1
|
Zhang X, Wang Y, Chen Y, Li Y, Guo K, Xu J, Guan P, Lan T, Xin M, Hu Z, Guo W, Yao Y, Ni Z, Sun Q, Hao M, Peng H. Partial unidirectional translocation from 5AL to 7BS leads to dense spike in an EMS-induced wheat mutant. BMC Genomics 2024; 25:1073. [PMID: 39528944 PMCID: PMC11555835 DOI: 10.1186/s12864-024-11000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND As the inflorescence of wheat, spike architecture largely determines grain productivity. Dissecting the genetic basis for the spike morphology of wheat can contribute to the designation of ideal spike morphology to improve grain production. RESULTS The present study characterizes a dense spike1 (ds1) mutant, derived from Nongda3753, induced by EMS treatment, which exhibits a dense spike and reduced plant height. Through bulked segregant analysis sequencing (BSA-Seq) of two segregating populations, ds1 was mapped to the short arm of chromosome 7B. Further genotypic and phenotypic analyses of the residual heterozygous lines from F3 to F6 of Yong3002×ds1 revealed that there was a 0-135 Mb deletion in chromosome 7B associated with the dense spike phenotype. The reads count analysis of the two bulks in BSA-Seq, along with the cytological analysis of ds1, ND3753, NIL-ds1 and NIL-Y3002, confirmed that the partial unidirectional translocation of 5AL (543-713 Mb) to 7BS (0-135 Mb) exists in ds1. This translocation led to an increase in both copy number and expression of the Q gene, which is one of the reasons for the dense spike phenotype observed in ds1. CONCLUSION Partial unidirectional translocation from 5AL to 7BS was identified in the EMS-induced mutant ds1, which exhibits dense spike phenotype. This research illustrates the effect of one chromosome structure variation on wheat spike morphology, and provides new materials with several chromosome structure variations for future wheat breeding.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yazhou Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kai Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jin Xu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Panfeng Guan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Tianyu Lan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, Sheoran S, Kumar S, Kurhade AK, Mishra CN, Gupta A, Tyagi BS, Ahlawat OP, Singh G, Tiwari R. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2855. [PMID: 39458802 PMCID: PMC11511103 DOI: 10.3390/plants13202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In response to the escalating challenges posed by unpredictable environmental conditions, the pursuit of early maturation in bread wheat has emerged as a paramount research endeavor. This comprehensive review delves into the multifaceted landscape of strategies and implications surrounding the unlocking of early maturation in bread wheat varieties. Drawing upon a synthesis of cutting-edge research in genetics, physiology, and environmental science, this review elucidates the intricate mechanisms underlying early maturation and its potential ramifications for wheat cultivation in dynamic environments. By meticulously analyzing the genetic determinants, physiological processes, and environmental interactions shaping early maturation, this review offers valuable insights into the complexities of this trait and its relevance in contemporary wheat breeding programs. Furthermore, this review critically evaluates the trade-offs inherent in pursuing early maturation, navigating the delicate balance between accelerated development and optimal yield potential. Through a meticulous examination of both challenges and opportunities, this review provides a comprehensive framework for researchers, breeders, and agricultural stakeholders to advance our understanding and utilization of early maturation in bread wheat cultivars, ultimately fostering resilience and sustainability in wheat production systems worldwide.
Collapse
Affiliation(s)
- Charan Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sapna Yadav
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vikas Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Umesh R. Kamble
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ravindra Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Pawan Saini
- Central Sericultural Research and Training Institute, Pampore 192121, India
| | - Rakesh K. Bairwa
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rinki Khobra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sonia Sheoran
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ankita K. Kurhade
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra N. Mishra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Arun Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Bhudeva S. Tyagi
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Ahlawat
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Gyanendra Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ratan Tiwari
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
3
|
Kumar S, Kumar S, Sharma H, Singh VP, Rawale KS, Kahlon KS, Gupta V, Bhatt SK, Vairamani R, Gill KS, Balyan HS. Physical map of QTL for eleven agronomic traits across fifteen environments, identification of related candidate genes, and development of KASP markers with emphasis on terminal heat stress tolerance in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:235. [PMID: 39333356 DOI: 10.1007/s00122-024-04748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
KEY MESSAGE Key message This study identified stable QTL, promising candidate genes and developed novel KASP markers for heat tolerance, providing genomic resources to assist breeding for the development of high-yielding and heat-tolerant wheat germplasm and varieties. To understand the genetic architecture of eleven agronomic traits under heat stress, we used a doubled-haploid population (177 lines) derived from a heat-sensitive cultivar (PBW343) and a heat-tolerant genotype (KSG1203). This population was evaluated under timely, late and very late sown conditions over locations and years comprising fifteen environments. Best linear unbiased estimates and a genetic map (5,710 SNPs) developed using sequencing-based genotyping were used for QTL mapping. The identified 66 QTL (20 novel) were integrated into wheat physical map (14,263.4 Mb). These QTL explained 5.3% (QDth.ccsu-4A for days to heading and QDtm.ccsu-5B for days to maturity) to 24.9% (QGfd.ccsu-7D for grain filling duration) phenotypic variation. Thirteen stable QTL explaining high phenotypic variation were recommended for marker-assisted recurrent selection (MARS) for optimum/heat stress environments. Selected QTL were validated by their presence in high-yielding doubled-haploid lines. Some QTL for 1000-grain weight (TaERF3-3B, TaFER-5B, and TaZIM-A1), grain yield (TaCol-B5), and developmental traits (TaVRT-2) were co-localized with known genes. Specific known genes for traits like abiotic/biotic stress, grain quality and yield were co-located with 26 other QTL. Furthermore, 209 differentially expressed candidate genes for heat tolerance in plants that encode 28 different proteins were identified. KASP markers for three major/stable QTL, namely QGfd.ccsu-7A for grain filling duration on chromosome 7A (timely sown), QNgs.ccsu-3A for number of grains per spike on 3A, and QDth.ccsu-7A for days to heading on 7A (late and very late sown) environments were developed for MARS focusing on the development of heat-tolerant wheat varieties/germplasm.
Collapse
Affiliation(s)
- Sourabh Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India.
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Vivudh Pratap Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | | | - Kaviraj Singh Kahlon
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Vikas Gupta
- ICAR - Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Sunil Kumar Bhatt
- Research and Development Division, JK Agri-Genetics Limited, Hyderabad, Telangana, India
| | | | - Kulvinder Singh Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| |
Collapse
|
4
|
A Y K, E M, R B, E M, M D, L C, F D. Independent genetic factors control floret number and spikelet number in Triticum turgidum ssp. FRONTIERS IN PLANT SCIENCE 2024; 15:1390401. [PMID: 39253571 PMCID: PMC11381284 DOI: 10.3389/fpls.2024.1390401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Wheat grain yield is a complex trait resulting from a trade-off among many distinct components. During wheat evolution, domestication events and then modern breeding have strongly increased the yield potential of wheat plants, by enhancing spike fertility. To address the genetic bases of spike fertility in terms of spikelet number per spike and floret number per spikelet, a population of 110 recombinant inbred lines (RILS) obtained crossing a Triticum turgidum ssp. durum cultivar (Latino) and a T. dicoccum accession (MG5323) was exploited. Being a modern durum and a semi-domesticated genotype, respectively, the two parents differ for spike architecture and fertility, and thus the corresponding RIL population is the ideal genetic material to dissect genetic bases of yield components. The RIL population was phenotyped in four environments. Using a high-density SNP genetic map and taking advantage of several genome sequencing available for Triticeae, a total of 94 QTLs were identified for the eight traits considered; these QTLs were further reduced to 17 groups, based on their genetic and physical co-location. QTLs controlling floret number per spikelet and spikelet number per spike mapped in non-overlapping chromosomal regions, suggesting that independent genetic factors determine these fertility-related traits. The physical intervals of QTL groups were considered for possible co-location with known genes functionally involved in spike fertility traits and with yield-related QTLs previously mapped in tetraploid wheat. The most interesting result concerns a QTL group on chromosome 5B, associated with spikelet number per spike, since it could host genes still uncharacterized for their association to spike fertility. Finally, we identified two different regions where the trade-off between fertility related traits and kernel weight is overcome. Further analyses of these regions could pave the way for a future identification of new genetic loci contributing to fertility traits essential for yield improvement in durum wheat.
Collapse
Affiliation(s)
- Kiros A Y
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mica E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Battaglia R
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Mazzucotelli E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Dell'Acqua M
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cattivelli L
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Desiderio F
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
5
|
Kumar K, Kumari A, Durgesh K, Sevanthi AM, Sharma S, Singh NK, Gaikwad K. Identification of superior haplotypes for flowering time in pigeonpea through candidate gene-based association study of a diverse minicore collection. PLANT CELL REPORTS 2024; 43:156. [PMID: 38819495 DOI: 10.1007/s00299-024-03230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
KEY MESSAGE In current study candidate gene (261 genes) based association mapping on 144 pigeonpea accessions for flowering time and related traits and 29 MTAs producing eight superior haplotypes were identified. In the current study, we have conducted an association analysis for flowering-associated traits in a diverse pigeonpea mini-core collection comprising 144 accessions using the SNP data of 261 flowering-related genes. In total, 13,449 SNPs were detected in the current study, which ranged from 743 (ICP10228) to 1469 (ICP6668) among the individuals. The nucleotide diversity (0.28) and Watterson estimates (0.34) reflected substantial diversity, while Tajima's D (-0.70) indicated the abundance of rare alleles in the collection. A total of 29 marker trait associations (MTAs) were identified, among which 19 were unique to days to first flowering (DOF) and/or days to fifty percent flowering (DFF), 9 to plant height (PH), and 1 to determinate (Det) growth habit using 3 years of phenotypic data. Among these MTAs, six were common to DOF and/or DFF, and four were common to DOF/DFF along with the PH, reflecting their pleiotropic action. These 29 MTAs spanned 25 genes, among which 10 genes clustered in the protein-protein network analysis, indicating their concerted involvement in floral induction. Furthermore, we identified eight haplotypes, four of which regulate late flowering, while the remaining four regulate early flowering using the MTAs. Interestingly, haplotypes conferring late flowering (H001, H002, and H008) were found to be taller, while those involved in early flowering (H003) were shorter in height. The expression pattern of these genes, as inferred from the transcriptome data, also underpinned their involvement in floral induction. The haplotypes identified will be highly useful to the pigeonpea breeding community for haplotype-based breeding.
Collapse
Affiliation(s)
- Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Anita Kumari
- Department of Botany, North Campus, University of Delhi, Delhi, New Delhi, India
| | - Kumar Durgesh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India
| | | | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, India.
| |
Collapse
|
6
|
Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z, Xia X, Yan L, Cao S. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:635-649. [PMID: 37938892 PMCID: PMC10893938 DOI: 10.1111/pbi.14211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Bingyan Liu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Li Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ke Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dengan Xu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiuling Tian
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lina Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lingli Li
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xingguo Ye
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhonghu He
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xianchun Xia
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Shuanghe Cao
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
7
|
Liu Y, Shen K, Yin C, Xu X, Yu X, Ye B, Sun Z, Dong J, Bi A, Zhao X, Xu D, He Z, Zhang X, Hao C, Wu J, Wang Z, Wu H, Liu D, Zhang L, Shen L, Hao Y, Lu F, Guo Z. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits. Genome Biol 2023; 24:114. [PMID: 37173729 PMCID: PMC10176713 DOI: 10.1186/s13059-023-02932-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Plant architecture associated with increased grain yield and adaptation to the local environments is selected during wheat (Triticum aestivum) breeding. The internode length of individual stems and tiller length of individual plants are important for the determination of plant architecture. However, few studies have explored the genetic basis of these traits. RESULTS Here, we conduct a genome-wide association study (GWAS) to dissect the genetic basis of geographical differentiation of these traits in 306 worldwide wheat accessions including both landraces and traditional varieties. We determine the changes of haplotypes for the associated genomic regions in frequency in 831 wheat accessions that are either introduced from other countries or developed in China from last two decades. We identify 83 loci that are associated with one trait, while the remaining 247 loci are pleiotropic. We also find 163 associated loci are under strong selective sweep. GWAS results demonstrate independent regulation of internode length of individual stems and consistent regulation of tiller length of individual plants. This makes it possible to obtain ideal haplotype combinations of the length of four internodes. We also find that the geographical distribution of the haplotypes explains the observed differences in internode length among the worldwide wheat accessions. CONCLUSION This study provides insights into the genetic basis of plant architecture. It will facilitate gene functional analysis and molecular design of plant architecture for breeding.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xiaowan Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Aoyue Bi
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Xuebo Zhao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Daxing Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Chenyang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Danni Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Fei Lu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100010, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
8
|
Takagi H, Hempton AK, Imaizumi T. Photoperiodic flowering in Arabidopsis: Multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. PLANT COMMUNICATIONS 2023; 4:100552. [PMID: 36681863 PMCID: PMC10203454 DOI: 10.1016/j.xplc.2023.100552] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 05/11/2023]
Abstract
The timing of flowering affects the success of sexual reproduction. This developmental event also determines crop yield, biomass, and longevity. Therefore, this mechanism has been targeted for improvement along with crop domestication. The underlying mechanisms of flowering are highly conserved in angiosperms. Central to these mechanisms is how environmental and endogenous conditions control transcriptional regulation of the FLOWERING LOCUS T (FT) gene, which initiates floral development under long-day conditions in Arabidopsis. Since the identification of FT as florigen, efforts have been made to understand the regulatory mechanisms of FT expression. Although many transcriptional regulators have been shown to directly influence FT, the question of how they coordinately control the spatiotemporal expression patterns of FT still requires further investigation. Among FT regulators, CONSTANS (CO) is the primary one whose protein stability is tightly controlled by phosphorylation and ubiquitination/proteasome-mediated mechanisms. In addition, various CO interaction partners, some of them previously identified as FT transcriptional regulators, positively or negatively modulate CO protein activity. The FT promoter possesses several transcriptional regulatory "blocks," highly conserved regions among Brassicaceae plants. Different transcription factors bind to specific blocks and affect FT expression, often causing topological changes in FT chromatin structure, such as the formation of DNA loops. We discuss the current understanding of the regulation of FT expression mainly in Arabidopsis and propose future directions related to this topic.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Andrew K Hempton
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
9
|
Benaouda S, Stöcker T, Schoof H, Léon J, Ballvora A. Transcriptome profiling at the transition to the reproductive stage uncovers stage and tissue-specific genes in wheat. BMC PLANT BIOLOGY 2023; 23:25. [PMID: 36631761 PMCID: PMC9835304 DOI: 10.1186/s12870-022-03986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat. In this study, a comparative transcriptome analysis at a transition time in combination with genetic mapping was used to identify responsible genes in a stage and tissue-specific manner. For this reason, two winter cultivars that have been bred in Germany showing contrasting and stable heading time in different environments were selected for the analysis. RESULTS In total, 670 and 1075 differentially expressed genes in the shoot apical meristem and leaf tissue, respectively, could be identified in 23 QTL intervals for the heading date. In the transition apex, Histone methylation H3-K36 and regulation of circadian rhythm are both controlled by the same homoeolog genes mapped in QTL TaHd112, TaHd124, and TaHd137. TaAGL14 gene that identifies the floral meristem was mapped in TaHd054 in the double ridge. In the same stage, the homoeolog located on chromosome 7D of FLOWERING TIME LOCUS T mapped on chr 7B, which evolved an antagonist function and acts as a flowering repressor was uncovered. The wheat orthologue of transcription factor ASYMMETRIC LEAVES 1 (AS1) was identified in the late reproductive stage and was mapped in TaHd102, which is strongly associated with heading date. Deletion of eight nucleotides in the AS1 promoter could be identified in the binding site of the SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1) gene in the late flowering cultivar. Both proteins AS1 and SOC1 are inducing flowering time in response to gibberellin biosynthesis. CONCLUSION The global transcriptomic at the transition phase uncovered stage and tissue-specific genes mapped in QTL of heading date in winter wheat. In response to Gibberellin signaling, wheat orthologous transcription factor AS1 is expressed in the late reproductive phase of the floral transition. The locus harboring this gene is the strongest QTL associated with the heading date trait in the German cultivars. Consequently, we conclude that this is another indication of the Gibberellin biosynthesis as the mechanism behind the heading variation in wheat.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Lu Y, Zhao P, Zhang A, Wang J, Ha M. Genome-Wide Analysis of HSP70s in Hexaploid Wheat: Tandem Duplication, Heat Response, and Regulation. Cells 2022; 11:cells11050818. [PMID: 35269442 PMCID: PMC8909476 DOI: 10.3390/cells11050818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s play crucial roles in plant growth and development, as well as in stress response. Knowledge of the distribution and heat response of HSP70s is important to understand heat adaptation and facilitate thermotolerance improvement in wheat. In this study, we comprehensively analyzed the distribution of HSP70s in hexaploid wheat (TaHSP70s) and its relatives, and we found an obvious expansion of TaHSP70s in the D genome of hexaploid wheat. Meanwhile, a large portion of tandem duplication events occurred in hexaploid wheat. Among the 84 identified TaHSP70s, more than 64% were present as homeologs. The expression profiles of TaHSP70s in triads tended to be expressed more in non-stressful and heat stress conditions. Intriguingly, many TaHSP70s were especially heat responsive. Tandem duplicated TaHSP70s also participated in heat response and growth development. Further HSE analysis revealed divergent distribution of HSEs in the promoter regions of TaHSP70 homeologs, which suggested a distinct heat regulatory mechanism. Our results indicated that the heat response of TaHSP70s may experience a different regulation, and this regulation, together with the expression of tandem duplicated TaHSP70s, may help hexaploid wheat to adapt to heat conditions.
Collapse
Affiliation(s)
- Yunze Lu
- Soil Pollution and Ecological Restoration Center, School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (A.Z.); (M.H.)
- Correspondence:
| | - Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Z.); (J.W.)
| | - Aihua Zhang
- Soil Pollution and Ecological Restoration Center, School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (A.Z.); (M.H.)
| | - Junzhe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; (P.Z.); (J.W.)
| | - Mingran Ha
- Soil Pollution and Ecological Restoration Center, School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (A.Z.); (M.H.)
| |
Collapse
|
11
|
Cheng X, Tian B, Gao C, Gao W, Yan S, Yao H, Wang X, Jiang Y, Hu L, Pan X, Cao J, Lu J, Ma C, Chang C, Zhang H. Identification and expression analysis of candidate genes related to seed dormancy and germination in the wheat GATA family. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:343-359. [PMID: 34837867 DOI: 10.1016/j.plaphy.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
GATA transcription factors have been reported to function in plant growth and development and during various biotic/abiotic stresses in Arabidopsis and rice. However, the functions of wheat GATAs, particularly in the regulation of seed dormancy and germination, remain unclear. Here, we identified 78 TaGATAs in wheat and divided them into five subfamilies. Sixty-four paralogous pairs and 52 orthologous pairs were obtained, and Ka/Ks ratios showed that the TaGATAs had undergone strong purifying election during the evolutionary process. Triplet analysis indicated that a high homologue retention rate could explain the large number of TaGATAs in wheat. Gene structure analysis revealed that most members of the same subfamily had similar structures, and subcellular localization prediction indicated that most TaGATAs were located in the nucleus. Gene ontology annotation results showed that most TaGATAs had molecular functions in DNA and zinc binding, and promoter analysis suggested that they may play important roles in growth, development, and biotic/abiotic stress response. We combined three microarray datasets with qRT-PCR expression data from wheat varieties of contrasting dormancy and pre-harvest sprouting resistance levels during imbibition in order to identify ten candidate genes (TaGATA17/-25/-34/-37/-40/-46/-48/-51/-72/-73) that may be involved in the regulation of seed dormancy and germination in wheat. These findings provide valuable information for further dissection of TaGATA functions in the regulation of seed dormancy and germination, thereby enabling the improvement of wheat pre-harvest sprouting resistance by gene pyramiding.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingbing Tian
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xuyang Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Yating Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Leixue Hu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| |
Collapse
|
12
|
Yield-Related QTL Clusters and the Potential Candidate Genes in Two Wheat DH Populations. Int J Mol Sci 2021; 22:ijms222111934. [PMID: 34769361 PMCID: PMC8585063 DOI: 10.3390/ijms222111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, four large-scale field trials using two doubled haploid wheat populations were conducted in different environments for two years. Grain protein content (GPC) and 21 other yield-related traits were investigated. A total of 227 QTL were mapped on 18 chromosomes, which formed 35 QTL clusters. The potential candidate genes underlying the QTL clusters were suggested. Furthermore, adding to the significant correlations between yield and its related traits, correlation variations were clearly shown within the QTL clusters. The QTL clusters with consistently positive correlations were suggested to be directly utilized in wheat breeding, including 1B.2, 2A.2, 2B (4.9–16.5 Mb), 2B.3, 3B (68.9–214.5 Mb), 4A.2, 4B.2, 4D, 5A.1, 5A.2, 5B.1, and 5D. The QTL clusters with negative alignments between traits may also have potential value for yield or GPC improvement in specific environments, including 1A.1, 2B.1, 1B.3, 5A.3, 5B.2 (612.1–613.6 Mb), 7A.1, 7A.2, 7B.1, and 7B.2. One GPC QTL (5B.2: 671.3–672.9 Mb) contributed by cultivar Spitfire was positively associated with nitrogen use efficiency or grain protein yield and is highly recommended for breeding use. Another GPC QTL without negatively pleiotropic effects on 2A (50.0–56.3 Mb), 2D, 4D, and 6B is suggested for quality wheat breeding.
Collapse
|
13
|
Khatun K, Debnath S, Robin AHK, Wai AH, Nath UK, Lee DJ, Kim CK, Chung MY. Genome-wide identification, genomic organization, and expression profiling of the CONSTANS-like (COL) gene family in petunia under multiple stresses. BMC Genomics 2021; 22:727. [PMID: 34620088 PMCID: PMC8499527 DOI: 10.1186/s12864-021-08019-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. Results A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. Conclusion The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08019-w.
Collapse
Affiliation(s)
- Khadiza Khatun
- Department of Biotechnology, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Sourav Debnath
- Department of Biochemistry and Food Analysis, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Antt Htet Wai
- Department of Biology, Yangon University of Education, Kamayut Township, 11041, Yangon, Yangon Region, Myanmar
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Do-Jin Lee
- Department of Agricultural Education, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
14
|
Cao S, Luo X, Xu D, Tian X, Song J, Xia X, Chu C, He Z. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. THE NEW PHYTOLOGIST 2021; 230:1731-1745. [PMID: 33586137 DOI: 10.1111/nph.17276] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/20/2021] [Indexed: 05/23/2023]
Abstract
Timely flowering is essential for optimum crop reproduction and yield. To determine the best flowering-time genes (FTGs) relevant to local adaptation and breeding, it is essential to compare the interspecific genetic architecture of flowering in response to light and temperature, the two most important environmental cues in crop breeding. However, the conservation and variations of FTGs across species lack systematic dissection. This review summarizes current knowledge on the genetic architectures underlying light and temperature-mediated flowering initiation in Arabidopsis, rice, and temperate cereals. Extensive comparative analyses show that most FTGs are conserved, whereas functional variations in FTGs may be species specific and confer local adaptation in different species. To explore evolutionary dynamics underpinning the conservation and variations in FTGs, domestication and selection of some key FTGs are further dissected. Based on our analyses of genetic control of flowering time, a number of key issues are highlighted. Strategies for modulation of flowering behavior in crop breeding are also discussed. The resultant resources provide a wealth of reference information to uncover molecular mechanisms of flowering in plants and achieve genetic improvement in crops.
Collapse
Affiliation(s)
- Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xumei Luo
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Song
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- International Maize and Wheat Improvement Center China Office, c/o Chinese Academy Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
15
|
Shimizu KK, Copetti D, Okada M, Wicker T, Tameshige T, Hatakeyama M, Shimizu-Inatsugi R, Aquino C, Nishimura K, Kobayashi F, Murata K, Kuo T, Delorean E, Poland J, Haberer G, Spannagl M, Mayer KFX, Gutierrez-Gonzalez J, Muehlbauer GJ, Monat C, Himmelbach A, Padmarasu S, Mascher M, Walkowiak S, Nakazaki T, Ban T, Kawaura K, Tsuji H, Pozniak C, Stein N, Sese J, Nasuda S, Handa H. De Novo Genome Assembly of the Japanese Wheat Cultivar Norin 61 Highlights Functional Variation in Flowering Time and Fusarium-Resistant Genes in East Asian Genotypes. PLANT & CELL PHYSIOLOGY 2021; 62:8-27. [PMID: 33244607 PMCID: PMC7991897 DOI: 10.1093/pcp/pcaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 05/08/2023]
Abstract
Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Environmental Systems Science, Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Moeko Okada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Toshiaki Tameshige
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Fuminori Kobayashi
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
| | - Kazuki Murata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tony Kuo
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- University of Guelph, Centre for Biodiversity Genomics, Guelph, ON, Canada
| | - Emily Delorean
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Georg Haberer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München—Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Weihenstephan, Germany
| | | | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Cecile Monat
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Sean Walkowiak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, Canada
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Crop Science, Center of Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Humanome Lab, Inc, Tokyo, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Handa
- Division of Basic Research, Institute of Crop Science, NARO, Tsukuba, Japan
- Laboratoty of Plant Breeding, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
16
|
Bogard M, Hourcade D, Piquemal B, Gouache D, Deswartes JC, Throude M, Cohan JP. Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1085-1103. [PMID: 33068400 DOI: 10.1093/jxb/eraa477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
Wheat phenology allows escape from seasonal abiotic stresses including frosts and high temperatures, the latter being forecast to increase with climate change. The use of marker-based crop models to identify ideotypes has been proposed to select genotypes adapted to specific weather and management conditions and anticipate climate change. In this study, a marker-based crop model for wheat phenology was calibrated and tested. Climate analysis of 30 years of historical weather data in 72 locations representing the main wheat production areas in France was performed. We carried out marker-based crop model simulations for 1019 wheat cultivars and three sowing dates, which allowed calculation of genotypic stress avoidance frequencies of frost and heat stress and identification of ideotypes. The phenology marker-based crop model allowed prediction of large genotypic variations for the beginning of stem elongation (GS30) and heading date (GS55). Prediction accuracy was assessed using untested genotypes and environments, and showed median genotype prediction errors of 8.5 and 4.2 days for GS30 and GS55, respectively. Climate analysis allowed the definition of a low risk period for each location based on the distribution of the last frost and first heat days. Clustering of locations showed three groups with contrasting levels of frost and heat risks. Marker-based crop model simulations showed the need to optimize the genotype depending on sowing date, particularly in high risk environments. An empirical validation of the approach showed that it holds good promises to improve frost and heat stress avoidance.
Collapse
Affiliation(s)
- Matthieu Bogard
- Arvalis - Institut du Végétal, 6 Chemin de la côte vieille, Baziège, France
| | - Delphine Hourcade
- Arvalis - Institut du Végétal, 6 Chemin de la côte vieille, Baziège, France
| | - Benoit Piquemal
- Arvalis - Institut du Végétal, station expérimentale, Boigneville, France
| | | | - Jean-Charles Deswartes
- Arvalis - Institut du Végétal, Route de Châteaufort ZA des graviers, Villiers-le-Bâcle, France
| | - Mickael Throude
- Biogemma: Centre de Recherche de Chappes, Route d'Ennezat, CS, Chappes, France
| | - Jean-Pierre Cohan
- Arvalis - Institut du Végétal, Station expérimentale de La Jaillière, La Chapelle Saint-Sauveur, Loireauxence, France
| |
Collapse
|
17
|
A Chip Digital PCR Assay for Quantification of Common Wheat Contamination in Pasta Production Chain. Foods 2020; 9:foods9070911. [PMID: 32664323 PMCID: PMC7404985 DOI: 10.3390/foods9070911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Pasta, the Italian product par excellence, is made of pure durum wheat. The use of Triticum durum derived semolina is in fact mandatory for Italian pasta, in which Triticum aestivum species is considered a contamination that must not exceed the 3% maximum level. Over the last 50 years, various electrophoretic, chemical, and immuno-chemical methods have been proposed aimed to track the possible presence of common wheat in semolina and pasta. More recently, a new generation of methods, based on DNA (DeoxyriboNucleic Acid) analysis, has been developed to this aim. Species traceability can be now enforced by a new technology, namely digital Polymerase Chain Reaction (dPCR) which quantify the number of target sequence present in a sample, using limiting dilutions, PCR, and Poisson statistics. In our work we have developed a duplex chip digital PCR (cdPCR) assay able to quantify common wheat presence along pasta production chain, from raw materials to final products. The assay was verified on reference samples at known level of common wheat contamination and applied to commercial pastas sampled in the Italian market.
Collapse
|
18
|
Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet 2020; 16:e1008812. [PMID: 32658893 PMCID: PMC7394450 DOI: 10.1371/journal.pgen.1008812] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Collapse
Affiliation(s)
- Lindsay M. Shaw
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Currently at Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Maria A. Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mei Y. Lau
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
19
|
The Response of COL and FT Homologues to Photoperiodic Regulation in Carrot (Daucus carota L.). Sci Rep 2020; 10:9984. [PMID: 32561786 PMCID: PMC7305175 DOI: 10.1038/s41598-020-66807-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Carrot (Daucus carota L.) is a biennial plant requiring vernalization to induce flowering, but long days can promote its premature bolting and flowering. The basic genetic network controlling the flowering time has been constructed for carrot, but there is limited information on the molecular mechanisms underlying the photoperiodic flowering response. The published carrot genome could provide an effective tool for systematically retrieving the key integrator genes of GIGANTEA (GI), CONSTANS-LIKE (COL), FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) homologues in the photoperiod pathway. In this study, the bolting time of wild species “Songzi” (Ws) could be regulated by different photoperiods, but the orange cultivar “Amsterdam forcing” (Af) displayed no bolting phenomenon. According to the carrot genome and previous de novo transcriptome, 1 DcGI, 15 DcCOLs, 2 DcFTs, and 3 DcSOC1s were identified in the photoperiod pathway. The circadian rhythm peaks of DcGI, DcCOL2, DcCOL5a, and DcCOL13b could be delayed under long days (LDs). The peak value of DcCOL2 in Af (12.9) was significantly higher than that in Ws (6.8) under short day (SD) conditions, and was reduced under LD conditions (5.0). The peak values of DcCOL5a in Ws were constantly higher than those in Af under the photoperiod treatments. The expression levels of DcFT1 in Ws (463.0) were significantly upregulated under LD conditions compared with those in Af (1.4). These responses of DcCOL2, DcCOL5a, and DcFT1 might be related to the different bolting responses of Ws and Af. This study could provide valuable insights into understanding the key integrator genes in the carrot photoperiod pathway.
Collapse
|
20
|
Hara T, Shima T, Nagai H, Ohsawa R. Genetic analysis of photoperiod sensitivity associated with difference in ecotype in common buckwheat. BREEDING SCIENCE 2020; 70:101-111. [PMID: 32351309 PMCID: PMC7180152 DOI: 10.1270/jsbbs.19118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Ecotype breeding is a key technology in common buckwheat (Fagopyrum esculentum Moench) for the breeding of highly adaptive cultivars and their introduction to other cultivation areas. However, the details of the relationship between photoperiod sensitivity and ecotype remain unclear. Here, we evaluated photoperiod sensitivity in 15 landraces from different parts of Japan, and analyzed quantitative trait loci (QTLs) for photoperiod sensitivity using two F2 segregating populations derived from the crosses between self-compatible lines ('Kyukei SC2' or 'Buckwheat Norin PL1', early days-to-flowering) and allogamous plants (intermediate or late days-to-flowering). We clarified that (1) photoperiod sensitivity and differences in ecotype are closely related; (2) photoperiod sensitivity is controlled by several QTLs common among population of different ecotypes; and (3) orthologues of GIGANTEA and EARLY FLOWERING 3 will be useful markers in future detailed elucidation of the photoperiod sensitivity mechanism in common buckwheat. This study provides the basis for genomics-assisted breeding for local adaptation and ecotype breeding in common buckwheat.
Collapse
Affiliation(s)
- Takashi Hara
- National Agriculture and Food Research Organization, Hokkaido Agricultural Research Center, Division of Field Crop Research and Development, Shinsei, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Taeko Shima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroya Nagai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryo Ohsawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
21
|
Kidane YG, Gesesse CA, Hailemariam BN, Desta EA, Mengistu DK, Fadda C, Pè ME, Dell'Acqua M. A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1380-1393. [PMID: 30575264 PMCID: PMC6576139 DOI: 10.1111/pbi.13062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 05/11/2023]
Abstract
The Ethiopian plateau hosts thousands of durum wheat (Triticum turgidum subsp. durum) farmer varieties (FV) with high adaptability and breeding potential. To harness their unique allelic diversity, we produced a large nested association mapping (NAM) population intercrossing fifty Ethiopian FVs with an international elite durum wheat variety (Asassa). The Ethiopian NAM population (EtNAM) is composed of fifty interconnected bi-parental families, totalling 6280 recombinant inbred lines (RILs) that represent both a powerful quantitative trait loci (QTL) mapping tool, and a large pre-breeding panel. Here, we discuss the molecular and phenotypic diversity of the EtNAM founder lines, then we use an array featuring 13 000 single nucleotide polymorphisms (SNPs) to characterize a subset of 1200 EtNAM RILs from 12 families. Finally, we test the usefulness of the population by mapping phenology traits and plant height using a genome wide association (GWA) approach. EtNAM RILs showed high allelic variation and a genetic makeup combining genetic diversity from Ethiopian FVs with the international durum wheat allele pool. EtNAM SNP data were projected on the fully sequenced AB genome of wild emmer wheat, and were used to estimate pairwise linkage disequilibrium (LD) measures that reported an LD decay distance of 7.4 Mb on average, and balanced founder contributions across EtNAM families. GWA analyses identified 11 genomic loci individually affecting up to 3 days in flowering time and more than 1.6 cm in height. We argue that the EtNAM is a powerful tool to support the production of new durum wheat varieties targeting local and global agriculture.
Collapse
Affiliation(s)
- Yosef G. Kidane
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Bioversity InternationalAddis AbabaEthiopia
| | - Cherinet A. Gesesse
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Amhara Regional Agricultural Research Institute (ARARI)Adet Agricultural Research CenterBahir DarEthiopia
| | | | - Ermias A. Desta
- Amhara Regional Agricultural Research Institute (ARARI)Adet Agricultural Research CenterBahir DarEthiopia
| | - Dejene K. Mengistu
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of Dryland Crop and Horticultural SciencesMekelle UniversityMekelleEthiopia
| | | | - Mario Enrico Pè
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | |
Collapse
|
22
|
Okada T, Jayasinghe JEARM, Eckermann P, Watson-Haigh NS, Warner P, Hendrikse Y, Baes M, Tucker EJ, Laga H, Kato K, Albertsen M, Wolters P, Fleury D, Baumann U, Whitford R. Effects of Rht-B1 and Ppd-D1 loci on pollinator traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1965-1979. [PMID: 30899967 DOI: 10.1007/s00122-019-03329-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Elite wheat pollinators are critical for successful hybrid breeding. We identified Rht-B1 and Ppd-D1 loci affecting multiple pollinator traits and therefore represent major targets for improving hybrid seed production. Hybrid breeding has a great potential to significantly boost wheat yields. Ideal male pollinators would be taller in stature, contain many spikelets well-spaced along the spike and exhibit high extrusion of large anthers. Most importantly, flowering time would match with that of the female parent. Available genetic resources for developing an elite wheat pollinator are limited, and the genetic basis for many of these traits is largely unknown. Here, we report on the genetic analysis of pollinator traits using biparental mapping populations. We identified two anther extrusion QTLs of medium effect, one on chromosome 1BL and the other on 4BS coinciding with the semi-dwarfing Rht-B1 locus. The effect of Rht-B1 alleles on anther extrusion is genotype dependent, while tall plant Rht-B1a allele is consistently associated with large anthers. Multiple QTLs were identified at the Ppd-D1 locus for anther length, spikelet number and spike length, with the photoperiod-sensitive Ppd-D1b allele associated with favourable pollinator traits in the populations studied. We also demonstrated that homeoloci, Rht-D1 and Ppd-B1, influence anther length among other traits. These results suggest that combinations of Rht-B1 and Ppd-D1 alleles control multiple pollinator traits and should be major targets of hybrid wheat breeding programs.
Collapse
Affiliation(s)
- Takashi Okada
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia.
| | - J E A Ridma M Jayasinghe
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Paul Eckermann
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Nathan S Watson-Haigh
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Patricia Warner
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Yonina Hendrikse
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Mathieu Baes
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Elise J Tucker
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Hamid Laga
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
- Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama, 700-8530, Japan
| | - Marc Albertsen
- DuPont-Pioneer Hi-Bred International Inc., 7250 NW 62nd Avenue, Johnston, IA, 50131-0552, USA
| | - Petra Wolters
- DuPont-Pioneer Hi-Bred International Inc., 7250 NW 62nd Avenue, Johnston, IA, 50131-0552, USA
| | - Delphine Fleury
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| | - Ryan Whitford
- School of Agriculture, Food and Wine, Plant Genomics Centre, University of Adelaide, Hartley Grove, Urrbrae, SA, 5064, Australia
| |
Collapse
|
23
|
Kang YJ, Lee BM, Nam M, Oh KW, Lee MH, Kim TH, Jo SH, Lee JH. Identification of quantitative trait loci associated with flowering time in perilla using genotyping-by-sequencing. Mol Biol Rep 2019; 46:4397-4407. [PMID: 31152338 DOI: 10.1007/s11033-019-04894-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Understanding the transition to the reproductive period is important for crop breeding. This information can facilitate the production of novel varieties that are better adapted to local environments or changing climatic conditions. Here, we report the development of a high-density linkage map based on genotyping-by-sequencing (GBS) for the genus perilla. Through GBS library construction and Illumina sequencing of an F2 population, a total of 9607 single-nucleotide polymorphism (SNP) markers were developed. The ten-group linkage map of 1309.39 cM contained 2518 markers, with an average marker density of 0.56 cM per linkage group (LG). Using this map, a total of six QTLs were identified. These quantitative trait loci (QTLs) are associated with three traits related to flowering time: days to visible flower bud, days to flowering, and days to maturity. Ortholog analysis conducted with known genes involved in the regulation of flowering time among different crop species identified GI, CO and ELF4 as putative perilla orthologs that are closely linked to the QTL regions associated with flowering time. These results provide a foundation that will be useful for future studies of flowering time in perilla using fine mapping, and marker-assisted selection for the development of new varieties of perilla.
Collapse
Affiliation(s)
| | - Bo-Mi Lee
- SEEDERS Inc., Daejeon, 34912, Republic of Korea
| | - Moon Nam
- SEEDERS Inc., Daejeon, 34912, Republic of Korea
| | - Ki-Won Oh
- National Institute of Crop Science, RDA, Miryang, 50424, Republic of Korea
| | - Myoung-Hee Lee
- National Institute of Crop Science, RDA, Miryang, 50424, Republic of Korea
| | - Tae-Ho Kim
- National Academy of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Sung-Hwan Jo
- SEEDERS Inc., Daejeon, 34912, Republic of Korea.
| | | |
Collapse
|
24
|
Monteagudo A, Igartua E, Contreras-Moreira B, Gracia MP, Ramos J, Karsai I, Casas AM. Fine-tuning of the flowering time control in winter barley: the importance of HvOS2 and HvVRN2 in non-inductive conditions. BMC PLANT BIOLOGY 2019; 19:113. [PMID: 30909882 PMCID: PMC6434887 DOI: 10.1186/s12870-019-1727-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/19/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND In winter barley plants, vernalization and photoperiod cues have to be integrated to promote flowering. Plant development and expression of different flowering promoter (HvVRN1, HvCO2, PPD-H1, HvFT1, HvFT3) and repressor (HvVRN2, HvCO9 and HvOS2) genes were evaluated in two winter barley varieties under: (1) natural increasing photoperiod, without vernalization, and (2) under short day conditions in three insufficient vernalization treatments. These challenging conditions were chosen to capture non-optimal and natural responses, representative of those experienced in the Mediterranean area. RESULTS In absence of vernalization and under increasing photoperiods, HvVRN2 expression increased with day-length, mainly between 12 and 13 h photoperiods in our latitudes. The flowering promoter gene in short days, HvFT3, was only expressed after receiving induction of cold or plant age, which was associated with low transcript levels of HvVRN2 and HvOS2. Under the sub-optimal conditions here described, great differences in development were found between the two winter barley varieties used in the study. Delayed development in 'Barberousse' was associated with increased expression levels of HvOS2. Novel variation for HvCO9 and HvOS2 is reported and might explain such differences. CONCLUSIONS The balance between the expression of flowering promoters and repressor genes regulates the promotion towards flowering or the maintenance of the vegetative state. HvOS2, an ortholog of FLC, appears as a strong candidate to mediate in the vernalization response of barley. Natural variation found would help to exploit the plasticity in development to obtain better-adapted varieties for current and future climate conditions.
Collapse
Affiliation(s)
- Arantxa Monteagudo
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ernesto Igartua
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - M. Pilar Gracia
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Javier Ramos
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ildikó Karsai
- Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462 Hungary
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Avda. Montañana 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
25
|
Ichida H, Abe T. An improved and robust method to efficiently deplete repetitive elements from complex plant genomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:455-460. [PMID: 30824026 DOI: 10.1016/j.plantsci.2018.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Genome size and complexity often present major challenges to genome-based approaches in crop plants and other agricultural species. For instance, repetitive sequences comprise 80% to 90% of the genome of hexaploid wheat, which has a haploid genome size of approximately 17 Gb. In this study, we developed an improved design and procedure for short-read library preparation that uses a modified adaptor and duplex-specific nuclease (DSN) for the efficient elimination of highly repeated sequence elements within genomes. The improved adapter, which has a hairpin-like form for stability, was constructed from truncated sequences adjacent to the original Illumina TruSeq adapter and can be converted to a full-length adapter structure during PCR amplification. Using the hairpin-structured adaptor, we prepared randomly sheared genomic libraries from rice and diploid, tetraploid, and hexaploid wheat cultivars and evaluated the efficiency of DSN for the enzymatic depletion of repetitive elements. According to real-time quantitative PCR analysis, the relative abundances of 18S and 25S ribosomal DNA decreased respectively to 1.15% and 3.54% in rice and 1.70%-1.95% and 14.71%-20.01% in the three wheat cultivars. Whole-genome sequencing analysis of a diploid wheat cultivar, KU104-1, indicated that DSN treatment with the designed hairpin-structured adapter dramatically reduced highly repetitive elements, such as Ty1-Copia and Ty3-Gypsy retrotransposons and DNA transposons, within the genome, while sequencing reads derived from low-copy genes and protein coding sequences increased more than 50%. Our new procedure should be useful not only for wheat genomes but also for other agricultural plant species with relatively large and complex genomes.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- RIKEN Nishina Center for Accelerator-Based Science, Saitama 351-0198, Japan.
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Saitama 351-0198, Japan
| |
Collapse
|
26
|
Liu H, Li T, Wang Y, Zheng J, Li H, Hao C, Zhang X. TaZIM-A1 negatively regulates flowering time in common wheat (Triticum aestivum L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:359-376. [PMID: 30226297 DOI: 10.1111/jipb.12720] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/11/2018] [Indexed: 05/13/2023]
Abstract
Flowering time is a critical determinant of regional adaptation for crops and has strong effects on crop yields. Here, we report that TaZIM-A1, an atypical GATA-like transcription factor, is a negative regulator of flowering in wheat. TaZIM-A1 possessed weak transcriptional repression activity, with its CCT domain functioning as the major inhibitory region. TaZIM-A1 expression exhibited a typical circadian oscillation pattern under various light regimes. Overexpression of TaZIM-A1 caused a delay in flowering time and a decrease in thousand-kernel weight (TKW) in wheat under long-day conditions. Moreover, TaZIM-A1 directly bound to the promoters of TaCO-1 and TaFT-1 and downregulated their expression. Sequence analysis of a collection of common wheat cultivars identified three and two haplotypes for TaZIM-A1 and TaZIM-B1, respectively. Association analysis revealed that TaZIM-A1-HapI/-HapIII and TaZIM-B1-HapI have undergone strong positive selection during modern wheat breeding, likely due to their association with earlier heading and higher TKW. Diagnostic markers were developed for these haplotypes that can be used for wheat cultivar improvement, via marker-assisted breeding.
Collapse
Affiliation(s)
- Hong Liu
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yamei Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Zheng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Zhang
- College of Agricultural Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
27
|
Shi C, Zhao L, Zhang X, Lv G, Pan Y, Chen F. Gene regulatory network and abundant genetic variation play critical roles in heading stage of polyploidy wheat. BMC PLANT BIOLOGY 2019; 19:6. [PMID: 30606101 PMCID: PMC6318890 DOI: 10.1186/s12870-018-1591-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/05/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The extensive adaptability of polyploidy wheat is attributed to its complex genome, and accurately controlling heading stage is a prime target in wheat breeding process. Wheat heading stage is an essential growth and development processes since it starts at a crucial point in the transition from vegetative phase to reproductive phase. MAIN BODY Heading stage is mainly decided by vernalization, photoperiod, hormone (like gibberellic acid, GA), and earliness per se (Eps). As a polyploidy species, common wheat possesses the abundant genetic variation, such as allelic variation, copy number variation etc., which have a strong effect on regulation of wheat growth and development. Therefore, understanding genetic manipulation of heading stage is pivotal for controlling the heading stage in wheat. In this review, we summarized the recent advances in the genetic regulatory mechanisms and abundant variation in genetic diversity controlling heading stage in wheat, as well as the interaction mechanism of different signals and the contribution of different genetic variation. We first summarized the genes involved in vernalization, photoperoid and other signals cross-talk with each other to control wheat heading stage, then the abundant genetic variation related to signal components associated with wheat heading stage was also elaborated in detail. CONCLUSION Our knowledge of the regulatory network of wheat heading can be used to adjust the duration of the growth phase for the purpose of acclimatizing to different geographical environments.
Collapse
Affiliation(s)
- Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Xiangfen Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Yubo Pan
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| |
Collapse
|
28
|
Zhou R, Liu P, Li D, Zhang X, Wei X. Photoperiod response-related gene SiCOL1 contributes to flowering in sesame. BMC PLANT BIOLOGY 2018; 18:343. [PMID: 30526484 PMCID: PMC6288898 DOI: 10.1186/s12870-018-1583-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame is a major oilseed crop which is widely cultivated all around the world. Flowering, the timing of transition from vegetative to reproductive growth, is one of the most important events in the life cycle of sesame. Sesame is a typical short-day (SD) plant and its flowering is largely affected by photoperiod. However, the flowering mechanism in sesame at the molecular level is still not very clear. Previous studies showed that the CONSTANS (CO) gene is the crucial photoperiod response gene which plays a center role in duration of the plant vegetative growth. RESULTS In this study, the CO-like (COL) genes were identified and characterized in the sesame genome. Two homologs of the CO gene in the SiCOLs, SiCOL1 and SiCOL2, were recognized and comprehensively analyzed. However, sequence analysis showed that SiCOL2 lacked one of the B-box motifs. In addition, the flowering time of the transgenic Arabidopsis lines with overexpressed SiCOL2 were longer than that of SiCOL1, indicating that SiCOL1 was more likely to be the potential functional homologue of CO in sesame. Expression analysis revealed that SiCOL1 had high expressed levels before flowering in leaves and exhibited diurnal rhythmic expression in both SD and long-day (LD) conditions. In total, 16 haplotypes of SiCOL1 were discovered in the sesame collections from Asia. However, the mutated haplotypes did not express under both SD and LD conditions and was regarded as a nonfunctional allele. Notably, the sesame landraces from high-latitude regions harboring nonfunctional alleles of SiCOL1 flowered much earlier than landraces from low-latitude regions under LD condition, and adapted to the northernmost regions of sesame cultivation. The result indicated that sesame landraces from high-latitude regions might have undergone artificial selection to adapt to the LD environment. CONCLUSIONS Our results suggested that SiCOL1 might contribute to regulation of flowering in sesame and natural variations in SiCOL1 were probably related to the expansion of sesame cultivation to high-latitude regions. The results could be used in sesame breeding and in broadening adaptation of sesame varieties to new regions.
Collapse
Affiliation(s)
- Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Pan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
| | - Xin Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 China
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
29
|
Yao W, Li G, Yu Y, Ouyang Y. funRiceGenes dataset for comprehensive understanding and application of rice functional genes. Gigascience 2018; 7:1-9. [PMID: 29220485 PMCID: PMC5765555 DOI: 10.1093/gigascience/gix119] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/22/2017] [Indexed: 12/26/2022] Open
Abstract
Background As a main staple food, rice is also a model plant for functional genomic studies of monocots. Decoding of every DNA element of the rice genome is essential for genetic improvement to address increasing food demands. The past 15 years have witnessed extraordinary advances in rice functional genomics. Systematic characterization and proper deposition of every rice gene are vital for both functional studies and crop genetic improvement. Findings We built a comprehensive and accurate dataset of ∼2800 functionally characterized rice genes and ∼5000 members of different gene families by integrating data from available databases and reviewing every publication on rice functional genomic studies. The dataset accounts for 19.2% of the 39 045 annotated protein-coding rice genes, which provides the most exhaustive archive for investigating the functions of rice genes. We also constructed 214 gene interaction networks based on 1841 connections between 1310 genes. The largest network with 762 genes indicated that pleiotropic genes linked different biological pathways. Increasing degree of conservation of the flowering pathway was observed among more closely related plants, implying substantial value of rice genes for future dissection of flowering regulation in other crops. All data are deposited in the funRiceGenes database (https://funricegenes.github.io/). Functionality for advanced search and continuous updating of the database are provided by a Shiny application (http://funricegenes.ncpgr.cn/). Conclusions The funRiceGenes dataset would enable further exploring of the crosslink between gene functions and natural variations in rice, which can also facilitate breeding design to improve target agronomic traits of rice.
Collapse
Affiliation(s)
- Wen Yao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangwei Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiming Yu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Xiao G, Li B, Chen H, Chen W, Wang Z, Mao B, Gui R, Guo X. Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:232. [PMID: 30314465 PMCID: PMC6186071 DOI: 10.1186/s12870-018-1469-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/04/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND In Arabidopsis, a long day flowering plant, CONSTANS (CO) acts as a transcriptional activator of flowering under long day (LD) condition. In rice, a short day flowering plant, Hd1, the ortholog of CO, plays dual functions in respond to day-length, activates flowering in short days and represses flowering in long days. In addition, alleles of Hd1 account for ~ 44% of the variation in flowering time observed in cultivated rice and sorghum. How does it work in bamboo? The function of CO in bamboo is similar to that in Arabidopsis? RESULTS Two CO homologous genes, PvCO1 and PvCO2, in Phyllostachys violascens were identified. Alignment analysis showed that the two PvCOLs had the highest sequence similarity to rice Hd1. Both PvCO1 and PvCO2 expressed in specific tissues, mainly in leaf. The PvCO1 gene had low expression before flowering, high expression during the flowering stage, and then declined to low expression again after flowering. In contrast, expression of PvCO2 was low during the flowering stage, but rapidly increased to a high level after flowering. The mRNA levels of both PvCOs exhibited a diurnal rhythm. Both PvCO1 and PvCO2 proteins were localized in nucleus of cells. PvCO1 could interact with PvGF14c protein which belonged to 14-3-3 gene family through B-box domain. Overexpression of PvCO1 in Arabidopsis significantly caused late flowering by reducing the expression of AtFT, whereas, transgenic plants overexpressing PvCO2 showed a similar flowering time with WT under LD conditions. Taken together, these results suggested that PvCO1 was involved in the flowering regulation, and PvCO2 may either not have a role in regulating flowering or act redundantly with other flowering regulators in Arabidopsis. Our data also indicated regulatory divergence between PvCOLs in Ph. violascens and CO in Arabidopsis as well as Hd1 in Oryza sativa. Our results will provide useful information for elucidating the regulatory mechanism of COLs involved in the flowering. CONCLUSIONS Unlike to the CO gene in Arabidopsis, PvCO1 was a negative regulator of flowering in transgenic Arabidopsis under LD condition. It was likely that long period of vegetative growth of this bamboo species was related with the regulation of PvCO1.
Collapse
Affiliation(s)
- Guohui Xiao
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029 China
| | - Bingjuan Li
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Hongjun Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Wei Chen
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Zhengyi Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029 China
| | - Bizeng Mao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029 China
| | - Renyi Gui
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
| | - Xiaoqin Guo
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Hangzhou, 311300 China
| |
Collapse
|
31
|
Nishimura K, Moriyama R, Katsura K, Saito H, Takisawa R, Kitajima A, Nakazaki T. The early flowering trait of an emmer wheat accession (Triticum turgidum L. ssp. dicoccum) is associated with the cis-element of the Vrn-A3 locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2037-2053. [PMID: 29961103 DOI: 10.1007/s00122-018-3131-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
We identified a novel allele of the Vrn-A3 gene that is associated with an early flowering trait in wheat. This trait is caused by a cis-element GATA box in Vrn-A3. To identify novel flowering genes in wheat, we investigated days from germination to heading (DGH) in tetraploid wheat accessions. We found that the tetraploid variety Triticum turgidum L. ssp. dicoccum (TN26) harbors unknown genes that surpass the earliness effect of the early flowering allele Ppd-A1a harbored by TN28 (T. turgidum L. ssp. turgidum conv. pyramidale). Using recombinant inbred lines resulting from a cross between TN26 and TN28, we performed a quantitative trait locus (QTL) analysis for DGH. We identified a QTL for earliness in TN26 on chromosome 7AS, the chromosome on which Vrn-A3 is located. By sequence analysis for the Vrn-A3 locus in both TN26 and TN28, we identified a 7-bp insertion that included a cis-element GATA box sequence at the promoter region of the Vrn-A3 locus of TN26. Based on an expression analysis using sister lines for Vrn-A3, we suggest that the early flowering trait of TN26 was caused by the GATA box in Vrn-A3. In addition, we identified tetraploid wheat as a useful genetic resource for wheat breeding.
Collapse
Affiliation(s)
- Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
| | - Ryuji Moriyama
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
- JX Nippon Oil and Gas Exploration Corporation, 1-1-2, Otemachi, Chiyoda, Tokyo, 100-8163, Japan
| | - Keisuke Katsura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, 1091-1 Maezato-Kawarabaru, Ishigaki, 907-0002, Okinawa, Japan
| | - Rihito Takisawa
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
| | - Akira Kitajima
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa, 619-0218, Kyoto, Japan.
| |
Collapse
|
32
|
Zhang X, Liu G, Zhang L, Xia C, Zhao T, Jia J, Liu X, Kong X. Fine Mapping of a Novel Heading Date Gene, TaHdm605, in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1059. [PMID: 30073013 PMCID: PMC6058285 DOI: 10.3389/fpls.2018.01059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/29/2018] [Indexed: 05/20/2023]
Abstract
The heading date is critical in determining the adaptability of plants to specific natural environments. Molecular characterization of the wheat genes that regulate heading not only enhances our understanding of the mechanisms underlying wheat heading regulation but also benefits wheat breeding programs by improving heading phenotypes. In this study, we characterized a late heading date mutant, m605, obtained by ethyl methanesulfonate (EMS) mutation. Compared with its wild-type parent, YZ4110, m605 was at least 7 days late in heading when sown in autumn. This late heading trait was controlled by a single recessive gene named TaHdm605. Genetic mapping located the TaHdm605 locus between the molecular markers cfd152 and barc42 on chromosome 3DL using publicly available markers and then further mapped this locus to a 1.86 Mb physical genomic region containing 26 predicted genes. This fine genetic and physical mapping will be helpful for the future map-based cloning of TaHdm605 and for breeders seeking to engineer changes in the wheat heading date trait.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Liu
- *Correspondence: Xu Liu, ; Xiuying Kong,
| | | |
Collapse
|
33
|
|
34
|
Kurokura T, Samad S, Koskela E, Mouhu K, Hytönen T. Fragaria vesca CONSTANS controls photoperiodic flowering and vegetative development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4839-4850. [PMID: 29048562 PMCID: PMC5853477 DOI: 10.1093/jxb/erx301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 05/18/2023]
Abstract
According to the external coincidence model, photoperiodic flowering occurs when CONSTANS (CO) mRNA expression coincides with light in the afternoon of long days (LDs), leading to the activation of FLOWERING LOCUS T (FT). CO has evolved in Brassicaceae from other Group Ia CO-like (COL) proteins which do not control photoperiodic flowering in Arabidopsis. COLs in other species have evolved different functions as floral activators or even as repressors. To understand photoperiodic development in the perennial rosaceous model species woodland strawberry, we functionally characterized FvCO, the only Group Ia COL in its genome. We demonstrate that FvCO has a major role in the photoperiodic control of flowering and vegetative reproduction through runners. FvCO is needed to generate a bimodal rhythm of FvFT1 which encodes a floral activator in the LD accession Hawaii-4: a sharp FvCO expression peak at dawn is followed by the FvFT1 morning peak in LDs indicating possible direct regulation, but additional factors that may include FvGI and FvFKF1 are probably needed to schedule the second FvFT1 peak around dusk. These results demonstrate that although FvCO and FvFT1 play major roles in photoperiodic development, the CO-based external coincidence around dusk is not fully applicable to the woodland strawberry.
Collapse
Affiliation(s)
- Takeshi Kurokura
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6AS, UK
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
- Faculty of Agriculture, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Samia Samad
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Elli Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Katriina Mouhu
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
- Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, PO Box 56, FIN-00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
35
|
Yan J, Mao D, Liu X, Wang L, Xu F, Wang G, Zhang W, Liao Y. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. PLANT CELL REPORTS 2017; 36:1387-1399. [PMID: 28616659 DOI: 10.1007/s00299-017-2162-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
This is the first report to clone and functionally characterize a flowering time gene GbCO in perennial gymnosperm Ginkgo biloba. GbCO complements the co mutant of Arabidopsis, restoring normal early flowering. CONSTANS (CO) is a central regulator of photoperiod pathway, which channels inputs from light, day length, and circadian clock to promote the floral transition. In order to understand the role of CO in gymnosperm Ginkgo biloba, which has a long juvenile phase (15-20 years), a CO homolog (GbCO) was isolated and characterized from G. biloba. GbCO encodes a 1741-bp gene with a predicted protein of 400 amino acids with two zinc finger domains (B-box I and B-box II) and a CCT domain. Phylogenic analysis classified GbCO into the group 1a clade of CO families in accordance with the grouping scheme for Arabidopsis CO (AtCO). Southern blot analysis indicated that GbCO belongs to a multigene family in G. biloba. Real-time PCR analysis showed that GbCO was expressed in aerial parts of Ginkgo, with the highest transcript level of GbCO being observed in shoot apexes. GbCO transcript level exhibited a strong diurnal rhythm under flowering-inductive long days and peaked during early morning, suggesting that GbCO is tightly coupled to the floral inductive long-day signal. In addition, an increasing trend of GbCO transcript level was observed both in shoot tips and leaves as the shoot growth under long-day condition, whereas GbCO transcript level decreased in both tissues under short-day condition prior to growth cessation of shoot in G. biloba. GbCO complemented the Arabidopsis co-2 mutant, restoring normal early flowering. All the evidence being taken together, our findings suggested that GbCO served as a potential inducer of flowering in G. biloba.
Collapse
Affiliation(s)
- Jiaping Yan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Dun Mao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Guiyuan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
36
|
Li G, Wu Y, Liu G, Xiao X, Wang P, Gao T, Xu M, Han Q, Wang Y, Guo T, Kang G. Large-scale Proteomics Combined with Transgenic Experiments Demonstrates An Important Role of Jasmonic Acid in Potassium Deficiency Response in Wheat and Rice. Mol Cell Proteomics 2017; 16:1889-1905. [PMID: 28821602 PMCID: PMC5671998 DOI: 10.1074/mcp.ra117.000032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/03/2022] Open
Abstract
Potassium (K+) is the most abundant inorganic cation in plants, and molecular dissection of K+ deficiency has received considerable interest in order to minimize K+ fertilizer input and develop high quality K+-efficient crops. However, the molecular mechanism of plant responses to K+ deficiency is still poorly understood. In this study, 2-week-old bread wheat seedlings grown hydroponically in Hoagland solution were transferred to K+-free conditions for 8 d, and their root and leaf proteome profiles were assessed using the iTRAQ proteome method. Over 4000 unique proteins were identified, and 818 K+-responsive protein species showed significant differences in abundance. The differentially expressed protein species were associated with diverse functions and exhibited organ-specific differences. Most of the differentially expressed protein species related to hormone synthesis were involved in jasmonic acid (JA) synthesis and the upregulated abundance of JA synthesis-related enzymes could result in the increased JA concentrations. Abundance of allene oxide synthase (AOS), one key JA synthesis-related enzyme, was significantly increased in K+-deficient wheat seedlings, and its overexpression markedly increased concentrations of K+ and JA, altered the transcription levels of some genes encoding K+-responsive protein species, as well as enhanced the tolerance of rice plants to low K+ or K+ deficiency. Moreover, rice AOS mutant (osaos) exhibited more sensitivity to low K+ or K+ deficiency. Our findings could highlight the importance of JA in K+ deficiency, and imply a network of molecular processes underlying plant responses to K+ deficiency.
Collapse
Affiliation(s)
- Gezi Li
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,§Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yufang Wu
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Guoyu Liu
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Xianghong Xiao
- §Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Wang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Tian Gao
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Mengjun Xu
- §Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiaoxia Han
- ¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yonghua Wang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiancai Guo
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.,¶National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guozhang Kang
- From the ‡National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China; .,§Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
37
|
Wu W, Zheng XM, Chen D, Zhang Y, Ma W, Zhang H, Sun L, Yang Z, Zhao C, Zhan X, Shen X, Yu P, Fu Y, Zhu S, Cao L, Cheng S. OsCOL16, encoding a CONSTANS-like protein, represses flowering by up-regulating Ghd7 expression in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:60-69. [PMID: 28554475 DOI: 10.1016/j.plantsci.2017.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
Flowering time is an important agronomic trait that coordinates the plant life cycle with regional adaptability and thereby impacts yield potentials for cereal crops. The CONSTANS (CO)-like gene family plays vital roles in the regulation of flowering time. CO-like proteins are typically divided into four phylogenetic groups in rice. Several genes from groups I, III, and IV have been functionally characterized, though little is known about the genes of group II in rice. We report the functional characterization in rice of a constitutive floral inhibitor, OsCOL16, encoding a group-II CO-like protein that delays flowering time and increases plant height and grain yield. Overexpression of OsCOL16 resulted in late heading under both long-day and short-day conditions. OsCOL16 expression exhibits a diurnal oscillation and serves as a transcription factor with transcriptional activation activity. We determined that OsCOL16 up-regulates the expression of the floral repressor Ghd7, leading to down-regulation of the expression of Ehd1, Hd3a, and RFT1. Moreover, genetic diversity and evolutionary analyses suggest that remarkable differences in flowering times correlate with two major alleles of OsCOL16. Our combined molecular biology and phylogeographic analyses revealed that OsCOL16 plays an important role in regulating rice photoperiodic flowering, allowing for environmental adaptation of rice.
Collapse
Affiliation(s)
- Weixun Wu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiao-Ming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Daibo Chen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yingxin Zhang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lianping Sun
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhengfu Yang
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Chunde Zhao
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaodeng Zhan
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xihong Shen
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Yu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Yaping Fu
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Liyong Cao
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| | - Shihua Cheng
- Zhejiang Key Laboratory of Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
38
|
RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.). PLoS One 2017; 12:e0177417. [PMID: 28531235 PMCID: PMC5439701 DOI: 10.1371/journal.pone.0177417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/26/2017] [Indexed: 01/18/2023] Open
Abstract
Crested wheatgrass [Agropyron cristatum L. (Gaertn.)] is widely used for early spring grazing in western Canada and the development of late maturing cultivars which maintain forage quality for a longer period is desired. However, it is difficult to manipulate the timing of floral transition, as little is known about molecular mechanism of plant maturity in this species. In this study, RNA-Seq and differential gene expression analysis were performed to investigate gene expression for floral initiation and development in crested wheatgrass. Three cDNA libraries were generated and sequenced to represent three successive growth stages by sampling leaves at the stem elongation stage, spikes at boot and anthesis stages. The sequencing generated 25,568,846; 25,144,688 and 25,714,194 qualified Illumina reads for the three successive stages, respectively. De novo assembly of all the reads generated 311,671 transcripts with a mean length of 487 bp, and 152,849 genes with an average sequence length of 669 bp. A total of 48,574 (31.8%) and 105,222 (68.8%) genes were annotated in the Swiss-Prot and NCBI non-redundant (nr) protein databases, respectively. Based on the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway database, 9,723 annotated sequences were mapped onto 298 pathways, including plant circadian clock pathway. Specifically, 113 flowering time-associated genes, 123 MADS-box genes and 22 CONSTANS-LIKE (COL) genes were identified. A COL homolog DN52048-c0-g4 which was clustered with the flowering time genes AtCO and OsHd1 in Arabidopsis (Arabidopsis thaliana L.) and rice (Oryza sativa L.), respectively, showed specific expression in leaves and could be a CONSTANS (CO) candidate gene. Taken together, this study has generated a new set of genomic resources for identifying and characterizing genes and pathways involved in floral transition and development in crested wheatgrass. These findings are significant for further understanding of the molecular basis for late maturity in this grass species.
Collapse
|
39
|
Brambilla V, Gomez-Ariza J, Cerise M, Fornara F. The Importance of Being on Time: Regulatory Networks Controlling Photoperiodic Flowering in Cereals. FRONTIERS IN PLANT SCIENCE 2017; 8:665. [PMID: 28491078 PMCID: PMC5405123 DOI: 10.3389/fpls.2017.00665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 05/04/2023]
Abstract
Flowering is the result of the coordination between genetic information and environmental cues. Gene regulatory networks have evolved in plants in order to measure diurnal and seasonal variation of day length (or photoperiod), thus aligning the reproductive phase with the most favorable season of the year. The capacity of plants to discriminate distinct photoperiods classifies them into long and short day species, depending on the conditions that induce flowering. Plants of tropical origin and adapted to short day lengths include rice, maize, and sorghum, whereas wheat and barley were originally domesticated in the Fertile Crescent and are considered long day species. In these and other crops, day length measurement mechanisms have been artificially modified during domestication and breeding to adapt plants to novel areas, to the extent that a wide diversity of responses exists within any given species. Notwithstanding the ample natural and artificial variation of day length responses, some of the basic molecular elements governing photoperiodic flowering are widely conserved. However, as our understanding of the underlying mechanisms improves, it becomes evident that specific regulators exist in many lineages that are not shared by others, while apparently conserved components can be recruited to novel functions during evolution.
Collapse
|
40
|
Development of a high-density genetic linkage map and identification of flowering time QTLs in adzuki bean (Vigna angularis). Sci Rep 2016; 6:39523. [PMID: 28008173 PMCID: PMC5180193 DOI: 10.1038/srep39523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/23/2016] [Indexed: 11/08/2022] Open
Abstract
A high-density linkage map is crucial for the identification of quantitative trait loci (QTLs), positional cloning, and physical map assembly. Here, we report the development of a high-density linkage map based on specific length amplified fragment sequencing (SLAF-seq) for adzuki bean and the identification of flowering time-related QTLs. Through SLAF library construction and Illumina sequencing of a recombinant inbred line (RIL) population, a total of 4425 SLAF markers were developed and assigned to 11 linkage groups (LGs). After binning the SLAF markers that represented the same genotype, the final linkage map of 1628.15 cM contained 2032 markers, with an average marker density of 0.80 cM. Comparative analysis showed high collinearity with two adzuki bean physical maps and a high degree of synteny with the reference genome of common bean (Phaseolus vulgaris). Using this map, one major QTL on LG03 and two minor QTLs on LG05 associated with first flowering time (FLD) were consistently identified in tests over a two-year period. These results provide a foundation that will be useful for future genomic research, such as identifying QTLs for other important traits, positional cloning, and comparative mapping in legumes.
Collapse
|
41
|
Kitagawa S, Shimada S, Murai K. Effect of Ppd-1 on the expression of flowering-time genes in vegetative and reproductive growth stages of wheat. Genes Genet Syst 2016; 87:161-8. [PMID: 22976391 DOI: 10.1266/ggs.87.161] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The photoperiod sensitivity gene Ppd-1 influences the timing of flowering in temperate cereals such as wheat and barley. The effect of Ppd-1 on the expression of flowering-time genes was assessed by examining the expression levels of the vernalization genes VRN1 and VRN3/WFT and of two CONSTANS-like genes, WCO1 and TaHd1, during vegetative and reproductive growth stages. Two near-isogenic lines (NILs) were used: the first carried a photoperiod-insensitive allele of Ppd-1 (Ppd-1a-NIL), the other, a photoperiod-sensitive allele (Ppd-1b-NIL). We found that the expression pattern of VRN1 was similar in Ppd-1a-NIL and Ppd-1b-NIL plants, suggesting that VRN1 is not regulated by Ppd-1. Under long day conditions, VRN3/WFT showed similar expression patterns in Ppd-1a-NIL and Ppd-1b-NIL plants. However, expression differed greatly under short day conditions: VRN3/WFT expression was detected in Ppd-1a-NIL plants at the 5-leaf stage when they transited from vegetative to reproductive growth; very low expression was present in Ppd-1b-NIL throughout all growth stages. Thus, the Ppd-1b allele acts to down-regulate VRN3/WFT under short day conditions. WCO1 showed high levels of expression at the vegetative stage, which decreased during the phase transition and reproductive growth stages in both Ppd-1a-NIL and Ppd-1b-NIL plants under short day conditions. By contrast to WCO1, TaHd1 was up-regulated during the reproductive stage. The level of TaHd1 expression was much higher in Ppd-1a-NIL than the Ppd-1b-NIL plants, suggesting that the Ppd-1b allele down-regulates TaHd1 under short day conditions. The present study indicates that down-regulation of VRN3/WFT together with TaHd1 is the cause of late flowering in the Ppd-1b-NIL plants under short day conditions.
Collapse
Affiliation(s)
- Satoshi Kitagawa
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | | | | |
Collapse
|
42
|
Kim SK, Park HY, Jang YH, Lee KC, Chung YS, Lee JH, Kim JK. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice. PLANTA 2016; 243:563-76. [PMID: 26542958 DOI: 10.1007/s00425-015-2426-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/23/2015] [Indexed: 05/21/2023]
Abstract
OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice. Protein interaction studies showed that the physical interactions occurred between the three OsNF-YC proteins (OsNF-YC2, OsNF-YC4 and OsNF-YC6) and three OsNF-YB proteins (OsNF-YB8, OsNF-YB10 and OsNF-YB11). Repression and overexpression of the OsNF-YC2 and OsNF-YC4 genes revealed that they act as inhibitors of flowering only under long-day (LD) conditions. Overexpression of OsNF-YC6, however, promoted flowering only under LD conditions, suggesting it could function as a flowering promoter. These phenotypes correlated with the changes in the expression of three rice flowering-time genes [Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1)]. The diurnal and tissue-specific expression patterns of the subsets of OsNF-YB and OsNF-YC genes were similar to those of CCT domain encoding genes such as OsCO3, Heading date 1 (Hd1) and Ghd7. We propose that OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response by interacting directly with OsNF-YB8, OsNF-YB10 or OsNF-YB11 proteins in rice.
Collapse
Affiliation(s)
- Soon-Kap Kim
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-Gu, Seoul, 136-701, Republic of Korea
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hyo-Young Park
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Yun Hee Jang
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Keh Chien Lee
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Young Soo Chung
- Department of Genetic Engineering, Dong-A University, Busan, 604-714, Republic of Korea
| | - Jeong Hwan Lee
- Department of Bioresource Engineering and Plant Engineering Research Institute, Sejong University, 98 Gunja-dong, Gwangjin-Gu, Seoul, 143-747, Republic of Korea.
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, Anam-dong 5 ga, Seongbuk-Gu, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
43
|
Hill CB, Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1906. [PMID: 28066466 PMCID: PMC5165254 DOI: 10.3389/fpls.2016.01906] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
Collapse
Affiliation(s)
- Camilla B. Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| |
Collapse
|
44
|
Chaurasia AK, Patil HB, Azeez A, Subramaniam VR, Krishna B, Sane AP, Sane PV. Molecular characterization of CONSTANS-Like (COL) genes in banana (Musa acuminata L. AAA Group, cv. Grand Nain). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:1-15. [PMID: 27186015 PMCID: PMC4840155 DOI: 10.1007/s12298-016-0345-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/31/2016] [Indexed: 05/15/2023]
Abstract
The CONSTANS (CO) family is an important regulator of flowering in photoperiod sensitive plants. But information regarding their role in day neutral plants is limited. We report identification of nine Group I type CONSTANS-like (COL) genes of banana and their characterization for their age dependent, diurnal and tissue-specific expression. Our studies show that the Group I genes are conserved in structure to members in other plants. Expression of these genes shows a distinct circadian regulation with a peak during light period. Developmental stage specific expression reveals high level transcript accumulation of two genes, MaCOL3a and MaCOL3b, well before flowering and until the initiation of flowering. A decrease in their transcript levels after initiation of flowering is followed by an increase in transcription of other members that coincides with the continued development of the inflorescence and fruiting. CO binding cis-elements are observed in at least three FT -like genes in banana suggesting possible CO-FT interactions that might regulate flowering. Distinct tissue specific expression patterns are observed for different family members in mature leaves, apical inflorescence, bracts, fruit skin and fruit pulp suggesting possible roles other than flowering. This is the first exhaustive study of the COL genes belonging to Group I of banana.
Collapse
Affiliation(s)
- Akhilesh Kumar Chaurasia
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Hemant Bhagwan Patil
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | - Abdul Azeez
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | | | - Bal Krishna
- />Plant Molecular Biology Lab, Jain R&D Lab, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, 425001 India
| | | | | |
Collapse
|
45
|
Peng FY, Hu Z, Yang RC. Genome-Wide Comparative Analysis of Flowering-Related Genes in Arabidopsis, Wheat, and Barley. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2015; 2015:874361. [PMID: 26435710 PMCID: PMC4576011 DOI: 10.1155/2015/874361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 05/06/2023]
Abstract
Early flowering is an important trait influencing grain yield and quality in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in short-season cropping regions. However, due to large and complex genomes of these species, direct identification of flowering genes and their molecular characterization remain challenging. Here, we used a bioinformatic approach to predict flowering-related genes in wheat and barley from 190 known Arabidopsis (Arabidopsis thaliana (L.) Heynh.) flowering genes. We identified 900 and 275 putative orthologs in wheat and barley, respectively. The annotated flowering-related genes were clustered into 144 orthologous groups with one-to-one, one-to-many, many-to-one, and many-to-many orthology relationships. Our approach was further validated by domain and phylogenetic analyses of flowering-related proteins and comparative analysis of publicly available microarray data sets for in silico expression profiling of flowering-related genes in 13 different developmental stages of wheat and barley. These further analyses showed that orthologous gene pairs in three critical flowering gene families (PEBP, MADS, and BBX) exhibited similar expression patterns among 13 developmental stages in wheat and barley, suggesting similar functions among the orthologous genes with sequence and expression similarities. The predicted candidate flowering genes can be confirmed and incorporated into molecular breeding for early flowering wheat and barley in short-season cropping regions.
Collapse
Affiliation(s)
- Fred Y. Peng
- Feed Crops Branch, Alberta Agriculture and Forestry, 7000-113 Street, Edmonton, AB, Canada T6H 5T6
| | - Zhiqiu Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, Canada T6G 2P5
| | - Rong-Cai Yang
- Feed Crops Branch, Alberta Agriculture and Forestry, 7000-113 Street, Edmonton, AB, Canada T6H 5T6
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB, Canada T6G 2P5
| |
Collapse
|
46
|
Chen Q, Zhong H, Fan XW, Li YZ. An insight into the sensitivity of maize to photoperiod changes under controlled conditions. PLANT, CELL & ENVIRONMENT 2015; 38:1479-1489. [PMID: 24910171 DOI: 10.1111/pce.12361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Response of maize to photoperiods affects adaption of this crop to environments. We characterize the phenotypes of four temperate-adapted maize foundation parents, Huangzao 4, Chang 7-2, Ye 478 and Zheng 58, and two tropically adapted maize foundation parents, M9 and Shuang M9 throughout the growth stage under three constant photoperiod regimes in a daily cycle of 24 h at 28 °C, and analysed expression of 48 photoperiod response-associated genes. Consequently, long photoperiod (LP) repressed development of the tassels of photoperiod-sensitive maize lines at V9 stage, and caused subsequent failure in flowering; failure of photoperiod-sensitive maize lines in flowering under LP was associated with lower expression of flowering-related genes; photoperiod changes could make a marked impact on spatial layout of maize inflorescence. The larger oscillation amplitude of expression of photoperiod-responsive genes occurred in LP-sensitive maize lines. In conclusion, failure in development of tassels at V9 stage under LP is an early indicator for judging photoperiod sensitivity. The adaptation of temperate-adapted maize lines to LP is due to the better coordination of expression among photoperiod-sensing genes instead of the loss of the genes. High photoperiod sensitivity of maize is due to high expression of circadian rhythm-responding genes improperly early in the light.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hao Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
47
|
Zhang R, Ding J, Liu C, Cai C, Zhou B, Zhang T, Guo W. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium) species. PLoS One 2015; 10:e0118669. [PMID: 25710777 PMCID: PMC4339614 DOI: 10.1371/journal.pone.0118669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/07/2015] [Indexed: 12/02/2022] Open
Abstract
Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson’s correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton evolutionary process.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Jian Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Chunxiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
48
|
Deng X, Fan X, Li P, Fei X. A photoperiod-regulating gene CONSTANS is correlated to lipid biosynthesis in Chlamydomonas reinhardtii. BIOMED RESEARCH INTERNATIONAL 2015; 2015:715020. [PMID: 25654119 PMCID: PMC4310486 DOI: 10.1155/2015/715020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023]
Abstract
Background. The regulation of lipid biosynthesis is essential in photosynthetic eukaryotic cells. Thus far, no regulatory genes have been reported in the lipid metabolism pathway. Plant CONSTANS (CO) gene regulates blooming by participating in photoperiod and biological clock. Apart from regulating photoperiod, the Chlamydomonas CO gene also regulates starch content. Results. In this study, the results showed that, under HSM-S condition, cells accumulated more lipids at short-day conditions than at long-day conditions. The silencing of the CrCO gene via RNA interference resulted in an increase in lipid content and an increase in triacylglyceride (TAG) level by 24.5%. CrCO RNAi strains accumulated more lipids at short-day conditions than at long-day conditions. The decrease in CrCO expression resulted in the increased expression of TAG biosynthesis-related genes, such as DGAT2, PAP2, and PDAT3, whereas CIS and FBP1 genes showed a decrease in their mRNA when the CrCO expression was suppressed. On the other hand, the overexpression of CrCO resulted in the decrease in lipid content and TAG level. Conclusions. The results of this study revealed a relationship between CrCO gene and lipid metabolism in Chlamydomonas, suggesting that increasing oil by suppressing CrCO expression in microalgae is feasible.
Collapse
Affiliation(s)
- Xiaodong Deng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Xinzhao Fan
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Ping Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Xiaowen Fei
- School of Science, Hainan Medical College, Haikou 571101, China
| |
Collapse
|
49
|
Fu J, Yang L, Dai S. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium. Mol Genet Genomics 2014; 290:1039-54. [PMID: 25523304 DOI: 10.1007/s00438-014-0977-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022]
Abstract
The CONSTANS (CO) and CONSTANS-like (COL) genes play key roles in the photoperiodic flowering pathways, and studying their functions can elucidate the molecular mechanisms underlying flowering control in photoperiod-regulated plants. We identified eleven COL genes (ClCOL1-ClCOL11) in Chrysanthemum lavandulifolium and divided them into three groups that are conserved among the flowering plants based on phylogenetic analysis. Most of the ClCOL genes are primarily expressed in the leaf and shoot apices, except for ClCOL6-ClCOL9, which belong to Group II. The expression levels of ClCOL4-ClCOL5 and ClCOL7-ClCOL8 are up-regulated under inductive short-day (SD) conditions, whereas ClCOL6 is down-regulated under inductive SD conditions. The ClCOL genes exhibit four different diurnal rhythm expressions (Type I-Type IV). The Type I genes (ClCOL4-ClCOL5) are highly transcribed under light. The Type II genes (ClCOL1-ClCOL2, ClCOL10) display increased expression in darkness and are rapidly suppressed under light. Transcripts of ClCOL6-ClCOL9 and ClCOL11, belonging to Type III, are abundant in the late light period or at the beginning of the dark period. ClCOL3 belongs to Type IV, with high expression in the early light period and dark period. The peak expression levels of ClCOL4-ClCOL6 are decreased and postponed in the non-inductive night break (NB) and under long-day (LD) conditions, indicating that those genes may play an essential role in the flowering regulation of C. lavandulifolium. The overexpression of ClCOL5 promotes the flowering of Arabidopsis grown under LD conditions, suggesting that ClCOL5 may function as a flowering enhancer in C. lavandulifolium. This study will be useful not only for the study of the C. lavandulifolium photoperiod-dependent flowering process but also for the genetic manipulation of flowering time-related genes to change the flowering time in the chrysanthemum.
Collapse
Affiliation(s)
- Jianxin Fu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | | | | |
Collapse
|
50
|
Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. ANNALS OF BOTANY 2014; 114:1445-58. [PMID: 24651369 PMCID: PMC4204779 DOI: 10.1093/aob/mcu032] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/04/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice (Oryza sativa) and Arabidopsis thaliana have been widely used as model systems to understand how plants control flowering time in response to photoperiod and cold exposure. Extensive research has resulted in the isolation of several regulatory genes involved in flowering and for them to be organized into a molecular network responsive to environmental cues. When plants are exposed to favourable conditions, the network activates expression of florigenic proteins that are transported to the shoot apical meristem where they drive developmental reprogramming of a population of meristematic cells. Several regulatory factors are evolutionarily conserved between rice and arabidopsis. However, other pathways have evolved independently and confer specific characteristics to flowering responses. SCOPE This review summarizes recent knowledge on the molecular mechanisms regulating daylength perception and flowering time control in arabidopsis and rice. Similarities and differences are discussed between the regulatory networks of the two species and they are compared with the regulatory networks of temperate cereals, which are evolutionarily more similar to rice but have evolved in regions where exposure to low temperatures is crucial to confer competence to flower. Finally, the role of flowering time genes in expansion of rice cultivation to Northern latitudes is discussed. CONCLUSIONS Understanding the mechanisms involved in photoperiodic flowering and comparing the regulatory networks of dicots and monocots has revealed how plants respond to environmental cues and adapt to seasonal changes. The molecular architecture of such regulation shows striking similarities across diverse species. However, integration of specific pathways on a basal scheme is essential for adaptation to different environments. Artificial manipulation of flowering time by means of natural genetic resources is essential for expanding the cultivation of cereals across different environments.
Collapse
Affiliation(s)
- Roshi Shrestha
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Jorge Gómez-Ariza
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Vittoria Brambilla
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Fabio Fornara
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|