we fabricated a microbial biosensor with long-term stability, which relied on microbial activity. Activity of the microbe was commonly estimated by LIVE/DEAD assay and the propidium iodide (PI)-stained one was judged as dead. Herein, we proposed the utilization of a physiological state of microbes, which was neither live nor dead but between them. In this state, microbes represented a high PI-stained ratio but still had catalytic ability. This microbial state was obtained by forming the biofilm under the conditions of poor nutrition and low temperature. Thus, the dividing and proliferating ability of the microbes in the biofilm was weak, which was beneficial for long-term stability. This mechanism was further confirmed by the biosensors made from multifarious substrate materials, including graphene-based gel, biomass-based gel, graphite felt, and poly(vinyl chloride). This biosensor was applied to water pollution monitoring in the laboratory for 2 years and then was integrated into a multiparameter water quality monitoring station on a local lake for 2.5 years.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Changyu Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jingting He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
4
|
Gordeev AA, Chetverin AB. Methods for Screening Live Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:S81-S102. [DOI: 10.1134/s0006297918140080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Caruso G. Escherichia coli Viability in Coastal Marine Environments: A Case Study. ACTA ACUST UNITED AC 2015. [DOI: 10.17352/jcmbt.000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Caruso G, La Ferla R, Azzaro M, Zoppini A, Marino G, Petochi T, Corinaldesi C, Leonardi M, Zaccone R, Fonda Umani S, Caroppo C, Monticelli L, Azzaro F, Decembrini F, Maimone G, Cavallo RA, Stabili L, Hristova Todorova N, K. Karamfilov V, Rastelli E, Cappello S, Acquaviva MI, Narracci M, De Angelis R, Del Negro P, Latini M, Danovaro R. Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European Marine Strategy Framework Directive. Crit Rev Microbiol 2015; 42:883-904. [DOI: 10.3109/1040841x.2015.1087380] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Bouhdid S, Abrini J, Amensour M, Zhiri A, Espuny MJ, Manresa A. Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J Appl Microbiol 2010; 109:1139-49. [PMID: 20456525 DOI: 10.1111/j.1365-2672.2010.04740.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To study cellular damage induced by Cinnamomum verum essential oil in Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213. METHODS AND RESULTS The effect of cinnamon bark essential oil on these two strains was evaluated by plate counts, potassium leakage, flow cytometry and transmission electron microscopy (TEM). Exposure to this oil induced alterations in the bacterial membrane of Ps. aeruginosa, which led to the collapse of membrane potential, as demonstrated by bis-oxonol staining, and loss of membrane-selective permeability, as indicated by efflux of K(+) and propidium iodide accumulation. Thus, respiratory activity was inhibited, leading to cell death. In Staph. aureus, cells treated with the oil entered a viable but noncultivable (VNC) state. The oil initially caused a considerable decrease in the metabolic activity and in the replication capacity of these bacterial cells. The loss of membrane integrity appeared later, as indicated by bis-oxonol and Propidium iodide (PI) staining. Data provided by TEM showed various structural effects in response to cinnamon essential oil. In Ps. aeruginosa cells, coagulated cytoplasmic material was observed, and intracellular material was seen in the surrounding environment, while oil-treated Staph. aureus showed fibres extending from the cell surface. CONCLUSIONS Cinnamon essential oil damages the cellular membrane of Ps. aeruginosa, which leads to cell death. There is evidence of VNC Staph. aureus after exposure to the oil. SIGNIFICANCE AND IMPACT OF THE STUDY Cinnamon essential oil shows effective antimicrobial activity and health benefits and is therefore considered a potential food additive. To use this oil as a natural food preservative, especially in combination with other preservation methods, a thorough understanding of the mechanism through which this oil exerts its antibacterial action is required.
Collapse
Affiliation(s)
- S Bouhdid
- Département de Biologie, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
| | | | | | | | | | | |
Collapse
|
8
|
Fiksdal L, Tryland I. Application of rapid enzyme assay techniques for monitoring of microbial water quality. Curr Opin Biotechnol 2008; 19:289-94. [PMID: 18486466 DOI: 10.1016/j.copbio.2008.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Rapid enzyme assay techniques based on direct measurement of beta-d-galactosidase (GALase) or beta-d-glucuronidase (GLUase) activity without selective cultivation are used for rapid estimation of the level of coliform bacteria and Escherichia coli in water samples. Reported detection limits using fluorogenic substrates correspond to culturable target bacteria concentrations that can be appropriate within present guidelines for recreational waters. The rapidity, that is detection within one hour, compromises the specificity of the assay; enzyme activity contributions from other than target bacteria need to be considered, particularly at low levels of target bacteria. Enzyme activities are more persistent than the culturability of target bacteria to environmental and disinfection stress, thus water samples may express enzyme activities of both culturable and viable non-culturable cells.
Collapse
Affiliation(s)
- Liv Fiksdal
- Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, SP Andersens vei 5, NO-7491 Trondheim, Norway.
| | | |
Collapse
|
9
|
Caruso G, Monticelli LS, Caruso R, Bergamasco A. Development of a fluorescent antibody method for the detection of Enterococcus faecium and its potential for coastal aquatic environment monitoring. MARINE POLLUTION BULLETIN 2008; 56:318-24. [PMID: 18061623 DOI: 10.1016/j.marpolbul.2007.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/03/2007] [Accepted: 10/23/2007] [Indexed: 05/25/2023]
Abstract
A direct, microscopic fluorescent antibody method was developed to detect the occurrence of Enterococcus faecium in coastal aquatic environments and was compared with the conventional membrane filtering method. The "in situ" application of the antibody-based protocol in the analysis of water samples collected from coastal polyhaline habitats demonstrated good sensitivity and ease of implementation. Data obtained with the microscopic technique were in agreement with those obtained from culture counts. The fluorescent antibody method proved to be a rapid and reliable technique for the detection of E. faecium. The advantages and limitations intrinsic to the method are discussed, highlighting the potential of this new technique for monitoring coastal aquatic environments.
Collapse
Affiliation(s)
- Gabriella Caruso
- National Research Council, Institute for Coastal Marine Environment, Spianata S Raineri, Messina, Italy.
| | | | | | | |
Collapse
|
10
|
Phe MH, Dossot M, Guilloteau H, Block JC. Highly chlorinatedEscherichia colicannot be stained by propidium iodide. Can J Microbiol 2007; 53:664-70. [PMID: 17668025 DOI: 10.1139/w07-022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have shown that the staining by fluorochromes (DAPI, SYBR Green II, and TOTO-1) of bacteria is altered by chlorination. To evaluate the effect of chlorine (bleach solution) on propidium iodide (PI) staining, we studied Escherichia coli in suspension and biomolecules in solution (DNA, RNA, BSA, palmitic acid, and dextran) first subjected to chlorine and then neutralized by sodium thiosulphate. The suspensions and solutions were subsequently stained with PI. The fluorescence intensity of the PI-stained DNA and RNA in solution dramatically decreased with an increase in the chlorine concentration applied. These results explain the fact that for chlorine concentrations higher than 3 μmol/L Cl2, the E. coli cells were too damaged to be properly stained by PI. In the case of highly chlorinated bacteria, it was impossible to distinguish healthy cells (with a PI-impermeable membrane and undamaged nucleic acids), which were nonfluorescent after PI staining, from cells severely injured by chlorine (with a PI-permeable membrane and damaged nucleic acids) that were also nonfluorescent, as PI penetrated but did not stain chlorinated nucleic acids. Our results suggest that it would be prudent to be cautious in interpreting the results of PI staining, as PI false-negative cells (cells with compromised membranes but not stained by PI because of nucleic acid damage caused by chlorine) are obtained as a result of nucleic acid damage, leading to an underestimation of truly dead bacteria.
Collapse
Affiliation(s)
- M-H Phe
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME UMR 7564 CNRS - Nancy-Université, 15, avenue du Charmois, 54500 Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
11
|
Caruso G, De Pasquale F, Mancuso M, Zampino D, Crisafi E. Fluorescent Antibody‐Viability Staining and β‐Glucuronidase Assay as Rapid Methods for MonitoringEscherichia coliViability in Coastal Marine Waters. J Immunoassay Immunochem 2006; 27:1-13. [PMID: 16450865 DOI: 10.1080/15321810500403599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A faecal pollution monitoring of coastal Messina waters was performed by comparing three (microscopic, enzyme, and culture) methods. Evidence of Escherichia coli cells (29.99 to 96.79% of the total enteropathogenic serotypes) retaining their viability into the marine environment was shown. beta-Glucuronidase activity rates suggested that living cells were also metabolically active. Heavily polluted sites were detected, where improperly treated urban wastes were discharged. Significant relationships between microscopic and enzymatic data proved both methods to be suitable alternatives to the culture method for E. coli detection, improving environmental quality assessment.
Collapse
Affiliation(s)
- G Caruso
- Institute for Coastal Marine Environment IAMC-CNR, Section of Messina, Messina, Italy.
| | | | | | | | | |
Collapse
|
12
|
Yaqub S, Anderson JG, MacGregor SJ, Rowan NJ. Use of a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to high-intensity pulsed electric fields. Lett Appl Microbiol 2004; 39:246-51. [PMID: 15287869 DOI: 10.1111/j.1472-765x.2004.01571.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To apply scanning electron microscopy, image analysis and a fluorescent viability stain to assess lethal and sublethal in food-borne bacteria exposed to high-intensity pulsed electric fields (PEF). METHODS AND RESULTS A rapid cellular staining method using the fluorescent redox probes 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 4',6-diamidino-2-phylindole was used for enumerating actively respiring cells of Listeria mononcytogenes, Bacillus cereus and Escherichia coli. This respiratory staining (RS) approach provided good agreement with the conventional plate count agar method for enumerating untreated and high-intensity PEF-treated bacteria suspended in 0.1% (w/v) peptone water. However, test organisms subjected to similar levels of lethality by heating at 56 degrees C resulted in ca 3-log-unit difference in surviving cell numbers ml(-1) when enumerated by these different viability indicators. PEF-treated bacteria were markedly altered at the cellular level when examined by scanning electron microscopy. CONCLUSIONS While PEF-treatment did not produce sublethally injured cells (P < 0.05), substantial subpopulations of test bacteria rendered incapable of forming colonies by heating may remain metabolically active. SIGNIFICANCE AND IMPACT OF THE STUDY The fluorescent staining method offers interesting perspectives on assessing established and novel microbial inactivation methods. Use of this approach may also provide a better understanding of the mechanisms involved in microbial inactivation induced by PEF.
Collapse
Affiliation(s)
- S Yaqub
- Department of Bioscience, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|