1
|
Koplūnaitė M, Butkutė K, Stankevičiūtė J, Meškys R. Exploring the Mutated Kinases for Chemoenzymatic Synthesis of N4-Modified Cytidine Monophosphates. Molecules 2024; 29:3767. [PMID: 39202847 PMCID: PMC11357392 DOI: 10.3390/molecules29163767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.
Collapse
Affiliation(s)
| | | | | | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (K.B.); (J.S.)
| |
Collapse
|
2
|
de Moraes Filho AV, de Jesus Silva Carvalho C, Verçosa CJ, Gonçalves MW, Rohde C, de Melo e Silva D, Cunha KS, Chen-Chen L. In vivo genotoxicity evaluation of efavirenz (EFV) and tenofovir disoproxil fumarate (TDF) alone and in their clinical combinations in Drosophila melanogaster. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:31-38. [DOI: 10.1016/j.mrgentox.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
|
3
|
Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant. PLoS One 2017; 12:e0174163. [PMID: 28323896 PMCID: PMC5360312 DOI: 10.1371/journal.pone.0174163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1’-b-d-2’-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1’-b-d-2’-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo.
Collapse
|
4
|
Matsuura MF, Winiger CB, Shaw RW, Kim MJ, Kim MS, Daugherty AB, Chen F, Moussatche P, Moses JD, Lutz S, Benner SA. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System. ACS Synth Biol 2017; 6:388-394. [PMID: 27935283 DOI: 10.1021/acssynbio.6b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of an artificially expanded genetic information system (AEGIS). By shuffling hydrogen bonding groups on the nucleobases, AEGIS adds potentially as many as four additional nucleobase pairs to the genetic "alphabet". Specifically, we show that DmdNK Q81E creates the monophosphates from the AEGIS nucleosides dP, dZ, dX, and dK (respectively 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, dP; 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one, dZ; 8-(1'β-d-2'-deoxy-ribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione, dX; and 2,4-diamino-5-(1'-β-d-2'-deoxyribofuranosyl)-pyrimidine, dK). Using a coupled enzyme assay, in vitro kinetic parameters were obtained for three of these nucleosides (dP, dX, and dK; the UV absorbance of dZ made it impossible to get its precise kinetic parameters). Thus, DmdNK Q81E appears to be a suitable enzyme to catalyze the first step in the biosynthesis of AEGIS 2'-deoxynucleoside triphosphates in vitro and, perhaps, in vivo, in a cell able to manage plasmids containing AEGIS DNA.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christian B. Winiger
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ashley B. Daugherty
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Fei Chen
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Patricia Moussatche
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Stefan Lutz
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven A. Benner
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
7
|
Ma S, Zhao L, Zhu Z, Liu Q, Xu H, Johansson M, Karlsson A, Zheng X. The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster as a therapeutic suicide gene of breast cancer cells. J Gene Med 2011; 13:305-11. [PMID: 21674733 DOI: 10.1002/jgm.1573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) was investigated for its broader substrate specificity and higher catalytic rate as a suicide gene in a combined gene/chemotherapy of cancer. METHODS To evaluate the effects of nucleoside analog phosphorylation by Dm-dNK in vitro and in vivo, we generated a replication-deficient retroviral vector expressing Dm-dNK to transduce human breast cancer cells MCF7 (ER+) and MDA-MB-231 (ER-). We further determined the enzymatic activity and the sensitivity of the nontransduced and Dm-dNK-transduced 231/dNK and MCF7/dNK cells to the pyrimidine nucleoside analogs araC and araT. RESULTS The data obtained show that Dm-dNK is enzymatically active and its overexpression in the nuclei of breast cancer cells results in an increased sensitivity to the nucleoside analogs araC and araT in vitro. Furthermore, subcutaneously transplanted 231/dNK cells were significantly inhibited after araC treatment, whereas nontransduced cancer cells continued to grow and develop in vivo. CONCLUSIONS These results suggest that the Dm-dNK/nucleoside analog system could be a novel therapeutic strategy for treating breast cancer and improving anti-tumor efficacy, as well as for optimizing approaches for suicide gene therapy.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hébrard C, Cros-Perrial E, Clausen AR, Dumontet C, Piskur J, Jordheim LP. Bacterial deoxyribonucleoside kinases are poor suicide genes in mammalian cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:1068-75. [PMID: 20183574 DOI: 10.1080/15257770903368393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transfer of deoxyribonucleoside kinases (dNKs) into cancer cells increases the activity of cytotoxic nucleoside analogues. It has been shown that bacterial dNKs, when introduced into Escherichia coli, sensitize this bacterium toward nucleoside analogues. We studied the possibility of using bacterial dNKs, for example deoxyadenosine kinases (dAKs), to sensitize human cancer cells to gemcitabine. Stable and transient transfections of bacterial dNKs into human cells showed that these were much less active than human and fruitfly dNKs. The fusion of dAK from Bacillus cereus to the green fluorescent protein induced a modest sensitization. Apparently, bacterial dNKs did not get properly expressed or are unstable in the mammalian cell.
Collapse
Affiliation(s)
- Claire Hébrard
- INSERM U590, Laboratoire de Cytologie Analytique, Faculte de Medecine Rockefeller, Universite Claude Bernard Lyon I, Lyon, France
| | | | | | | | | | | |
Collapse
|
9
|
Development of gene therapy in association with clinically used cytotoxic deoxynucleoside analogues. Cancer Gene Ther 2009; 16:541-50. [PMID: 19343063 DOI: 10.1038/cgt.2009.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical use of cytotoxic deoxynucleoside analogues is often limited by resistance mechanisms due to enzymatic deficiency, or high toxicity in nontumor tissues. To improve the use of these drugs, gene therapy approaches have been proposed and studied, associating clinically used deoxynucleoside analogues such as araC and gemcitabine and suicide genes or myeloprotective genes. In this review, we provide an update of recent results in this area, with particular emphasis on human deoxycytidine kinase, the deoxyribonucleoside kinase from Drosophila melanogaster, purine nucleoside phosphorylase from Escherichia coli, and human cytidine deaminase. Data from literature clearly show the feasibility of these systems, and clinical trials are warranted to conclude on their use in the treatment of cancer patients.
Collapse
|
11
|
Knecht W, Rozpedowska E, Le Breton C, Willer M, Gojkovic Z, Sandrini MPB, Joergensen T, Hasholt L, Munch-Petersen B, Piskur J. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs. Gene Ther 2007; 14:1278-86. [PMID: 17581598 DOI: 10.1038/sj.gt.3302982] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transduced deoxyribonucleoside kinases (dNK) can be used to kill recipient cells in combination with nucleoside prodrugs. The Drosophila melanogaster multisubstrate dNK (Dm-dNK) displays a superior turnover rate and has a great plasticity regarding its substrates. We used directed evolution to create Dm-dNK mutants with increased specificity for several nucleoside analogs (NAs) used as anticancer or antiviral drugs. Four mutants were characterized for the ability to sensitize Escherichia coli toward analogs and for their substrate specificity and kinetic parameters. The mutants had a reduced ability to phosphorylate pyrimidines, while the ability to phosphorylate purine analogs was relatively similar to the wild-type enzyme. We selected two mutants, for expression in the osteosarcoma 143B, the glioblastoma U-87M-G and the breast cancer MCF7 cell lines. The sensitivities of the transduced cell lines in the presence of the NAs fludarabine (F-AraA), cladribine (CdA), vidarabine and cytarabine were compared to the parental cell lines. The sensitivity of 143B cells was increased by 470-fold in the presence of CdA and of U-87M-G cells by 435-fold in the presence of F-AraA. We also show that a choice of the selection and screening system plays a crucial role when optimizing suicide genes by directed evolution.
Collapse
Affiliation(s)
- W Knecht
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Solaroli N, Johansson M, Balzarini J, Karlsson A. Enhanced toxicity of purine nucleoside analogs in cells expressing Drosophila melanogaster nucleoside kinase mutants. Gene Ther 2006; 14:86-92. [PMID: 16885999 DOI: 10.1038/sj.gt.3302835] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) is investigated for possible use as a suicide gene in combined gene/chemotherapy of cancer. The enzyme has broader substrate specificity and higher catalytic rate compared to herpes simplex type 1 thymidine kinase and other known dNKs. Although the enzyme has broad substrate specificity, it has a preference for pyrimidine nucleosides and nucleoside analogs. We have evaluated the substrate specificity and kinetic properties of Dm-dNK proteins containing M88R, V84A+M88R or V84A+M88R+A110D mutations in the amino-acid sequence. These engineered enzymes showed a relative increase in phosphorylation of purine nucleoside analogs such as ganciclovir, 9-beta-D-arabinofuranosylguanine and 2',2'-difluorodeoxyguanosine compared to the wild-type enzyme. The mutant enzymes were expressed in an osteosarcoma thymidine kinase-deficient cell line and the sensitivity of the cell line to nucleoside analogs was determined. The cells expressing the M88R mutant enzyme showed the highest increased sensitivity to purine nucleoside analogs with 8- to 80-fold decreased inhibition constant IC(50) compared to untransduced control cells or cells expressing the wild-type nucleoside kinase. In summary, our data show that enzyme engineering can be used to shift the substrate specificity of the Dm-dNK to selectively increase the sensitivity of cells expressing the enzyme to purine nucleoside analogs.
Collapse
Affiliation(s)
- N Solaroli
- Department of Laboratory Medicine, Division of Metabolic Diseases, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
13
|
Jordheim LP, Galmarini CM, Dumontet C. Gemcitabine resistance due to deoxycytidine kinase deficiency can be reverted by fruitfly deoxynucleoside kinase, DmdNK, in human uterine sarcoma cells. Cancer Chemother Pharmacol 2006; 58:547-54. [PMID: 16463058 DOI: 10.1007/s00280-006-0195-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 01/17/2006] [Indexed: 01/12/2023]
Abstract
PURPOSE Cytotoxic nucleoside analogues are widely used in the treatment of cancers. Resistance to these compounds is frequent and often multifactorial. Deficiency in deoxycytidine kinase (dCK), the rate-limiting activating enzyme, has been reported in a number of in vitro models as well as in various clinical situations. Some strategies to overcome this mechanism of resistance have been proposed there by gene transfer based therapy. METHODS We have developed and characterized a gemcitabine-resistant cell line (Messa 10 K) from the human uterine sarcoma Messa strain, and transfected this cell line with the multisubstrate deoxynucleoside kinase from Drosophila melanogaster (DmdNK) in order to revert the resistance in Messa 10 K cells which was due to dCK-deficiency. RESULTS Messa 10 K is highly resistant to gemcitabine (122-fold), troxacitabine (>15-fold) and araC (13,556-fold). Quantitative real-time PCR and western blot analysis showed that dCK was not detectable in Messa 10 K cells, presumably because of a genetic modification. The transfection of Messa 10 K cells with DmdNK significantly increased the sensitivity to gemcitabine. CONCLUSIONS These results show that genetic modifications in non-hematological malignant cells may be associated with resistance to gemcitabine, and that the gene transfer of non-human genes can be used for the reversion of nucleoside analogue resistance due to dCK deficiency.
Collapse
Affiliation(s)
- Lars Petter Jordheim
- INSERM U590, Laboratoire de Cytologie Analytique, Faculté de Médecine Rockefeller, 8, Avenue Rockefeller, 69008, Lyon, France.
| | | | | |
Collapse
|