1
|
Regional c-Fos expression induced by peripheral oxytocin administration is prevented by the vasopressin 1A receptor antagonist SR49059. Brain Res Bull 2016; 127:208-218. [PMID: 27725169 DOI: 10.1016/j.brainresbull.2016.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022]
Abstract
Peripherally administered oxytocin induces a wide range of behavioural and physiological effects that are thought to be mediated by the oxytocin receptor (OTR). However, oxytocin also has considerable affinity for the vasopressin 1A receptor (V1AR), such that various oxytocinergic effects may in fact be mediated by the V1AR rather than the OTR. Here we used c-Fos immunohistochemistry to determine the extent to which the regional pattern of neuronal activation produced by peripheral oxytocin involves the V1AR. Male Wistar rats were administered oxytocin (1mg/kg, IP) alone, or following pre-treatment with the V1AR antagonist SR49059 (1mg/kg, IP), and were assessed for locomotor activity changes and for c-Fos expression across a number of brain regions. Oxytocin reduced the distance travelled by rats during a 70min test session, and this inhibitory behavioural effect was prevented by SR49059. Consistent with previous reports, oxytocin increased c-Fos expression in a number of brain regions. In several of these regions-the supraoptic and paraventricular (PVN) nuclei of the hypothalamus, locus coeruleus and nucleus of the solitary tract-the c-Fos response was prevented by SR49059 pre-treatment. Notably, SR49059 inhibited the c-Fos activation in oxytocin-synthesising magnocellular neurons in the PVN. However, c-Fos expression in the central amygdala to oxytocin was unaffected by SR49059. The current findings add to an increasing body of research suggesting that many of the functional effects of oxytocin may be V1AR mediated.
Collapse
|
2
|
Abstract
Successfully rearing young places multiple demands on the mammalian female. These are met by a wide array of alterations in maternal physiology and behavior that are coordinated with the needs of the developing young, and include adaptations in neuroendocrine systems not directly involved in maternal behavior or lactation. In this article, attenuations in the behavioral and neuroendocrine responses to stressors, the alterations in metabolic pathways facilitating both increased food intake and conservation of energy, and the changes in fertility that occur postpartum are described. The mechanisms underlying these processes as well as the factors that contribute to them and the relative contributions of these stimuli at different times postpartum are also reviewed. The induction and maintenance of the adaptations observed in the postpartum maternal brain are dependent on mother-young interaction and, in most cases, on suckling stimulation and its consequences for the hormonal profile of the mother. The peptide hormone prolactin acting on receptors within the brain makes a major contribution to changes in metabolic pathways, suppression of fertility and the attenuation of the neuroendocrine response to stress during lactation. Oxytocin is also released, both into the circulation and in some hypothalamic nuclei, in response to suckling stimulation and this hormone has been implicated in the decrease in anxiety behavior seen in the early postpartum period. The relative importance of these hormones changes across lactation and it is becoming increasingly clear that many of the adaptations to motherhood reviewed here reflect the outcome of multiple influences. © 2016 American Physiological Society. Compr Physiol 6:1493-1518, 2016.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 2015; 38:65-72. [PMID: 25910426 PMCID: PMC4853820 DOI: 10.1016/j.yfrne.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect.
Collapse
Affiliation(s)
- Jenna A McHenry
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Postdoctoral Training Program in Reproductive Mood Disorders, Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, United States; Neuroscience Center, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
4
|
McGregor IS, Bowen MT. Breaking the loop: oxytocin as a potential treatment for drug addiction. Horm Behav 2012; 61:331-9. [PMID: 22198308 DOI: 10.1016/j.yhbeh.2011.12.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 12/18/2022]
Abstract
Drug use typically occurs within a social context, and social factors play an important role in the initiation, maintenance and recovery from addictions. There is now accumulating evidence of an interaction between the neural substrates of affiliative behavior and those of drug reward, with a role for brain oxytocin systems in modulating acute and long-term drug effects. Early research in this field indicated that exogenous oxytocin administration can prevent development of tolerance to ethanol and opiates, the induction of stereotyped, hyperactive behavior by stimulants, and the withdrawal symptoms associated with sudden abstinence from drugs and alcohol. Additionally, stimulation of endogenous oxytocin systems is a key neurochemical substrate underlying the prosocial and empathogenic effects of party drugs such as MDMA (Ecstasy) and GHB (Fantasy). Brain oxytocin systems exhibit profound neuroplasticity and undergo major neuroadaptations as a result of drug exposure. Many drugs, including cocaine, opiates, alcohol, cannabis, MDMA and GHB cause long-term changes in markers of oxytocin function and this may be linked to enduring deficits in social behavior that are commonly observed in laboratory animals repeatedly exposed to these drugs. Very recent preclinical studies have illustrated a remarkable ability of exogenously delivered oxytocin to inhibit stimulant and alcohol self-administration, to alter associated drug-induced changes in dopamine, glutamate and Fos expression in cortical and basal ganglia sites, and to prevent stress and priming-induced relapse to drug seeking. Oxytocin therefore has fascinating potential to reverse the corrosive effects of long-term drugs abuse on social behavior and to perhaps inoculate against future vulnerability to addictive disorders. The results of clinical studies examining intranasal oxytocin effects in humans with drug use disorders are eagerly awaited. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Iain S McGregor
- School of Psychology, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
5
|
Monasterio N, Morales T. Nitric oxide has a role in attenuating the neuroendocrine response to anaphylactoid stress during lactation. Brain Res 2011; 1402:54-66. [PMID: 21696708 DOI: 10.1016/j.brainres.2011.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 02/05/2023]
Abstract
Stress increases nitric oxide (NO) production in the paraventricular nucleus of the hypothalamus (PVH). Lactation diminishes the response to stress and increases basal NO production markers in the PVH of the dam. This study investigated whether lactation modified the anaphylactic reaction to egg white (EW) injection, and if nitric oxide regulates the neuroendocrine response to this stressor. The activational response of PVH to EW was assessed by c-Fos immunohistochemistry, and NO production was determined by histological staining of NADPH-diaphorase and neuronal nitric oxide synthase (nNOS) and by measuring the concentration of total nitrates and nitrites (NOx) in the hypothalamus of lactating and diestrus rats. EW injection significantly increased the number of Fos-positive neurons in the parvocellular subdivision of the PVH in diestrus, but not in lactating rats. Similarly, EW injection increased the number of NADPH-diaphorase- and nNOS-positive cells in the PVH of diestrus rats, but it did not alter the already increased basal number of NO-positive cells in lactating rats. Furthermore, the total concentration of NOx in the hypothalamus, the circulating level of corticosterone and interleukin-6 increased significantly after EW in diestrus, but not in lactating rats, compared to their corresponding controls. Intracerebral administration of L-NAME, a general NOS inhibitor, reversed the attenuation of the activational response to EW in the PVH of lactating rats. The present results show that lactation diminishes the anaphylactoid reaction to EW compared to that in diestrus rats. This attenuation was absent after L-NAME treatment, suggesting that sustained NO production in the PVH during lactation may limit the neuroendocrine response to stress.
Collapse
Affiliation(s)
- Nela Monasterio
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Querétaro, Mexico
| | | |
Collapse
|
6
|
Duparc T, Naslain D, Colom A, Muccioli GG, Massaly N, Delzenne NM, Valet P, Cani PD, Knauf C. Jejunum inflammation in obese and diabetic mice impairs enteric glucose detection and modifies nitric oxide release in the hypothalamus. Antioxid Redox Signal 2011; 14:415-23. [PMID: 20879900 DOI: 10.1089/ars.2010.3330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal detection of nutrients is a crucial step to inform the whole body of the nutritional status. In this paradigm, peripheral information generated by nutrients is transferred to the brain, which in turn controls physiological functions, including glucose metabolism. Here, we investigated the effect of enteric glucose sensors stimulation on hypothalamic nitric oxide (NO) release in lean or in obese/diabetic (db/db) mice. By using specific NO amperometric probes implanted directly in the hypothalamus of mice, we demonstrated that NO release is stimulated in response to enteric glucose sensors activation in lean but not in db/db mice. Alteration of gut to hypothalamic NO signaling in db/db mice is associated with a drastic increase in inflammatory, oxidative/nitric oxide (iNOS, IL-1β), and endoplasmic reticulum stress (CHOP, ATF4) genes expression in the jejunum. Although we could not exclude the importance of the hypothalamic inflammatory state in obese and diabetic mice, our results provide compelling evidence that enteric glucose sensors could be considered as potential targets for metabolic diseases.
Collapse
Affiliation(s)
- Thibaut Duparc
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carson DS, Hunt GE, Guastella AJ, Barber L, Cornish JL, Arnold JC, Boucher AA, McGregor IS. Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus. Addict Biol 2010; 15:448-63. [PMID: 20731630 DOI: 10.1111/j.1369-1600.2010.00247.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent preclinical evidence indicates that the neuropeptide oxytocin may have potential in the treatment of drug dependence and drug withdrawal. Oxytocin reduces methamphetamine self-administration, conditioned place preference and hyperactivity in rodents. However, it is unclear how oxytocin acts in the brain to produce such effects. The present study examined how patterns of neural activation produced by methamphetamine were modified by co-administered oxytocin. Male Sprague-Dawley rats were pretreated with either 2 mg/kg oxytocin (IP) or saline and then injected with either 2 mg/kg methamphetamine (IP) or saline. After injection, locomotor activity was measured for 80 minutes prior to perfusion. As in previous studies, co-administered oxytocin significantly reduced methamphetamine-induced behaviors. Strikingly, oxytocin significantly reduced methamphetamine-induced Fos expression in two regions of the basal ganglia: the subthalamic nucleus and the nucleus accumbens core. The subthalamic nucleus is of particular interest given emerging evidence for this structure in compulsive, addiction-relevant behaviors. When administered alone, oxytocin increased Fos expression in several regions, most notably in the oxytocin-synthesizing neurons of the supraoptic nucleus and paraventricular nucleus of the hypothalamus. This provides new evidence for central actions of peripheral oxytocin and suggests a self-stimulation effect of exogenous oxytocin on its own hypothalamic circuitry. Overall, these results give further insight into the way in which oxytocin might moderate compulsive behaviors and demonstrate the capacity of peripherally administered oxytocin to induce widespread central effects.
Collapse
Affiliation(s)
- Dean S Carson
- Brain & Mind Research Institute, University of Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zaretsky DV, Molosh AI, Zaretskaia MV, Rusyniak DE, DiMicco JA. Increase in plasma ACTH induced by urethane is not a consequence of hyperosmolality. Neurosci Lett 2010; 479:10-2. [PMID: 20470865 DOI: 10.1016/j.neulet.2010.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/13/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
Although anesthetic doses of urethane increase plasma levels of ACTH, the exact mechanism through which this occurs is unclear. We theorized that these increases might be a consequence of an increased systemic osmolality owing to the large doses of urethane usually employed. To evaluate this possibility, we measured plasma osmolality and ACTH in a total of six rats after graded infusions of urethane (N=3 rats) or equimolar amounts of mannitol (N=3 rats). Rats received infusions at 15 min intervals up to a cumulative dose equivalent to an anesthetic dose for urethane (1.4 g/kg). Blood samples (0.35 ml) were withdrawn at baseline and 10 min after each infusion. Urethane and mannitol produced significant and equivalent increases in plasma osmolality. However, only urethane evoked increases in plasma ACTH which were maximal (252+/-55 pg/ml from a baseline of 27+/-7 pg/ml) after a cumulative dose of 1 g/kg. Thus, increases in plasma ACTH seen after anesthetic doses of urethane are unlikely to be a consequence of its effect on plasma osmolality.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
9
|
Wu G, Brouckaert P, Olivecrona T. Rapid downregulation of adipose tissue lipoprotein lipase activity on food deprivation: evidence that TNF-alpha is involved. Am J Physiol Endocrinol Metab 2004; 286:E711-7. [PMID: 14693508 DOI: 10.1152/ajpendo.00257.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When food was removed from young rats in the early morning, adipose tissue tumor necrosis factor (TNF)-alpha activity increased 50% and lipoprotein lipase (LPL) activity decreased 70% in 6 h. There was a strong negative correlation between the TNF-alpha and LPL activities. Exogenous TNF-alpha further decreased LPL activity. Pentoxifylline, known to decrease production of TNF-alpha, had no effect on LPL activity in fed rats but almost abolished the rise of TNF-alpha and the decrease of LPL activity in rats deprived of food. The specific activity of LPL decreased from 0.92 mU/ng in fed rats to 0.35 and 0.24 mU/ng in rats deprived of food given saline or TNF-alpha, indicating a shift in the LPL molecules toward an inactive state. Lipopolysaccharide increased adipose tissue TNF-alpha and decreased LPL activity. Both of these effects were strongly impeded by pretreatment of the rats with pentoxifylline, or dexamethasone. Pretreatment of the rats with actinomycin D virtually abolished the response of LPL activity to food deprivation or exogenous TNF-alpha. We conclude that food deprivation, like lipopolysaccharide, signals via TNF-alpha to a gene whose product causes a rapid shift of newly synthesized LPL molecules toward an inactive form and thereby shuts down extraction of lipoprotein triglycerides by the adipose tissue.
Collapse
Affiliation(s)
- Gengshu Wu
- Department of Medical Biosciences, Physiological Chemistry, University of Umeå, Sweden
| | | | | |
Collapse
|
10
|
Popeski N, Amir S, Diorio J, Woodside B. Prolactin and oxytocin interaction in the paraventricular and supraoptic nuclei: effects on oxytocin mRNA and nitric oxide synthase. J Neuroendocrinol 2003; 15:687-96. [PMID: 12787053 DOI: 10.1046/j.1365-2826.2003.01048.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the contribution of prolactin and oxytocin to the increase in staining for NADPH-d and oxytocin mRNA in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) observed at the end of pregnancy, or following a steroid-priming regimen that mimics the hormonal profile of late pregnant females. Ovariectomized rats received chronic implants of silastic capsules containing oestrogen and progesterone followed by progesterone removal. In experiment 1, oxytocin antagonist (OTA) was administered to rats to investigate whether intranuclear oxytocin release was necessary for NADPH-d staining. In experiments 2a and b, rats received concurrent treatment with bromocryptine (0.5 mg/day) to suppress endogenous prolactin release, and either systemic prolactin (0.5 mg once daily), or prolactin (2 micro g/ micro l), or vehicle infused twice a day into the third ventricle, or chronic oxytocin infusion (24 ng/day) for 3 days following progesterone removal. Brains were then processed for NADPH-d histochemistry. In experiment 3, the interaction of prolactin and oxytocin on oxytocin mRNA within the SON and PVN was examined. NADPH-d staining in the SON and PVN was reduced by the highest dose of the OTA, and by bromocryptine treatment. Central prolactin and oxytocin replacement completely restored NADPH-d staining in bromocryptine-treated rats. Finally, both bromocryptine and the OTA suppressed oxytocin mRNA expression and prolactin replacement restored expression levels to that of controls. Together, these data suggest that the increased capacity to produce nitric oxide in the SON and PVN during late pregnancy is dependent on prolactin stimulating oxytocin gene mRNA and hence intranuclear oxytocin release.
Collapse
Affiliation(s)
- N Popeski
- Center for Studies in Behavioral Neurobiology, Psychology Department, Concordia University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Chiodera P, Volpi R, Manfredi G, Bortesi ML, Capretti L, Magotti MG, Saccanijotti G, Coiro V. Effect of oxytocin on nitric oxide activity controlling gonadotropin secretion in humans. Eur J Clin Invest 2003; 33:402-5. [PMID: 12713454 DOI: 10.1046/j.1365-2362.2003.01122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Previously described inhibitory effects of the nitric oxide synthase (NOS) inhibitor L-NAME on luteinizing hormone-releasing hormone (LH-RH)-induced LH and follicle stimulating hormone (FSH) secretion in humans suggested modulation by nitric oxide (NO) of the gonadotropin-releasing action of LH-RH. DESIGN In order to establish whether oxytocin (OT) participates in this regulatory mechanism, 10 normal men were treated with LH-RH (100 micro g as an i.v. bolus) given alone or in the presence of L-NAME (40 micro g kg-1 injected plus 50 micro g kg-1 infused i.v. for 60 min), OT (2 IU injected plus 4 IU infused i.v. for 60 min) or a combination of both drugs. RESULTS The administration of OT was unable to change the gonadotropin responses to LH-RH. In contrast, L-NAME significantly reduced both FSH and LH increments induced by LH-RH. When L-NAME was given in the presence of OT, the LH and FSH responses to LH-RH were similar to those observed after the administration of LH-RH alone. CONCLUSION These data suggest antagonistic actions of OT and L-NAME in the control of NOS activity in regulation of gonadotropin secretion induced by LH-RH.
Collapse
|