1
|
Lian K, Furulund BMN, Tveita AA, Haugen P, Johansen SD. Mobile group I introns at nuclear rDNA position L2066 harbor sense and antisense homing endonuclease genes intervened by spliceosomal introns. Mob DNA 2022; 13:23. [PMID: 36209098 PMCID: PMC9548176 DOI: 10.1186/s13100-022-00280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Mobile group I introns encode homing endonucleases that confer intron mobility initiated by a double-strand break in the intron-lacking allele at the site of insertion. Nuclear ribosomal DNA of some fungi and protists contain mobile group I introns harboring His-Cys homing endonuclease genes (HEGs). An intriguing question is how protein-coding genes embedded in nuclear ribosomal DNA become expressed. To address this gap of knowledge we analyzed nuclear L2066 group I introns from myxomycetes and ascomycetes. Results A total of 34 introns were investigated, including two identified mobile-type introns in myxomycetes with HEGs oriented in sense or antisense directions. Intriguingly, both HEGs are interrupted by spliceosomal introns. The intron in Didymium squamulosum, which harbors an antisense oriented HEG, was investigated in more detail. The group I intron RNA self-splices in vitro, thus generating ligated exons and full-length intron circles. The intron HEG is expressed in vivo in Didymium cells, which involves removal of a 47-nt spliceosomal intron (I-47) and 3′ polyadenylation of the mRNA. The D. squamulosum HEG (lacking the I-47 intron) was over-expressed in E. coli, and the corresponding protein was purified and shown to confer endonuclease activity. The homing endonuclease was shown to cleave an intron-lacking DNA and to produce a pentanucleotide 3′ overhang at the intron insertion site. Conclusions The L2066 family of nuclear group I introns all belong to the group IE subclass. The D. squamulosum L2066 intron contains major hallmarks of a true mobile group I intron by encoding a His-Cys homing endonuclease that generates a double-strand break at the DNA insertion site. We propose a potential model to explain how an antisense HEG becomes expressed from a nuclear ribosomal DNA locus. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00280-4.
Collapse
Affiliation(s)
- Kjersti Lian
- Nofima AS, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Betty M N Furulund
- Genomics division, Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Anders A Tveita
- Medical Department, Bærum Hospital, Vestre Viken Hospital Trulst, Drammen, Norway
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Steinar D Johansen
- Genomics division, Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.
| |
Collapse
|
2
|
Structural Organization of S516 Group I Introns in Myxomycetes. Genes (Basel) 2022; 13:genes13060944. [PMID: 35741706 PMCID: PMC9223047 DOI: 10.3390/genes13060944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Group I introns are mobile genetic elements encoding self-splicing ribozymes. Group I introns in nuclear genes are restricted to ribosomal DNA of eukaryotic microorganisms. For example, the myxomycetes, which represent a distinct protist phylum with a unique life strategy, are rich in nucleolar group I introns. We analyzed and compared 75 group I introns at position 516 in the small subunit ribosomal DNA from diverse and distantly related myxomycete taxa. A consensus secondary structure revealed a conserved group IC1 ribozyme core, but with a surprising RNA sequence complexity in the peripheral regions. Five S516 group I introns possess a twintron organization, where a His-Cys homing endonuclease gene insertion was interrupted by a small spliceosomal intron. Eleven S516 introns contained direct repeat arrays with varying lengths of the repeated motif, a varying copy number, and different structural organizations. Phylogenetic analyses of S516 introns and the corresponding host genes revealed a complex inheritance pattern, with both vertical and horizontal transfers. Finally, we reconstructed the evolutionary history of S516 nucleolar group I introns from insertion of mobile-type introns at unoccupied cognate sites, through homing endonuclease gene degradation and loss, and finally to the complete loss of introns. We conclude that myxomycete S516 introns represent a family of genetic elements with surprisingly dynamic structures despite a common function in RNA self-splicing.
Collapse
|
3
|
A Phylogenetic Approach to Structural Variation in Organization of Nuclear Group I Introns and Their Ribozymes. Noncoding RNA 2021; 7:ncrna7030043. [PMID: 34449660 PMCID: PMC8395846 DOI: 10.3390/ncrna7030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023] Open
Abstract
Nuclear group I introns are restricted to the ribosomal DNA locus where they interrupt genes for small subunit and large subunit ribosomal RNAs at conserved sites in some eukaryotic microorganisms. Here, the myxomycete protists are a frequent source of nuclear group I introns due to their unique life strategy and a billion years of separate evolution. The ribosomal DNA of the myxomycete Mucilago crustacea was investigated and found to contain seven group I introns, including a direct repeat-containing intron at insertion site S1389 in the small subunit ribosomal RNA gene. We collected, analyzed, and compared 72 S1389 group IC1 introns representing diverse myxomycete taxa. The consensus secondary structure revealed a conserved ribozyme core, but with surprising sequence variations in the guanosine binding site in segment P7. Some S1389 introns harbored large extension sequences in the peripheral region of segment P9 containing direct repeat arrays. These repeats contained up to 52 copies of a putative internal guide sequence motif. Other S1389 introns harbored homing endonuclease genes in segment P1 encoding His-Cys proteins. Homing endonuclease genes were further interrupted by small spliceosomal introns that have to be removed in order to generate the open reading frames. Phylogenetic analyses of S1389 intron and host gene indicated both vertical and horizontal intron transfer during evolution, and revealed sporadic appearances of direct repeats, homing endonuclease genes, and guanosine binding site variants among the myxomycete taxa.
Collapse
|
4
|
Wang W, Wang W, Wei S, Huang W, Qi B, Wang Q, Li Y. Design of potentially universal SSU primers in myxomycetes using next-generation sequencing. J Microbiol Methods 2021; 184:106203. [PMID: 33722637 DOI: 10.1016/j.mimet.2021.106203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022]
Abstract
Unlike fungi, which have a universally accepted barcode marker, universal primers still lack in myxomycetes. Typically, DNA barcode primers were designed based on comparing existing myxomycetes sequences and targeting the conserved regions. However, the extreme genetic diversity within major myxomycetes groups and the frequent occurrence of group I introns have made the development of universal DNA barcode a severe challenge. The emergence of next-generation sequencing provides an opportunity to address this problem. We sequenced the mixed genomic DNA of 81 myxomycetes and extracted the SSU gene's reads using next-generation sequencing. After alignment and assembly, we designed a set of SSU primers that matched all potential SNPs, avoided all known group I intron insertion sites, and were highly conserved between major myxomycetes orders. This set of SSU primers has the potential to become one of the universal primer combinations. Due to the high genetic divergence caused by long and complicated evolutionary histories, the lack of universal barcode primers is common in protists. Our research provides a new method to solve this problem.
Collapse
Affiliation(s)
- Wan Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wei Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shuwei Wei
- Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wei Huang
- Key Laboratory of Applied Statistics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Qi Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Zumkeller S, Gerke P, Knoop V. A functional twintron, 'zombie' twintrons and a hypermobile group II intron invading itself in plant mitochondria. Nucleic Acids Res 2020; 48:2661-2675. [PMID: 31915815 PMCID: PMC7049729 DOI: 10.1093/nar/gkz1194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
The occurrence of group II introns in plant mitochondrial genomes is strikingly different between the six major land plant clades, contrasting their highly conserved counterparts in chloroplast DNA. Their present distribution likely reflects numerous ancient intron gains and losses during early plant evolution before the emergence of seed plants. As a novelty for plant organelles, we here report on five cases of twintrons, introns-within-introns, in the mitogenomes of lycophytes and hornworts. An internal group II intron interrupts an intron-borne maturase of an atp9 intron in Lycopodiaceae, whose splicing precedes splicing of the external intron. An invasive, hypermobile group II intron in cox1, has conquered nine further locations including a previously overlooked sdh3 intron and, most surprisingly, also itself. In those cases, splicing of the external introns does not depend on splicing of the internal introns. Similar cases are identified in the mtDNAs of hornworts. Although disrupting a group I intron-encoded protein in one case, we could not detect splicing of the internal group II intron in this ‘mixed’ group I/II twintron. We suggest the name ‘zombie’ twintrons (half-dead, half-alive) for such cases where splicing of external introns does not depend any more on prior splicing of fossilized internal introns.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Philipp Gerke
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
6
|
De novo assembly and annotation of Didymium iridis transcriptome and identification of stage-specfic genes. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0037-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Martín MP, Lado C, Johansen S. Primers are designed for amplification and direct sequencing of ITS region of rDNA from Myxomycetes. Mycologia 2017; 95:474-9. [DOI: 10.1080/15572536.2004.11833092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Carlos Lado
- Real Jardín Botánico, C.S.I.C., Plaza de Murillo 2, 28014 Madrid, Spain
| | - Steinar Johansen
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
8
|
Andersen KL, Beckert B, Masquida B, Johansen SD, Nielsen H. Accumulation of Stable Full-Length Circular Group I Intron RNAs during Heat-Shock. Molecules 2016; 21:molecules21111451. [PMID: 27809244 PMCID: PMC6274462 DOI: 10.3390/molecules21111451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
Group I introns in nuclear ribosomal RNA of eukaryotic microorganisms are processed by splicing or circularization. The latter results in formation of full-length circular introns without ligation of the exons and has been proposed to be active in intron mobility. We applied qRT-PCR to estimate the copy number of circular intron RNA from the myxomycete Didymium iridis. In exponentially growing amoebae, the circular introns are nuclear and found in 70 copies per cell. During heat-shock, the circular form is up-regulated to more than 500 copies per cell. The intron harbours two ribozymes that have the potential to linearize the circle. To understand the structural features that maintain circle integrity, we performed chemical and enzymatic probing of the splicing ribozyme combined with molecular modeling to arrive at models of the inactive circular form and its active linear counterpart. We show that the two forms have the same overall structure but differ in key parts, including the catalytic core element P7 and the junctions at which reactions take place. These differences explain the relative stability of the circular species, demonstrate how it is prone to react with a target molecule for circle integration and thus supports the notion that the circular form is a biologically significant molecule possibly with a role in intron mobility.
Collapse
Affiliation(s)
- Kasper L Andersen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Bertrand Beckert
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
- Molecular Genetics Genomics Microbiology, Université de Strasbourg, CNRS, UMR 7156, Strasbourg 67081, France.
| | - Benoit Masquida
- Molecular Genetics Genomics Microbiology, Université de Strasbourg, CNRS, UMR 7156, Strasbourg 67081, France.
| | - Steinar D Johansen
- Department of Medical Biology, UiT, The Arctic University of Norway, Tromsø N-9037, Norway.
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
9
|
Abstract
Introns inserted within introns are commonly referred to as twintrons, however the original definition for twintron implied that splicing of the external member of the twintron could only proceed upon splicing of the internal member. This review examines the various types of twintron-like arrangements that have been reported and assigns them to either nested or twintron categories that are subdivided further into subtypes based on differences of their mode of splicing. Twintron-like arrangements evolved independently by fortuitous events among different types of introns but once formed they offer opportunities for the evolution of new regulatory strategies and/or novel genetic elements.
Collapse
Affiliation(s)
- Mohamed Hafez
- a Department of Biochemistry ; Faculty of Medicine; University of Montreal ; Montréal , QC Canada.,b Department of Botany and Microbiology ; Faculty of Science; Suez University ; Suez , Egypt
| | - Georg Hausner
- c Department of Microbiology ; University of Manitoba ; Winnipeg , MB Canada
| |
Collapse
|
10
|
Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0230-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
De Jonckheere JF. What do we know by now about the genus Naegleria? Exp Parasitol 2014; 145 Suppl:S2-9. [DOI: 10.1016/j.exppara.2014.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 07/07/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
|
12
|
Tang Y, Nielsen H, Masquida B, Gardner PP, Johansen SD. Molecular characterization of a new member of the lariat capping twin-ribozyme introns. Mob DNA 2014; 5:25. [PMID: 25342998 PMCID: PMC4167309 DOI: 10.1186/1759-8753-5-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Twin-ribozyme introns represent a complex class of mobile group I introns that harbour a lariat capping (LC) ribozyme and a homing endonuclease gene embedded in a conventional self-splicing group I ribozyme (GIR2). Twin-ribozyme introns have so far been confined to nucleolar DNA in Naegleria amoeboflagellates and the myxomycete Didymium iridis. RESULTS We characterize structural organization, catalytic properties and molecular evolution of a new twin-ribozyme intron in Allovahlkampfia (Heterolobosea). The intron contains two ribozyme domains with different functions in ribosomal RNA splicing and homing endonuclease mRNA maturation. We found Allovahlkampfia GIR2 to be a typical group IC1 splicing ribozyme responsible for addition of the exogenous guanosine cofactor (exoG), exon ligation and circularization of intron RNA. The Allovahlkampfia LC ribozyme, by contrast, represents an efficient self-cleaving ribozyme that generates a small 2',5' lariat cap at the 5' end of the homing endonuclease mRNA, and thus contributes to intron mobility. CONCLUSIONS The discovery of a twin-ribozyme intron in a member of Heterolobosea expands the distribution pattern of LC ribozymes. We identify a putative regulatory RNA element (AP2.1) in the Allovahlkampfia LC ribozyme that involves homing endonuclease mRNA coding sequences as an important structural component.
Collapse
Affiliation(s)
- Yunjia Tang
- RNA and Molecular Pathology group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH-building Breivika, N-9037 Tromsø, Norway
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Benoît Masquida
- Génétique Moléculaire, Génomique, Microbiologie, IPCB, Université de Strasbourg, CNRS, Strasbourg, France
| | - Paul P Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Steinar D Johansen
- RNA and Molecular Pathology group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH-building Breivika, N-9037 Tromsø, Norway
| |
Collapse
|
13
|
Flipphi M, Fekete E, Ag N, Scazzocchio C, Karaffa L. Spliceosome twin introns in fungal nuclear transcripts. Fungal Genet Biol 2013; 57:48-57. [PMID: 23792080 DOI: 10.1016/j.fgb.2013.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
The spliceosome is an RNA/protein complex, responsible for intron excision from eukaryotic nuclear transcripts. In bacteria, mitochondria and plastids, intron excision does not involve the spliceosome, but occurs through mechanisms dependent on intron RNA secondary and tertiary structure. For group II/III chloroplast introns, "twintrons" (introns within introns) have been described. The excision of the external intron, and thus proper RNA maturation, necessitates prior removal of the internal intron, which interrupts crucial sequences of the former. We have here predicted analogous instances of spliceosomal twintrons ("stwintrons") in filamentous fungi. In two specific cases, where the internal intron interrupts the donor of the external intron after the first or after the second nucleotide, respectively, we show that intermediates with the sequence predicted by the "stwintron" hypothesis, are produced in the splicing process. This implies that two successive rounds of RNA scanning by the spliceosome are necessary to produce the mature mRNA. The phylogenetic distributions of the stwintrons we have identified suggest that they derive from "late" events, subsequent to the appearance of the host intron. They may well not be limited to fungal nuclear transcripts, and their generation and eventual disappearance in the evolutionary process are relevant to hypotheses of intron origin and alternative splicing.
Collapse
Affiliation(s)
- Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, 4010 Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
14
|
Hedberg A, Johansen SD. Nuclear group I introns in self-splicing and beyond. Mob DNA 2013; 4:17. [PMID: 23738941 PMCID: PMC3679873 DOI: 10.1186/1759-8753-4-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/14/2013] [Indexed: 01/09/2023] Open
Abstract
Group I introns are a distinct class of RNA self-splicing introns with an ancient origin. All known group I introns present in eukaryote nuclei interrupt functional ribosomal RNA genes located in ribosomal DNA loci. The discovery of the Tetrahymena intron more than 30 years ago has been essential to our understanding of group I intron catalysis, higher-order RNA structure, and RNA folding, but other intron models have provided information about the biological role. Nuclear group I introns appear widespread among eukaryotic microorganisms, and the plasmodial slime molds (myxomycetes) contain an abundance of self-splicing introns. Here, we summarize the main conclusions from previous work on the Tetrahymena intron on RNA self-splicing catalysis as well as more recent work on myxomycete intron biology. Group I introns in myxomycetes that represent different evolutionary stages, biological roles, and functional settings are discussed.
Collapse
Affiliation(s)
- Annica Hedberg
- RNA lab-RAMP, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø N-9037, Norway.
| | | |
Collapse
|
15
|
Nandipati SCR, Haugli K, Coucheron DH, Haskins EF, Johansen SD. Polyphyletic origin of the genus Physarum (Physarales, Myxomycetes) revealed by nuclear rDNA mini-chromosome analysis and group I intron synapomorphy. BMC Evol Biol 2012; 12:166. [PMID: 22938158 PMCID: PMC3511172 DOI: 10.1186/1471-2148-12-166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/15/2012] [Indexed: 11/14/2022] Open
Abstract
Background Physarales represents the largest taxonomic order among the plasmodial slime molds (myxomycetes). Physarales is of particular interest since the two best-studied myxomycete species, Physarum polycephalum and Didymium iridis, belong to this order and are currently subjected to whole genome and transcriptome analyses. Here we report molecular phylogeny based on ribosomal DNA (rDNA) sequences that includes 57 Physarales isolates. Results The Physarales nuclear rDNA sequences were found to be loaded with 222 autocatalytic group I introns, which may complicate correct alignments and subsequent phylogenetic tree constructions. Phylogenetic analysis of rDNA sequences depleted of introns confirmed monophyly of the Physarales families Didymiaceae and Physaraceae. Whereas good correlation was noted between phylogeny and taxonomy among the Didymiaceae isolates, significant deviations were seen in Physaraceae. The largest genus, Physarum, was found to be polyphyletic consisting of at least three well supported clades. A synapomorphy, located at the highly conserved G-binding site of L2449 group I intron ribozymes further supported the Physarum clades. Conclusions Our results provide molecular relationship of Physarales genera, species, and isolates. This information is important in further interpretations of comparative genomics nd transcriptomics. In addition, the result supports a polyphyletic origin of the genus Physarum and calls for a reevaluation of current taxonomy.
Collapse
Affiliation(s)
- Satish C R Nandipati
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, N-9037, Tromsø, Norway
| | | | | | | | | |
Collapse
|
16
|
Abstract
Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers makes them attractive reagents for gene targeting. Homing endonucleases have been applied in promoting DNA modification or genome editing such as gene repair or "gene knockouts". This review examines the categories of homing endonucleases that have been described so far and their possible applications to biotechnology. Strategies to engineer homing endonucleases to alter target site specificities will also be addressed. Alternatives to homing endonucleases such as zinc finger nucleases, transcription activator-like effector nucleases, triplex forming oligonucleotide nucleases, and targetrons are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
17
|
Nishimura Y, Kamikawa R, Hashimoto T, Inagaki Y. Separate origins of group I introns in two mitochondrial genes of the katablepharid Leucocryptos marina. PLoS One 2012; 7:e37307. [PMID: 22606358 PMCID: PMC3350498 DOI: 10.1371/journal.pone.0037307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are descendants of the endosymbiotic α-proteobacterium most likely engulfed by the ancestral eukaryotic cells, and the proto-mitochondrial genome should have been severely streamlined in terms of both genome size and gene repertoire. In addition, mitochondrial (mt) sequence data indicated that frequent intron gain/loss events contributed to shaping the modern mt genome organizations, resulting in the homologous introns being shared between two distantly related mt genomes. Unfortunately, the bulk of mt sequence data currently available are of phylogenetically restricted lineages, i.e., metazoans, fungi, and land plants, and are insufficient to elucidate the entire picture of intron evolution in mt genomes. In this work, we sequenced a 12 kbp-fragment of the mt genome of the katablepharid Leucocryptos marina. Among nine protein-coding genes included in the mt genome fragment, the genes encoding cytochrome b and cytochrome c oxidase subunit I (cob and cox1) were interrupted by group I introns. We further identified that the cob and cox1 introns host open reading frames for homing endonucleases (HEs) belonging to distantly related superfamilies. Phylogenetic analyses recovered an affinity between the HE in the Leucocryptos cob intron and two green algal HEs, and that between the HE in the Leucocryptos cox1 intron and a fungal HE, suggesting that the Leucocryptos cob and cox1 introns possess distinct evolutionary origins. Although the current intron (and intronic HE) data are insufficient to infer how the homologous introns were distributed to distantly related mt genomes, the results presented here successfully expanded the evolutionary dynamism of group I introns in mt genomes.
Collapse
Affiliation(s)
- Yuki Nishimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryoma Kamikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
18
|
The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol 2011; 162:607-18. [PMID: 21392573 DOI: 10.1016/j.resmic.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/29/2011] [Indexed: 11/24/2022]
Abstract
Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis.
Collapse
|
19
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
20
|
Wikmark OG, Haugen P, Lundblad EW, Haugli K, Johansen SD. The molecular evolution and structural organization of group I introns at position 1389 in nuclear small subunit rDNA of myxomycetes. J Eukaryot Microbiol 2007; 54:49-56. [PMID: 17300520 DOI: 10.1111/j.1550-7408.2006.00145.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The number of nuclear group I introns from myxomycetes is rapidly increasing in GenBank as more rDNA sequences from these organisms are being sequenced. They represent an interesting and complex group of intervening sequences because several introns are mobile (or inferred to be mobile) and many contain large and unusual insertions in peripheral loops. Here we describe related group I introns at position 1389 in the small subunit rDNA of representatives from the myxomycete family Didymiaceae. Phylogenetic analyses support a common origin and mainly vertical inheritance of the intron. All S1389 introns from the Didymiaceae belong to the IC1 subclass of nuclear group I introns. The central catalytic core region of about 100 nt appears divergent in sequence composition even though the introns reside in closely related species. Furthermore, unlike the majority of group I introns from myxomycetes the S1389 introns do not self-splice as naked RNA in vitro under standard conditions, consistent with a dependence on host factors for folding or activity. Finally, the myxomycete S1389 introns are exclusively found within the family Didymiaceae, which suggests that this group I intron was acquired after the split between the families Didymiaceae and Physaraceae.
Collapse
Affiliation(s)
- Odd-Gunnar Wikmark
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
21
|
Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol Biol 2007; 7:159. [PMID: 17825109 PMCID: PMC1995217 DOI: 10.1186/1471-2148-7-159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 09/08/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group I introns are one of the four major classes of introns as defined by their distinct splicing mechanisms. Because they catalyze their own removal from precursor transcripts, group I introns are referred to as autocatalytic introns. Group I introns are common in fungal and protist nuclear ribosomal RNA genes and in organellar genomes. In contrast, they are rare in all other organisms and genomes, including bacteria. RESULTS Here we report five group I introns, each containing a LAGLIDADG homing endonuclease gene (HEG), in large subunit (LSU) rRNA genes of cyanobacteria. Three of the introns are located in the LSU gene of Synechococcus sp. C9, and the other two are in the LSU gene of Synechococcus lividus strain C1. Phylogenetic analyses show that these introns and their HEGs are closely related to introns and HEGs located at homologous insertion sites in organellar and bacterial rDNA genes. We also present a compilation of group I introns with homing endonuclease genes in bacteria. CONCLUSION We have discovered multiple HEG-containing group I introns in a single bacterial gene. To our knowledge, these are the first cases of multiple group I introns in the same bacterial gene (multiple group I introns have been reported in at least one phage gene and one prophage gene). The HEGs each contain one copy of the LAGLIDADG motif and presumably function as homodimers. Phylogenetic analysis, in conjunction with their patchy taxonomic distribution, suggests that these intron-HEG elements have been transferred horizontally among organelles and bacteria. However, the mode of transfer and the nature of the biological connections among the intron-containing organisms are unknown.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, IA 52242, USA
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Debashish Bhattacharya
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, IA 52242, USA
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Seán Turner
- National Center for Biotechnology Information, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, MD 20892, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
22
|
Johansen SD, Haugen P, Nielsen H. Expression of protein-coding genes embedded in ribosomal DNA. Biol Chem 2007; 388:679-86. [PMID: 17570819 DOI: 10.1515/bc.2007.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns that encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed. Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns in the nucleolus.
Collapse
Affiliation(s)
- Steinar D Johansen
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
23
|
Wikmark OG, Einvik C, De Jonckheere JF, Johansen SD. Short-term sequence evolution and vertical inheritance of the Naegleria twin-ribozyme group I intron. BMC Evol Biol 2006; 6:39. [PMID: 16670006 PMCID: PMC1464144 DOI: 10.1186/1471-2148-6-39] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 05/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNA of several species of the free-living Naegleria amoeba harbors an optional group I intron within the nuclear small subunit ribosomal RNA gene. The intron (Nae.S516) has a complex organization of two ribozyme domains (NaGIR1 and NaGIR2) and a homing endonuclease gene (NaHEG). NaGIR2 is responsible for intron excision, exon ligation, and full-length intron RNA circularization, reactions typical for nuclear group I intron ribozymes. NaGIR1, however, is essential for NaHEG expression by generating the 5' end of the homing endonuclease messenger RNA. Interestingly, this unusual class of ribozyme adds a lariat-cap at the mRNA. RESULTS To elucidate the evolutionary history of the Nae.S516 twin-ribozyme introns we have analyzed 13 natural variants present in distinct Naegleria isolates. Structural variabilities were noted within both the ribozyme domains and provide strong comparative support to the intron secondary structure. One of the introns, present in N. martinezi NG872, contains hallmarks of a degenerated NaHEG. Phylogenetic analyses performed on separate data sets representing NaGIR1, NaGIR2, NaHEG, and ITS1-5.8S-ITS2 ribosomal DNA are consistent with an overall vertical inheritance pattern of the intron within the Naegleria genus. CONCLUSION The Nae.S516 twin-ribozyme intron was gained early in the Naegleria evolution with subsequent vertical inheritance. The intron was lost in the majority of isolates (70%), leaving a widespread but scattered distribution pattern. Why the apparent asexual Naegleria amoebae harbors active intron homing endonucleases, dependent on sexual reproduction for its function, remains a puzzle.
Collapse
Affiliation(s)
- Odd-Gunnar Wikmark
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Christer Einvik
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
- Department of Pediatrics, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Johan F De Jonckheere
- Protozoology Laboratory, Scientific Institute Public Health, B1050 Brussels, Belgium
| | - Steinar D Johansen
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
- Department of Fisheries and Natural Sciences, Bodø University College, N-8049 Bodø, Norway
| |
Collapse
|
24
|
Birgisdottir AB, Johansen SD. Reverse splicing of a mobile twin-ribozyme group I intron into the natural small subunit rRNA insertion site. Biochem Soc Trans 2005; 33:482-4. [PMID: 15916547 DOI: 10.1042/bst0330482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A mobile group I intron containing two ribozyme domains and a homing endonuclease gene (twin-ribozyme intron organization) can integrate by reverse splicing into the small subunit rRNA of bacteria and yeast. The integration is sequence-specific and corresponds to the natural insertion site (homing site) of the intron. The reverse splicing is independent of the homing endonuclease gene, but is dependent on the group I splicing ribozyme domain. The observed distribution of group I introns in nature can be explained by horizontal transfer between natural homing sites by reverse splicing and subsequent spread in populations by endonuclease-dependent homing.
Collapse
Affiliation(s)
- A B Birgisdottir
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|
25
|
Haugen P, Wikmark OG, Vader A, Coucheron DH, Sjøttem E, Johansen SD. The recent transfer of a homing endonuclease gene. Nucleic Acids Res 2005; 33:2734-41. [PMID: 15891115 PMCID: PMC1110740 DOI: 10.1093/nar/gki564] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Steinar D. Johansen
- To whom correspondence should be addressed. Tel: +47 77 64 53 67; Fax: +47 77 64 53 50;
| |
Collapse
|
26
|
Birgisdottir ÅB, Johansen S. Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA. Nucleic Acids Res 2005; 33:2042-51. [PMID: 15817568 PMCID: PMC1074745 DOI: 10.1093/nar/gki341] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The wide, but scattered distribution of group I introns in nature is a result of two processes; the vertical inheritance of introns with or without losses, and the occasional transfer of introns across species barriers. Reversal of the group I intron self-splicing reaction, termed reverse splicing, coupled with reverse transcription and genomic integration potentially mediate an RNA-based intron mobility pathway. Compared to the well characterized endonuclease-mediated intron homing, reverse splicing is less specific and represents a likely explanation for many intron transpositions into new genomic sites. However, the frequency and general role of an RNA-based mobility pathway in the spread of natural group I introns is still unclear. We have used the twin-ribozyme intron (Dir.S956-1) from the myxomycete Didymium iridis to test how a mobile group I intron containing a homing endonuclease gene (HEG) selects between potential insertion sites in the small subunit (SSU) rRNA in vitro, in Escherichia coli and in yeast. Surprisingly, the results show a site-specific RNA-based targeting of Dir.S956-1 into its natural (S956) SSU rRNA site. Our results suggest that reverse splicing, in addition to the established endonuclease-mediated homing mechanism, potentially accounts for group I intron spread into the homologous sites of different strains and species.
Collapse
Affiliation(s)
- Åsa B. Birgisdottir
- Department of Molecular Biotechnology, Institute of Medical Biology, University of TromsøN-9037 Tromsø, Norway
| | - Steinar Johansen
- Department of Molecular Biotechnology, Institute of Medical Biology, University of TromsøN-9037 Tromsø, Norway
- Faculty of Fisheries and Natural Sciences, Bodø Regional UniversityN-8049 Bodø, Norway
- To whom correspondence should be addressed. Tel: +47 77 64 53 67; Fax: +47 77 64 53 50;
| |
Collapse
|
27
|
Machouart M, Lacroix C, Bui H, Feuilhade de Chauvin M, Derouin F, Lorenzo F. Polymorphisms and intronic structures in the 18S subunit ribosomal RNA gene of the fungiScytalidium dimidiatumandScytalidium hyalinum. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09789.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Haugen P, Coucheron DH, Rønning SB, Haugli K, Johansen S. The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes. J Eukaryot Microbiol 2004; 50:283-92. [PMID: 15132172 DOI: 10.1111/j.1550-7408.2003.tb00135.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Group I introns are relatively common within nuclear ribosomal DNA of eukaryotic microorganisms, especially in myxomycetes. Introns at position S516 in the small subunit ribosomal RNA gene are particularly common, but have a sporadic occurrence in myxomycetes. Fuligo septica, Badhamia gracilis, and Physarum flavicomum, all members of the family Physaraceae, contain related group IC1 introns at this site. The F. septica intron was studied at the molecular level and found to self-splice as naked RNA and to generate full-length intron RNA circles during incubation. Group I introns at position S516 appear to have a particularly widespread distribution among protists and fungi. Secondary structural analysis of more than 140 S516 group I introns available in the database revealed five different types of organization, including IC1 introns with and without His-Cys homing endonuclease genes, complex twin-ribozyme introns, IE introns, and degenerate group I-like introns. Both intron structural and phylogenetic analyses indicate a multiple origin of the S516 introns during evolution. The myxomycete introns are related to S516 introns in the more distantly related brown algae and Acanthamoeba species. Possible mechanisms of intron transfer both at the RNA- and DNA-levels are discussed in order to explain the observed widespread, but scattered, phylogenetic distribution.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
29
|
Lundblad EW, Einvik C, Rønning S, Haugli K, Johansen S. Twelve Group I introns in the same pre-rRNA transcript of the myxomycete Fuligo septica: RNA processing and evolution. Mol Biol Evol 2004; 21:1283-93. [PMID: 15034133 DOI: 10.1093/molbev/msh126] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ribosomal DNA region of the myxomycete Fuligo septica was investigated and found to contain 12 group I introns (four in the small subunit and eight in the large subunit ribosomal RNAs). We have performed molecular and phylogenetic analyses to provide insight into intron structure and function, intron-host biology, and intron origin and evolution. The introns vary in size from 398 to 943 nt, all lacking detectable open reading frames. Secondary structure models revealed considerable structural diversity, but all, except one (subclass IB), represent the common group IC1 intron subclass. In vitro splicing analysis revealed that 10 of the 12 introns were able to self-splice as naked RNA, but all 12 introns were able to splice out from the precursor rRNA in vivo as evaluated by reverse transcription PCR analysis on total F. septica RNA. Furthermore, RNA processing analyses in vitro and in vivo showed that 10 of 12 introns perform hydrolytic cleavage at the 3' splice site, as well as intron circularization. Full-length intron RNA circles were detected in vivo. The order of splicing was analyzed by a reverse transcription PCR approach on cellular RNA, but no strict order of intron excision could be detected. Phylogenetic analysis indicated that most Fuligo introns were distantly related to each other and were independently gained in ribosomal DNA during evolution.
Collapse
Affiliation(s)
- Eirik W Lundblad
- Department of Molecular Biotechnology, RNA research group, Institute of Medical Biology, University of Tromso, Tromso, Norway
| | | | | | | | | |
Collapse
|
30
|
Nielsen H, Fiskaa T, Birgisdottir AB, Haugen P, Einvik C, Johansen S. The ability to form full-length intron RNA circles is a general property of nuclear group I introns. RNA (NEW YORK, N.Y.) 2003; 9:1464-1475. [PMID: 14624003 PMCID: PMC1370501 DOI: 10.1261/rna.5290903] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Accepted: 08/28/2003] [Indexed: 05/24/2023]
Abstract
In addition to splicing, group I intron RNA is capable of an alternative two-step processing pathway that results in the formation of full-length intron circular RNA. The circularization pathway is initiated by hydrolytic cleavage at the 3' splice site and followed by a transesterification reaction in which the intron terminal guanosine attacks the 5' splice site presented in a structure analogous to that of the first step of splicing. The products of the reactions are full-length circular intron and unligated exons. For this reason, the circularization reaction is to the benefit of the intron at the expense of the host. The circularization pathway has distinct structural requirements that differ from those of splicing and appears to be specifically suppressed in vivo. The ability to form full-length circles is found in all types of nuclear group I introns, including those from the Tetrahymena ribosomal DNA. The biological function of the full-length circles is not known, but the fact that the circles contain the entire genetic information of the intron suggests a role in intron mobility.
Collapse
Affiliation(s)
- Henrik Nielsen
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The gene coding for the small ribosomal subunit RNA of Ploeotia costata contains an actively splicing group I intron (Pco.S516) which is unique among euglenozoans. Secondary structure predictions indicate that paired segments P1-P10 as well as several conserved elements typical of group I introns and of subclass IC1 in particular are present. Phylogenetic analyses of SSU rDNA sequences demonstrate a well-supported placement of Ploeotia costata within the Euglenozoa; whereas, analyses of intron data sets uncover a close phylogenetic relation of Pco.S516 to S-516 introns from Acanthamoeba, Aureoumbra lagunensis (Stramenopila) and red algae of the order Bangiales. Discrepancies between SSU rDNA and intron phylogenies suggest horizontal spread of the group I intron. Monophyly of IC1 516 introns from Ploeotia costata, A. lagunensis and rhodophytes is supported by a unique secondary structure element: helix P5b possesses an insertion of 19 nt length with a highly conserved tetraloop which is supposed to take part in tertiary interactions. Neither functional nor degenerated ORFs coding for homing endonucleases can be identified in Pco.S516. Nevertheless, degenerated ORFs with His-Cys box motifs in closely related intron sequences indicate that homing may have occurred during evolution of the investigated intron group.
Collapse
Affiliation(s)
- Ingo Busse
- Fakultät für Biologie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
32
|
Vader A, Johansen S, Nielsen H. The group I-like ribozyme DiGIR1 mediates alternative processing of pre-rRNA transcripts in Didymium iridis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5804-12. [PMID: 12444968 DOI: 10.1046/j.1432-1033.2002.03283.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During starvation induced encystment, cells of the myxomycete Didymium iridis accumulate a 7.5-kb RNA that is the result of alternative processing of pre-rRNA. The 5' end corresponds to an internal processing site cleaved by the group I-like ribozyme DiGIR1, located within the twin-ribozyme intron Dir.S956-1. The RNA retains the majority of Dir.S956-1 including the homing endonuclease gene and a small spliceosomal intron, the internal transcribed spacers ITS1 and ITS2, and the large subunit rRNA lacking its two group I introns. The formation of this RNA implies cleavage by DiGIR1 in a new RNA context, and presents a new example of the cost to the host of intron load. This is because the formation of the 7.5-kb RNA is incompatible with the formation of functional ribosomal RNA from the same transcript. In the formation of the 7.5-kb RNA, DiGIR1 catalysed cleavage takes place without prior splicing performed by DiGIR2. This contrasts with the processing order leading to mature rRNA and I-DirI mRNA in growing cells, suggesting an interplay between the two ribozymes of a twin-ribozyme intron.
Collapse
Affiliation(s)
- Anna Vader
- Department of Medical Biochemistry and Genetics, The Panum Institute, Copenhagen, Denmark
| | | | | |
Collapse
|
33
|
Yokoyama E, Yamagishi K, Hara A. Group-I intron containing a putative homing endonuclease gene in the small subunit ribosomal DNA of Beauveria bassiana IFO 31676. Mol Biol Evol 2002; 19:2022-5. [PMID: 12411610 DOI: 10.1093/oxfordjournals.molbev.a004025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Johansen S, Einvik C, Nielsen H. DiGIR1 and NaGIR1: naturally occurring group I-like ribozymes with unique core organization and evolved biological role. Biochimie 2002; 84:905-12. [PMID: 12458083 DOI: 10.1016/s0300-9084(02)01443-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The group I-like ribozyme GIR1 is a unique example of a naturally occurring ribozyme with an evolved biological function. GIR1 generates the 5'-end of a nucleolar encoded messenger RNA involved in intron mobility. GIR1 is found as a cis-cleaving ribozyme within two very different rDNA group I introns (twin-ribozyme introns) in distantly related organisms. The Didymium GIR1 (DiGIR1) and Naegleria GIR1 (NaGIR1) share fundamental features in structural organization and reactivity, and display significant differences when compared to the related group I splicing ribozymes. GIR1 lacks the characteristic P1 segment present in all group I splicing ribozymes, it has a novel core organization, and it catalyses two site-specific hydrolytic cleavages rather than splicing. DiGIR1 and NaGIR1 appear to have originated from eubacterial group I introns in order to fulfil a common biological challenge: the expression of a protein encoding gene in a nucleolar context.
Collapse
Affiliation(s)
- Steinar Johansen
- RNA Research Group, Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 037 Tromsø, Norway.
| | | | | |
Collapse
|
35
|
Haugen P, De Jonckheere JF, Johansen S. Characterization of the self-splicing products of two complex Naegleria LSU rDNA group I introns containing homing endonuclease genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1641-9. [PMID: 11895434 DOI: 10.1046/j.1432-1327.2002.02802.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two group I introns Nae.L1926 and Nmo.L2563, found at two different sites in nuclear LSU rRNA genes of Naegleria amoebo-flagellates, have been characterized in vitro. Their structural organization is related to that of the mobile Physarum intron Ppo.L1925 (PpLSU3) with ORFs extending the L1-loop of a typical group IC1 ribozyme. Nae.L1926, Nmo.L2563 and Ppo.L1925 RNAs all self-splice in vitro, generating ligated exons and full-length intron circles as well as internal processed excised intron RNAs. Formation of full-length intron circles is found to be a general feature in RNA processing of ORF-containing nuclear group I introns. Both Naegleria LSU rDNA introns contain a conserved polyadenylation signal at exactly the same position in the 3' end of the ORFs close to the internal processing sites, indicating an RNA polymerase II-like expression pathway of intron proteins in vivo. The intron proteins I-NaeI and I-NmoI encoded by Nae.L1926 and Nmo.L2563, respectively, correspond to His-Cys homing endonucleases of 148 and 175 amino acids. I-NaeI contains an additional sequence motif homologous to the unusual DNA binding motif of three antiparallel beta sheets found in the I-PpoI endonuclease, the product of the Ppo.L1925 intron ORF.
Collapse
Affiliation(s)
- Peik Haugen
- RNA Research group, Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
36
|
Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001; 29:3757-74. [PMID: 11557808 PMCID: PMC55915 DOI: 10.1093/nar/29.18.3757] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Homing endonucleases confer mobility to their host intervening sequence, either an intron or intein, by catalyzing a highly specific double-strand break in a cognate allele lacking the intervening sequence. These proteins are characterized by their ability to bind long DNA target sites (14-40 bp) and their tolerance of minor sequence changes in these sites. A wealth of biochemical and structural data has been generated for these enzymes over the past few years. Herein we review our current understanding of homing endonucleases, including their diversity and evolution, DNA-binding and catalytic mechanisms, and attempts to engineer them to bind novel DNA substrates.
Collapse
Affiliation(s)
- B S Chevalier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center and Graduate Program in Molecular and Cell Biology, University of Washington, 1100 Fairview Avenue North A3-023, Seattle, WA 98109, USA
| | | |
Collapse
|
37
|
Elde M, Willassen NP, Johansen S. Functional characterization of isoschizomeric His-Cys box homing endonucleases from Naegleria. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7257-66. [PMID: 11106439 DOI: 10.1046/j.1432-1327.2000.01862.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several species within the amoeboflagellate genus Naegleria harbor an optional ORF containing group I introns in their nuclear small subunit ribosomal DNA. The different ORFs encode homing endonucleases with 65 to 95% identity at the amino-acid level. I-NjaI, I-NanI and I-NitI, from introns in Naegleria jamiesoni, N. andersoni and N. italica, respectively, were analyzed in more detail and found to be isoschizomeric endonucleases that recognize and cleave an approximal 19-bp partially symmetrical sequence, creating a pentanucleotide 3' overhang upon cleavage. The optimal conditions for cleavage activity with respect to temperature, pH, salt and divalent metal ions were investigated. The optimal cleavage temperature for all three endonucleases was found to be 37 degrees C and the activity was dependent on the concentration of NaCl with an optimum at 200 mM. Divalent metal ions, primarily Mg2+, are essential for Naegleria endonuclease activity. Whereas both Mn2+ and Ca2+ could substitute for Mg2+, but with a slower cleavage rate, Zn2+ was unable to support cleavage. Interestingly, the pH dependence of DNA cleavage was found to vary significantly between the I-NitI and I-NjaI/I-NanI endonucleases with optimal pH values at 6.5 and 9, respectively. Site-directed mutagenesis of conserved I-NjaI residues strongly supports the hypothesis that Naegleria homing endonucleases share a similar zinc-binding structure and active site with the His-Cys box homing endonuclease I-PpoI.
Collapse
Affiliation(s)
- M Elde
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromso, Norway
| | | | | |
Collapse
|
38
|
Einvik C, Nielsen H, Nour R, Johansen S. Flanking sequences with an essential role in hydrolysis of a self-cleaving group I-like ribozyme. Nucleic Acids Res 2000; 28:2194-200. [PMID: 10773091 PMCID: PMC105364 DOI: 10.1093/nar/28.10.2194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DiGIR1 is a group I-like ribozyme derived from the mobile twin ribozyme group I intron DiSSU1 in the nuclear ribosomal DNA of the myxomycete Didymium iridis. This ribozyme is responsible for intron RNA processing in vitro and in vivo at two internal sites close to the 5'-end of the intron endo-nuclease open reading frame and is a unique example of a group I ribozyme with an evolved biological function. DiGIR1 is the smallest functional group I ribozyme known from nature and has an unusual core organization including the 6 bp P15 pseudoknot. Here we report results of functional and structural analyses that identify RNA elements critical for hydrolysis outside the DiGIR1 ribozyme core moiety. Results from deletion analysis, disruption/compensation mutagenesis and RNA structure probing analysis all support the existence of two new segments, named P2 and P2.1, involved in the hydrolysis of DiGIR1. Significant decreases in the hydrolysis rate, k (obs), were observed in disruption mutants involving both segments. These effects were restored by compensatory base pairing mutants. The possible role of P2 is to tether the ribozyme core, whereas P2.1 appears to be more directly involved in catalysis.
Collapse
Affiliation(s)
- C Einvik
- Department of Molecular Cell Biology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
39
|
Lin J, Vogt VM. Functional alpha-fragment of beta-galactosidase can be expressed from the mobile group I intron PpLSU3 embedded in yeast pre-ribosomal RNA derived from the chromosomal rDNA locus. Nucleic Acids Res 2000; 28:1428-38. [PMID: 10684939 PMCID: PMC111048 DOI: 10.1093/nar/28.6.1428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Revised: 01/11/2000] [Accepted: 01/21/2000] [Indexed: 11/14/2022] Open
Abstract
PpLSU3, a mobile group I intron found in the ribo-somal RNA genes of Physarum polycephalum, encodes the I-PpoI homing endonuclease. This enzyme represents one of the rare cases in nature where a protein is expressed from an RNA polymerase I transcript. Our previous results showed that the full length intron, but not a further processed species, is the messenger for I-PpoI, implying a role of the untranslated region (UTR) in gene expression. To study the function of the 3'-UTR in expression of the endonuclease and in splicing of the intron, we replaced the I-PpoI gene in PpLSU3 with the gene for the alpha-fragment of Escherichia coli beta-galactosidase, and then integrated this chimeric intron into all the chromosomal rDNA repeats of yeast. The resulting cells synthesized functional alpha-fragment, as evidenced by a complementation assay analogous to that used in E.coli. The beta-galactosidase activity thus provides an unusual and potentially valuable readout for Pol I transcription from chromosomal rDNA. This is the first example in which a eucaryotic homing endonuclease gene has been successfully replaced by a heterologous gene. Using deletion mutagenesis and a novel randomization approach with the alpha-fragment as a reporter, we found that a small segment of the 3'-UTR dramatically influences both splicing and protein expression.
Collapse
Affiliation(s)
- J Lin
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
40
|
Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D. The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol 2000; 14:342-52. [PMID: 10712840 DOI: 10.1006/mpev.1999.0711] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear-encoded small subunit ribosomal DNA gene of many lichen-forming green algae in the genus Trebouxia contains a group I intron at Escherichia coli genic position 1512. We studied the evolutionary history of the 1512 intron in Trebouxia spp. (Trebouxiophyceae) by analyzing intron and "host" cell phylogenies. The host trees were constructed by comparing internal transcribed spacer regions of rDNA. Maximum-likelihood, maximum-parsimony, and distance analyses suggest that the 1512 intron was present in the common ancestor of the green algal classes Trebouxiophyceae, Chlorophyceae, and Ulvophyceae. The 1512 intron, however, was laterally transferred at least three times among later-diverging Trebouxia spp. that form lichen partnerships. Intron secondary structure analyses are consistent with this result. Our results support the hypothesis that lichenization may facilitate 1512 group I intron lateral transfer through the close cell-to-cell contact that occurs between the lichen algal and fungal symbionts in the developing lichen thallus.
Collapse
Affiliation(s)
- T Friedl
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abt. Experimentelle Phykologie und Sammlung von Algenkulturen, Universität Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | | | | | | |
Collapse
|
41
|
Vader A, Nielsen H, Johansen S. In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron. EMBO J 1999; 18:1003-13. [PMID: 10022842 PMCID: PMC1171192 DOI: 10.1093/emboj/18.4.1003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.
Collapse
Affiliation(s)
- A Vader
- Department of Molecular Cell Biology, Institute of Medical Biology, University of Tromso, N-9037 Tromso, Norway.
| | | | | |
Collapse
|
42
|
Elde M, Haugen P, Willassen NP, Johansen S. I-NjaI, a nuclear intron-encoded homing endonuclease from Naegleria, generates a pentanucleotide 3' cleavage-overhang within a 19 base-pair partially symmetric DNA recognition site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:281-8. [PMID: 9914504 DOI: 10.1046/j.1432-1327.1999.00035.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Different species of the amoebo-flagellate Naegleria harbor optional group I introns in the nuclear ribosomal DNA that contain open reading frames. Intron proteins from Naegleria jamiesoni, Naegleria andersoni, and Naegleria italica (named I-NjaI, I-NanI and I-NitI, respectively) were expressed in Escherichia coli and found to be isoschizomeric homing endonucleases that specifically recognize and cleave intron-lacking homologous alleles of ribosomal DNA. The I-NjaI endonuclease was affinity purified, characterized in more detail, and found to generate five-nucleotide 3' staggered ends at the intron insertion site which differs from the ends generated by all other known homing endonucleases. The recognition site was delimited and found to cover an approximately 19 base-pair partially symmetric sequence spanning both the cleavage site and the intron insertion site. The palindromic feature was supported by mutational analysis of the target DNA. All single-site substitutions within the recognition sequence were cleaved by the purified I-NjaI endonuclease, but at different efficiencies. The center of symmetry and cleavage was found to be completely degenerate in specificity, which resembles that of the subclass IIW bacterial restriction enzymes.
Collapse
Affiliation(s)
- M Elde
- Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | |
Collapse
|
43
|
Lin J, Vogt VM. I-PpoI, the endonuclease encoded by the group I intron PpLSU3, is expressed from an RNA polymerase I transcript. Mol Cell Biol 1998; 18:5809-17. [PMID: 9742098 PMCID: PMC109167 DOI: 10.1128/mcb.18.10.5809] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PpLSU3, a mobile group I intron in the rRNA genes of Physarum polycephalum, also can home into yeast chromosomal ribosomal DNA (rDNA) (D. E. Muscarella and V. M. Vogt, Mol. Cell. Biol. 13:1023-1033, 1993). By integrating PpLSU3 into the rDNA copies of a yeast strain temperature sensitive for RNA polymerase I, we have shown that the I-PpoI homing endonuclease encoded by PpLSU3 is expressed from an RNA polymerase I transcript. We have also developed a method to integrate mutant forms of PpLSU3 as well as the Tetrahymena intron TtLSU1 into rDNA, by expressing I-PpoI in trans. Analysis of I-PpoI expression levels in these mutants, along with subcellular fractionation of intron RNA, strongly suggests that the full-length excised intron RNA, but not RNAs that are further cleaved, serves as or gives rise to the mRNA.
Collapse
Affiliation(s)
- J Lin
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
44
|
Einvik C, Elde M, Johansen S. Group I twintrons: genetic elements in myxomycete and schizopyrenid amoeboflagellate ribosomal DNAs. J Biotechnol 1998; 64:63-74. [PMID: 9823659 DOI: 10.1016/s0168-1656(98)00104-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protists are unicellular eukaryotes which represent a significant fraction of the global biodiversity. The myxomycete Didymium and the schizopyrenid amoeboflagellate Naegleria are distantly related protists. However, we have noted several striking similarities in life cycle, cell morphology, and ribosomal DNA organization between these organisms. Both have multicopy nuclear extrachromosomal ribosomal DNAs. Here the small subunit ribosomal RNA genes are interrupted by an optional group I twintron, a novel category among the group I introns. Group I twintrons are mobile self-splicing introns of 1.3-1.4 kb in size, with a complex organization at the RNA level. A group I twintron consists of two distinct ribozymes (catalytic RNAs) with different functions in RNA processing, and an open reading frame encoding a functional homing endonuclease--all with prospects of application as molecular tools in biotechnology. Updated RNA secondary structure models of group I twintrons, as well as an example of in vitro ribozyme activity, are presented. We suggest that the group I twintrons have been independently established in myxomycetes and schizopyrenid amoeboflagellates by horizontal gene transfer due to a combination of the phagocytotic behavior in natural environments and the extrachromosomal multicopy nature of ribosomal DNA.
Collapse
Affiliation(s)
- C Einvik
- Department of Molecular Cell Biology, University of Tromsø, Norway
| | | | | |
Collapse
|